//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the SystemZ target. // //===----------------------------------------------------------------------===// #include "SystemZTargetMachine.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "systemz-isel" namespace { // Used to build addressing modes. struct SystemZAddressingMode { // The shape of the address. enum AddrForm { // base+displacement FormBD, // base+displacement+index for load and store operands FormBDXNormal, // base+displacement+index for load address operands FormBDXLA, // base+displacement+index+ADJDYNALLOC FormBDXDynAlloc }; AddrForm Form; // The type of displacement. The enum names here correspond directly // to the definitions in SystemZOperand.td. We could split them into // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it. enum DispRange { Disp12Only, Disp12Pair, Disp20Only, Disp20Only128, Disp20Pair }; DispRange DR; // The parts of the address. The address is equivalent to: // // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0) SDValue Base; int64_t Disp; SDValue Index; bool IncludesDynAlloc; SystemZAddressingMode(AddrForm form, DispRange dr) : Form(form), DR(dr), Base(), Disp(0), Index(), IncludesDynAlloc(false) {} // True if the address can have an index register. bool hasIndexField() { return Form != FormBD; } // True if the address can (and must) include ADJDYNALLOC. bool isDynAlloc() { return Form == FormBDXDynAlloc; } void dump() { errs() << "SystemZAddressingMode " << this << '\n'; errs() << " Base "; if (Base.getNode()) Base.getNode()->dump(); else errs() << "null\n"; if (hasIndexField()) { errs() << " Index "; if (Index.getNode()) Index.getNode()->dump(); else errs() << "null\n"; } errs() << " Disp " << Disp; if (IncludesDynAlloc) errs() << " + ADJDYNALLOC"; errs() << '\n'; } }; // Return a mask with Count low bits set. static uint64_t allOnes(unsigned int Count) { return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; } // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and // Rotate (I5). The combined operand value is effectively: // // (or (rotl Input, Rotate), ~Mask) // // for RNSBG and: // // (and (rotl Input, Rotate), Mask) // // otherwise. The output value has BitSize bits, although Input may be // narrower (in which case the upper bits are don't care). struct RxSBGOperands { RxSBGOperands(unsigned Op, SDValue N) : Opcode(Op), BitSize(N.getValueType().getSizeInBits()), Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63), Rotate(0) {} unsigned Opcode; unsigned BitSize; uint64_t Mask; SDValue Input; unsigned Start; unsigned End; unsigned Rotate; }; class SystemZDAGToDAGISel : public SelectionDAGISel { const SystemZTargetLowering &Lowering; const SystemZSubtarget &Subtarget; // Used by SystemZOperands.td to create integer constants. inline SDValue getImm(const SDNode *Node, uint64_t Imm) const { return CurDAG->getTargetConstant(Imm, Node->getValueType(0)); } const SystemZTargetMachine &getTargetMachine() const { return static_cast(TM); } const SystemZInstrInfo *getInstrInfo() const { return getTargetMachine().getInstrInfo(); } // Try to fold more of the base or index of AM into AM, where IsBase // selects between the base and index. bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const; // Try to describe N in AM, returning true on success. bool selectAddress(SDValue N, SystemZAddressingMode &AM) const; // Extract individual target operands from matched address AM. void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, SDValue &Base, SDValue &Disp) const; void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, SDValue &Base, SDValue &Disp, SDValue &Index) const; // Try to match Addr as a FormBD address with displacement type DR. // Return true on success, storing the base and displacement in // Base and Disp respectively. bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, SDValue &Base, SDValue &Disp) const; // Try to match Addr as a FormBDX address with displacement type DR. // Return true on success and if the result had no index. Store the // base and displacement in Base and Disp respectively. bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, SDValue &Base, SDValue &Disp) const; // Try to match Addr as a FormBDX* address of form Form with // displacement type DR. Return true on success, storing the base, // displacement and index in Base, Disp and Index respectively. bool selectBDXAddr(SystemZAddressingMode::AddrForm Form, SystemZAddressingMode::DispRange DR, SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const; // PC-relative address matching routines used by SystemZOperands.td. bool selectPCRelAddress(SDValue Addr, SDValue &Target) const { if (SystemZISD::isPCREL(Addr.getOpcode())) { Target = Addr.getOperand(0); return true; } return false; } // BD matching routines used by SystemZOperands.td. bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp); } bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); } bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp); } bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); } // MVI matching routines used by SystemZOperands.td. bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); } bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); } // BDX matching routines used by SystemZOperands.td. bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, SystemZAddressingMode::Disp12Only, Addr, Base, Disp, Index); } bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, SystemZAddressingMode::Disp12Pair, Addr, Base, Disp, Index); } bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc, SystemZAddressingMode::Disp12Only, Addr, Base, Disp, Index); } bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, SystemZAddressingMode::Disp20Only, Addr, Base, Disp, Index); } bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, SystemZAddressingMode::Disp20Only128, Addr, Base, Disp, Index); } bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, SystemZAddressingMode::Disp20Pair, Addr, Base, Disp, Index); } bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { return selectBDXAddr(SystemZAddressingMode::FormBDXLA, SystemZAddressingMode::Disp12Pair, Addr, Base, Disp, Index); } bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { return selectBDXAddr(SystemZAddressingMode::FormBDXLA, SystemZAddressingMode::Disp20Pair, Addr, Base, Disp, Index); } // Check whether (or Op (and X InsertMask)) is effectively an insertion // of X into bits InsertMask of some Y != Op. Return true if so and // set Op to that Y. bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const; // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used. // Return true on success. bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const; // Try to fold some of RxSBG.Input into other fields of RxSBG. // Return true on success. bool expandRxSBG(RxSBGOperands &RxSBG) const; // Return an undefined value of type VT. SDValue getUNDEF(SDLoc DL, EVT VT) const; // Convert N to VT, if it isn't already. SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const; // Try to implement AND or shift node N using RISBG with the zero flag set. // Return the selected node on success, otherwise return null. SDNode *tryRISBGZero(SDNode *N); // Try to use RISBG or Opcode to implement OR or XOR node N. // Return the selected node on success, otherwise return null. SDNode *tryRxSBG(SDNode *N, unsigned Opcode); // If Op0 is null, then Node is a constant that can be loaded using: // // (Opcode UpperVal LowerVal) // // If Op0 is nonnull, then Node can be implemented using: // // (Opcode (Opcode Op0 UpperVal) LowerVal) SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, uint64_t UpperVal, uint64_t LowerVal); // Return true if Load and Store are loads and stores of the same size // and are guaranteed not to overlap. Such operations can be implemented // using block (SS-format) instructions. // // Partial overlap would lead to incorrect code, since the block operations // are logically bytewise, even though they have a fast path for the // non-overlapping case. We also need to avoid full overlap (i.e. two // addresses that might be equal at run time) because although that case // would be handled correctly, it might be implemented by millicode. bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const; // N is a (store (load Y), X) pattern. Return true if it can use an MVC // from Y to X. bool storeLoadCanUseMVC(SDNode *N) const; // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true // if A[1 - I] == X and if N can use a block operation like NC from A[I] // to X. bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const; public: SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel) : SelectionDAGISel(TM, OptLevel), Lowering(*TM.getTargetLowering()), Subtarget(*TM.getSubtargetImpl()) { } // Override MachineFunctionPass. const char *getPassName() const override { return "SystemZ DAG->DAG Pattern Instruction Selection"; } // Override SelectionDAGISel. SDNode *Select(SDNode *Node) override; bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) override; // Include the pieces autogenerated from the target description. #include "SystemZGenDAGISel.inc" }; } // end anonymous namespace FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel) { return new SystemZDAGToDAGISel(TM, OptLevel); } // Return true if Val should be selected as a displacement for an address // with range DR. Here we're interested in the range of both the instruction // described by DR and of any pairing instruction. static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { switch (DR) { case SystemZAddressingMode::Disp12Only: return isUInt<12>(Val); case SystemZAddressingMode::Disp12Pair: case SystemZAddressingMode::Disp20Only: case SystemZAddressingMode::Disp20Pair: return isInt<20>(Val); case SystemZAddressingMode::Disp20Only128: return isInt<20>(Val) && isInt<20>(Val + 8); } llvm_unreachable("Unhandled displacement range"); } // Change the base or index in AM to Value, where IsBase selects // between the base and index. static void changeComponent(SystemZAddressingMode &AM, bool IsBase, SDValue Value) { if (IsBase) AM.Base = Value; else AM.Index = Value; } // The base or index of AM is equivalent to Value + ADJDYNALLOC, // where IsBase selects between the base and index. Try to fold the // ADJDYNALLOC into AM. static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, SDValue Value) { if (AM.isDynAlloc() && !AM.IncludesDynAlloc) { changeComponent(AM, IsBase, Value); AM.IncludesDynAlloc = true; return true; } return false; } // The base of AM is equivalent to Base + Index. Try to use Index as // the index register. static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, SDValue Index) { if (AM.hasIndexField() && !AM.Index.getNode()) { AM.Base = Base; AM.Index = Index; return true; } return false; } // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects // between the base and index. Try to fold Op1 into AM's displacement. static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, SDValue Op0, uint64_t Op1) { // First try adjusting the displacement. int64_t TestDisp = AM.Disp + Op1; if (selectDisp(AM.DR, TestDisp)) { changeComponent(AM, IsBase, Op0); AM.Disp = TestDisp; return true; } // We could consider forcing the displacement into a register and // using it as an index, but it would need to be carefully tuned. return false; } bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM, bool IsBase) const { SDValue N = IsBase ? AM.Base : AM.Index; unsigned Opcode = N.getOpcode(); if (Opcode == ISD::TRUNCATE) { N = N.getOperand(0); Opcode = N.getOpcode(); } if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) { SDValue Op0 = N.getOperand(0); SDValue Op1 = N.getOperand(1); unsigned Op0Code = Op0->getOpcode(); unsigned Op1Code = Op1->getOpcode(); if (Op0Code == SystemZISD::ADJDYNALLOC) return expandAdjDynAlloc(AM, IsBase, Op1); if (Op1Code == SystemZISD::ADJDYNALLOC) return expandAdjDynAlloc(AM, IsBase, Op0); if (Op0Code == ISD::Constant) return expandDisp(AM, IsBase, Op1, cast(Op0)->getSExtValue()); if (Op1Code == ISD::Constant) return expandDisp(AM, IsBase, Op0, cast(Op1)->getSExtValue()); if (IsBase && expandIndex(AM, Op0, Op1)) return true; } if (Opcode == SystemZISD::PCREL_OFFSET) { SDValue Full = N.getOperand(0); SDValue Base = N.getOperand(1); SDValue Anchor = Base.getOperand(0); uint64_t Offset = (cast(Full)->getOffset() - cast(Anchor)->getOffset()); return expandDisp(AM, IsBase, Base, Offset); } return false; } // Return true if an instruction with displacement range DR should be // used for displacement value Val. selectDisp(DR, Val) must already hold. static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { assert(selectDisp(DR, Val) && "Invalid displacement"); switch (DR) { case SystemZAddressingMode::Disp12Only: case SystemZAddressingMode::Disp20Only: case SystemZAddressingMode::Disp20Only128: return true; case SystemZAddressingMode::Disp12Pair: // Use the other instruction if the displacement is too large. return isUInt<12>(Val); case SystemZAddressingMode::Disp20Pair: // Use the other instruction if the displacement is small enough. return !isUInt<12>(Val); } llvm_unreachable("Unhandled displacement range"); } // Return true if Base + Disp + Index should be performed by LA(Y). static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) { // Don't use LA(Y) for constants. if (!Base) return false; // Always use LA(Y) for frame addresses, since we know that the destination // register is almost always (perhaps always) going to be different from // the frame register. if (Base->getOpcode() == ISD::FrameIndex) return true; if (Disp) { // Always use LA(Y) if there is a base, displacement and index. if (Index) return true; // Always use LA if the displacement is small enough. It should always // be no worse than AGHI (and better if it avoids a move). if (isUInt<12>(Disp)) return true; // For similar reasons, always use LAY if the constant is too big for AGHI. // LAY should be no worse than AGFI. if (!isInt<16>(Disp)) return true; } else { // Don't use LA for plain registers. if (!Index) return false; // Don't use LA for plain addition if the index operand is only used // once. It should be a natural two-operand addition in that case. if (Index->hasOneUse()) return false; // Prefer addition if the second operation is sign-extended, in the // hope of using AGF. unsigned IndexOpcode = Index->getOpcode(); if (IndexOpcode == ISD::SIGN_EXTEND || IndexOpcode == ISD::SIGN_EXTEND_INREG) return false; } // Don't use LA for two-operand addition if either operand is only // used once. The addition instructions are better in that case. if (Base->hasOneUse()) return false; return true; } // Return true if Addr is suitable for AM, updating AM if so. bool SystemZDAGToDAGISel::selectAddress(SDValue Addr, SystemZAddressingMode &AM) const { // Start out assuming that the address will need to be loaded separately, // then try to extend it as much as we can. AM.Base = Addr; // First try treating the address as a constant. if (Addr.getOpcode() == ISD::Constant && expandDisp(AM, true, SDValue(), cast(Addr)->getSExtValue())) ; else // Otherwise try expanding each component. while (expandAddress(AM, true) || (AM.Index.getNode() && expandAddress(AM, false))) continue; // Reject cases where it isn't profitable to use LA(Y). if (AM.Form == SystemZAddressingMode::FormBDXLA && !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode())) return false; // Reject cases where the other instruction in a pair should be used. if (!isValidDisp(AM.DR, AM.Disp)) return false; // Make sure that ADJDYNALLOC is included where necessary. if (AM.isDynAlloc() && !AM.IncludesDynAlloc) return false; DEBUG(AM.dump()); return true; } // Insert a node into the DAG at least before Pos. This will reposition // the node as needed, and will assign it a node ID that is <= Pos's ID. // Note that this does *not* preserve the uniqueness of node IDs! // The selection DAG must no longer depend on their uniqueness when this // function is used. static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) { if (N.getNode()->getNodeId() == -1 || N.getNode()->getNodeId() > Pos->getNodeId()) { DAG->RepositionNode(Pos, N.getNode()); N.getNode()->setNodeId(Pos->getNodeId()); } } void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, EVT VT, SDValue &Base, SDValue &Disp) const { Base = AM.Base; if (!Base.getNode()) // Register 0 means "no base". This is mostly useful for shifts. Base = CurDAG->getRegister(0, VT); else if (Base.getOpcode() == ISD::FrameIndex) { // Lower a FrameIndex to a TargetFrameIndex. int64_t FrameIndex = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FrameIndex, VT); } else if (Base.getValueType() != VT) { // Truncate values from i64 to i32, for shifts. assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 && "Unexpected truncation"); SDLoc DL(Base); SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base); insertDAGNode(CurDAG, Base.getNode(), Trunc); Base = Trunc; } // Lower the displacement to a TargetConstant. Disp = CurDAG->getTargetConstant(AM.Disp, VT); } void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, EVT VT, SDValue &Base, SDValue &Disp, SDValue &Index) const { getAddressOperands(AM, VT, Base, Disp); Index = AM.Index; if (!Index.getNode()) // Register 0 means "no index". Index = CurDAG->getRegister(0, VT); } bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, SDValue &Base, SDValue &Disp) const { SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR); if (!selectAddress(Addr, AM)) return false; getAddressOperands(AM, Addr.getValueType(), Base, Disp); return true; } bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, SDValue &Base, SDValue &Disp) const { SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR); if (!selectAddress(Addr, AM) || AM.Index.getNode()) return false; getAddressOperands(AM, Addr.getValueType(), Base, Disp); return true; } bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form, SystemZAddressingMode::DispRange DR, SDValue Addr, SDValue &Base, SDValue &Disp, SDValue &Index) const { SystemZAddressingMode AM(Form, DR); if (!selectAddress(Addr, AM)) return false; getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index); return true; } bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const { // We're only interested in cases where the insertion is into some operand // of Op, rather than into Op itself. The only useful case is an AND. if (Op.getOpcode() != ISD::AND) return false; // We need a constant mask. auto *MaskNode = dyn_cast(Op.getOperand(1).getNode()); if (!MaskNode) return false; // It's not an insertion of Op.getOperand(0) if the two masks overlap. uint64_t AndMask = MaskNode->getZExtValue(); if (InsertMask & AndMask) return false; // It's only an insertion if all bits are covered or are known to be zero. // The inner check covers all cases but is more expensive. uint64_t Used = allOnes(Op.getValueType().getSizeInBits()); if (Used != (AndMask | InsertMask)) { APInt KnownZero, KnownOne; CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne); if (Used != (AndMask | InsertMask | KnownZero.getZExtValue())) return false; } Op = Op.getOperand(0); return true; } bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const { const SystemZInstrInfo *TII = getInstrInfo(); if (RxSBG.Rotate != 0) Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)); Mask &= RxSBG.Mask; if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) { RxSBG.Mask = Mask; return true; } return false; } // Return true if any bits of (RxSBG.Input & Mask) are significant. static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) { // Rotate the mask in the same way as RxSBG.Input is rotated. if (RxSBG.Rotate != 0) Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate))); return (Mask & RxSBG.Mask) != 0; } bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const { SDValue N = RxSBG.Input; unsigned Opcode = N.getOpcode(); switch (Opcode) { case ISD::AND: { if (RxSBG.Opcode == SystemZ::RNSBG) return false; auto *MaskNode = dyn_cast(N.getOperand(1).getNode()); if (!MaskNode) return false; SDValue Input = N.getOperand(0); uint64_t Mask = MaskNode->getZExtValue(); if (!refineRxSBGMask(RxSBG, Mask)) { // If some bits of Input are already known zeros, those bits will have // been removed from the mask. See if adding them back in makes the // mask suitable. APInt KnownZero, KnownOne; CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne); Mask |= KnownZero.getZExtValue(); if (!refineRxSBGMask(RxSBG, Mask)) return false; } RxSBG.Input = Input; return true; } case ISD::OR: { if (RxSBG.Opcode != SystemZ::RNSBG) return false; auto *MaskNode = dyn_cast(N.getOperand(1).getNode()); if (!MaskNode) return false; SDValue Input = N.getOperand(0); uint64_t Mask = ~MaskNode->getZExtValue(); if (!refineRxSBGMask(RxSBG, Mask)) { // If some bits of Input are already known ones, those bits will have // been removed from the mask. See if adding them back in makes the // mask suitable. APInt KnownZero, KnownOne; CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne); Mask &= ~KnownOne.getZExtValue(); if (!refineRxSBGMask(RxSBG, Mask)) return false; } RxSBG.Input = Input; return true; } case ISD::ROTL: { // Any 64-bit rotate left can be merged into the RxSBG. if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64) return false; auto *CountNode = dyn_cast(N.getOperand(1).getNode()); if (!CountNode) return false; RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63; RxSBG.Input = N.getOperand(0); return true; } case ISD::ANY_EXTEND: // Bits above the extended operand are don't-care. RxSBG.Input = N.getOperand(0); return true; case ISD::ZERO_EXTEND: if (RxSBG.Opcode != SystemZ::RNSBG) { // Restrict the mask to the extended operand. unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits(); if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize))) return false; RxSBG.Input = N.getOperand(0); return true; } // Fall through. case ISD::SIGN_EXTEND: { // Check that the extension bits are don't-care (i.e. are masked out // by the final mask). unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits(); if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize))) return false; RxSBG.Input = N.getOperand(0); return true; } case ISD::SHL: { auto *CountNode = dyn_cast(N.getOperand(1).getNode()); if (!CountNode) return false; uint64_t Count = CountNode->getZExtValue(); unsigned BitSize = N.getValueType().getSizeInBits(); if (Count < 1 || Count >= BitSize) return false; if (RxSBG.Opcode == SystemZ::RNSBG) { // Treat (shl X, count) as (rotl X, size-count) as long as the bottom // count bits from RxSBG.Input are ignored. if (maskMatters(RxSBG, allOnes(Count))) return false; } else { // Treat (shl X, count) as (and (rotl X, count), ~0<(N.getOperand(1).getNode()); if (!CountNode) return false; uint64_t Count = CountNode->getZExtValue(); unsigned BitSize = N.getValueType().getSizeInBits(); if (Count < 1 || Count >= BitSize) return false; if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) { // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top // count bits from RxSBG.Input are ignored. if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count))) return false; } else { // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count), // which is similar to SLL above. if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count))) return false; } RxSBG.Rotate = (RxSBG.Rotate - Count) & 63; RxSBG.Input = N.getOperand(0); return true; } default: return false; } } SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const { SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT); return SDValue(N, 0); } SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const { if (N.getValueType() == MVT::i32 && VT == MVT::i64) return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32, DL, VT, getUNDEF(DL, MVT::i64), N); if (N.getValueType() == MVT::i64 && VT == MVT::i32) return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N); assert(N.getValueType() == VT && "Unexpected value types"); return N; } SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) { EVT VT = N->getValueType(0); RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0)); unsigned Count = 0; while (expandRxSBG(RISBG)) if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND) Count += 1; if (Count == 0) return nullptr; if (Count == 1) { // Prefer to use normal shift instructions over RISBG, since they can handle // all cases and are sometimes shorter. if (N->getOpcode() != ISD::AND) return nullptr; // Prefer register extensions like LLC over RISBG. Also prefer to start // out with normal ANDs if one instruction would be enough. We can convert // these ANDs into an RISBG later if a three-address instruction is useful. if (VT == MVT::i32 || RISBG.Mask == 0xff || RISBG.Mask == 0xffff || SystemZ::isImmLF(~RISBG.Mask) || SystemZ::isImmHF(~RISBG.Mask)) { // Force the new mask into the DAG, since it may include known-one bits. auto *MaskN = cast(N->getOperand(1).getNode()); if (MaskN->getZExtValue() != RISBG.Mask) { SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT); N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask); return SelectCode(N); } return nullptr; } } unsigned Opcode = SystemZ::RISBG; EVT OpcodeVT = MVT::i64; if (VT == MVT::i32 && Subtarget.hasHighWord()) { Opcode = SystemZ::RISBMux; OpcodeVT = MVT::i32; RISBG.Start &= 31; RISBG.End &= 31; } SDValue Ops[5] = { getUNDEF(SDLoc(N), OpcodeVT), convertTo(SDLoc(N), OpcodeVT, RISBG.Input), CurDAG->getTargetConstant(RISBG.Start, MVT::i32), CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32), CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32) }; N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops); return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode(); } SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) { // Try treating each operand of N as the second operand of the RxSBG // and see which goes deepest. RxSBGOperands RxSBG[] = { RxSBGOperands(Opcode, N->getOperand(0)), RxSBGOperands(Opcode, N->getOperand(1)) }; unsigned Count[] = { 0, 0 }; for (unsigned I = 0; I < 2; ++I) while (expandRxSBG(RxSBG[I])) if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND) Count[I] += 1; // Do nothing if neither operand is suitable. if (Count[0] == 0 && Count[1] == 0) return nullptr; // Pick the deepest second operand. unsigned I = Count[0] > Count[1] ? 0 : 1; SDValue Op0 = N->getOperand(I ^ 1); // Prefer IC for character insertions from memory. if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0) if (auto *Load = dyn_cast(Op0.getNode())) if (Load->getMemoryVT() == MVT::i8) return nullptr; // See whether we can avoid an AND in the first operand by converting // ROSBG to RISBG. if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) Opcode = SystemZ::RISBG; EVT VT = N->getValueType(0); SDValue Ops[5] = { convertTo(SDLoc(N), MVT::i64, Op0), convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input), CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32), CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32), CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32) }; N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops); return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode(); } SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, uint64_t UpperVal, uint64_t LowerVal) { EVT VT = Node->getValueType(0); SDLoc DL(Node); SDValue Upper = CurDAG->getConstant(UpperVal, VT); if (Op0.getNode()) Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper); Upper = SDValue(Select(Upper.getNode()), 0); SDValue Lower = CurDAG->getConstant(LowerVal, VT); SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower); return Or.getNode(); } bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const { // Check that the two memory operands have the same size. if (Load->getMemoryVT() != Store->getMemoryVT()) return false; // Volatility stops an access from being decomposed. if (Load->isVolatile() || Store->isVolatile()) return false; // There's no chance of overlap if the load is invariant. if (Load->isInvariant()) return true; // Otherwise we need to check whether there's an alias. const Value *V1 = Load->getMemOperand()->getValue(); const Value *V2 = Store->getMemOperand()->getValue(); if (!V1 || !V2) return false; // Reject equality. uint64_t Size = Load->getMemoryVT().getStoreSize(); int64_t End1 = Load->getSrcValueOffset() + Size; int64_t End2 = Store->getSrcValueOffset() + Size; if (V1 == V2 && End1 == End2) return false; return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()), AliasAnalysis::Location(V2, End2, Store->getTBAAInfo())); } bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const { auto *Store = cast(N); auto *Load = cast(Store->getValue()); // Prefer not to use MVC if either address can use ... RELATIVE LONG // instructions. uint64_t Size = Load->getMemoryVT().getStoreSize(); if (Size > 1 && Size <= 8) { // Prefer LHRL, LRL and LGRL. if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode())) return false; // Prefer STHRL, STRL and STGRL. if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode())) return false; } return canUseBlockOperation(Store, Load); } bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const { auto *StoreA = cast(N); auto *LoadA = cast(StoreA->getValue().getOperand(1 - I)); auto *LoadB = cast(StoreA->getValue().getOperand(I)); return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB); } SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) { // Dump information about the Node being selected DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n"); // If we have a custom node, we already have selected! if (Node->isMachineOpcode()) { DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); Node->setNodeId(-1); return nullptr; } unsigned Opcode = Node->getOpcode(); SDNode *ResNode = nullptr; switch (Opcode) { case ISD::OR: if (Node->getOperand(1).getOpcode() != ISD::Constant) ResNode = tryRxSBG(Node, SystemZ::ROSBG); goto or_xor; case ISD::XOR: if (Node->getOperand(1).getOpcode() != ISD::Constant) ResNode = tryRxSBG(Node, SystemZ::RXSBG); // Fall through. or_xor: // If this is a 64-bit operation in which both 32-bit halves are nonzero, // split the operation into two. if (!ResNode && Node->getValueType(0) == MVT::i64) if (auto *Op1 = dyn_cast(Node->getOperand(1))) { uint64_t Val = Op1->getZExtValue(); if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0), Val - uint32_t(Val), uint32_t(Val)); } break; case ISD::AND: if (Node->getOperand(1).getOpcode() != ISD::Constant) ResNode = tryRxSBG(Node, SystemZ::RNSBG); // Fall through. case ISD::ROTL: case ISD::SHL: case ISD::SRL: case ISD::ZERO_EXTEND: if (!ResNode) ResNode = tryRISBGZero(Node); break; case ISD::Constant: // If this is a 64-bit constant that is out of the range of LLILF, // LLIHF and LGFI, split it into two 32-bit pieces. if (Node->getValueType(0) == MVT::i64) { uint64_t Val = cast(Node)->getZExtValue(); if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) Node = splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val), uint32_t(Val)); } break; case SystemZISD::SELECT_CCMASK: { SDValue Op0 = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); // Prefer to put any load first, so that it can be matched as a // conditional load. if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) { SDValue CCValid = Node->getOperand(2); SDValue CCMask = Node->getOperand(3); uint64_t ConstCCValid = cast(CCValid.getNode())->getZExtValue(); uint64_t ConstCCMask = cast(CCMask.getNode())->getZExtValue(); // Invert the condition. CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, CCMask.getValueType()); SDValue Op4 = Node->getOperand(4); Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4); } break; } } // Select the default instruction if (!ResNode) ResNode = SelectCode(Node); DEBUG(errs() << "=> "; if (ResNode == nullptr || ResNode == Node) Node->dump(CurDAG); else ResNode->dump(CurDAG); errs() << "\n"; ); return ResNode; } bool SystemZDAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { assert(ConstraintCode == 'm' && "Unexpected constraint code"); // Accept addresses with short displacements, which are compatible // with Q, R, S and T. But keep the index operand for future expansion. SDValue Base, Disp, Index; if (!selectBDXAddr(SystemZAddressingMode::FormBD, SystemZAddressingMode::Disp12Only, Op, Base, Disp, Index)) return true; OutOps.push_back(Base); OutOps.push_back(Disp); OutOps.push_back(Index); return false; }