//===- Pass.cpp - LLVM Pass Infrastructure Implementation -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM Pass infrastructure. It is primarily // responsible with ensuring that passes are executed and batched together // optimally. // //===----------------------------------------------------------------------===// #include "llvm/PassManager.h" #include "PassManagerT.h" // PassManagerT implementation #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/TypeInfo.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // AnalysisResolver Class Implementation // AnalysisResolver::~AnalysisResolver() { } void AnalysisResolver::setAnalysisResolver(Pass *P, AnalysisResolver *AR) { assert(P->Resolver == 0 && "Pass already in a PassManager!"); P->Resolver = AR; } //===----------------------------------------------------------------------===// // PassManager implementation - The PassManager class is a simple Pimpl class // that wraps the PassManagerT template. // PassManager::PassManager() : PM(new ModulePassManager()) {} PassManager::~PassManager() { delete PM; } void PassManager::add(Pass *P) { ModulePass *MP = dynamic_cast(P); assert(MP && "Not a modulepass?"); PM->add(MP); } bool PassManager::run(Module &M) { return PM->runOnModule(M); } //===----------------------------------------------------------------------===// // FunctionPassManager implementation - The FunctionPassManager class // is a simple Pimpl class that wraps the PassManagerT template. It // is like PassManager, but only deals in FunctionPasses. // FunctionPassManager::FunctionPassManager(ModuleProvider *P) : PM(new FunctionPassManagerT()), MP(P) {} FunctionPassManager::~FunctionPassManager() { delete PM; } void FunctionPassManager::add(FunctionPass *P) { PM->add(P); } void FunctionPassManager::add(ImmutablePass *IP) { PM->add(IP); } /// doInitialization - Run all of the initializers for the function passes. /// bool FunctionPassManager::doInitialization() { return PM->doInitialization(*MP->getModule()); } bool FunctionPassManager::run(Function &F) { std::string errstr; if (MP->materializeFunction(&F, &errstr)) { cerr << "Error reading bytecode file: " << errstr << "\n"; abort(); } return PM->runOnFunction(F); } /// doFinalization - Run all of the initializers for the function passes. /// bool FunctionPassManager::doFinalization() { return PM->doFinalization(*MP->getModule()); } //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens with // -time-passes is enabled on the command line. // bool llvm::TimePassesIsEnabled = false; static cl::opt EnableTiming("time-passes", cl::location(TimePassesIsEnabled), cl::desc("Time each pass, printing elapsed time for each on exit")); // createTheTimeInfo - This method either initializes the TheTimeInfo pointer to // a non null value (if the -time-passes option is enabled) or it leaves it // null. It may be called multiple times. void TimingInfo::createTheTimeInfo() { if (!TimePassesIsEnabled || TheTimeInfo) return; // Constructed the first time this is called, iff -time-passes is enabled. // This guarantees that the object will be constructed before static globals, // thus it will be destroyed before them. static TimingInfo TTI; TheTimeInfo = &TTI; } void PMDebug::PrintArgumentInformation(const Pass *P) { // Print out passes in pass manager... if (const AnalysisResolver *PM = dynamic_cast(P)) { for (unsigned i = 0, e = PM->getNumContainedPasses(); i != e; ++i) PrintArgumentInformation(PM->getContainedPass(i)); } else { // Normal pass. Print argument information... // Print out arguments for registered passes that are _optimizations_ if (const PassInfo *PI = P->getPassInfo()) if (!PI->isAnalysisGroup()) cerr << " -" << PI->getPassArgument(); } } void PMDebug::PrintPassInformation(unsigned Depth, const char *Action, Pass *P, Module *M) { if (PassDebugging >= Executions) { cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '" << P->getPassName(); if (M) cerr << "' on Module '" << M->getModuleIdentifier() << "'\n"; cerr << "'...\n"; } } void PMDebug::PrintPassInformation(unsigned Depth, const char *Action, Pass *P, Function *F) { if (PassDebugging >= Executions) { cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '" << P->getPassName(); if (F) cerr << "' on Function '" << F->getName(); cerr << "'...\n"; } } void PMDebug::PrintPassInformation(unsigned Depth, const char *Action, Pass *P, BasicBlock *BB) { if (PassDebugging >= Executions) { cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '" << P->getPassName(); if (BB) cerr << "' on BasicBlock '" << BB->getName(); cerr << "'...\n"; } } void PMDebug::PrintAnalysisSetInfo(unsigned Depth, const char *Msg, Pass *P, const std::vector &Set){ if (PassDebugging >= Details && !Set.empty()) { cerr << (void*)P << std::string(Depth*2+3, ' ') << Msg << " Analyses:"; for (unsigned i = 0; i != Set.size(); ++i) { if (i) cerr << ","; cerr << " " << Set[i]->getPassName(); } cerr << "\n"; } } //===----------------------------------------------------------------------===// // Pass Implementation // void ModulePass::addToPassManager(ModulePassManager *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } bool Pass::mustPreserveAnalysisID(const PassInfo *AnalysisID) const { return Resolver->getAnalysisToUpdate(AnalysisID) != 0; } // dumpPassStructure - Implement the -debug-passes=Structure option void Pass::dumpPassStructure(unsigned Offset) { cerr << std::string(Offset*2, ' ') << getPassName() << "\n"; } // getPassName - Use C++ RTTI to get a SOMEWHAT intelligible name for the pass. // const char *Pass::getPassName() const { if (const PassInfo *PI = getPassInfo()) return PI->getPassName(); return typeid(*this).name(); } // print - Print out the internal state of the pass. This is called by Analyze // to print out the contents of an analysis. Otherwise it is not necessary to // implement this method. // void Pass::print(std::ostream &O,const Module*) const { O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n"; } // dump - call print(cerr); void Pass::dump() const { print(*cerr.stream(), 0); } //===----------------------------------------------------------------------===// // ImmutablePass Implementation // void ImmutablePass::addToPassManager(ModulePassManager *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // FunctionPass Implementation // // run - On a module, we run this pass by initializing, runOnFunction'ing once // for every function in the module, then by finalizing. // bool FunctionPass::runOnModule(Module &M) { bool Changed = doInitialization(M); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) // Passes are not run on external functions! Changed |= runOnFunction(*I); return Changed | doFinalization(M); } // run - On a function, we simply initialize, run the function, then finalize. // bool FunctionPass::run(Function &F) { if (F.isExternal()) return false;// Passes are not run on external functions! bool Changed = doInitialization(*F.getParent()); Changed |= runOnFunction(F); return Changed | doFinalization(*F.getParent()); } void FunctionPass::addToPassManager(ModulePassManager *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void FunctionPass::addToPassManager(FunctionPassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // BasicBlockPass Implementation // // To run this pass on a function, we simply call runOnBasicBlock once for each // function. // bool BasicBlockPass::runOnFunction(Function &F) { bool Changed = doInitialization(F); for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) Changed |= runOnBasicBlock(*I); return Changed | doFinalization(F); } // To run directly on the basic block, we initialize, runOnBasicBlock, then // finalize. // bool BasicBlockPass::runPass(BasicBlock &BB) { Function &F = *BB.getParent(); Module &M = *F.getParent(); bool Changed = doInitialization(M); Changed |= doInitialization(F); Changed |= runOnBasicBlock(BB); Changed |= doFinalization(F); Changed |= doFinalization(M); return Changed; } void BasicBlockPass::addToPassManager(FunctionPassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void BasicBlockPass::addToPassManager(BasicBlockPassManager *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // Pass Registration mechanism // namespace { class PassRegistrar { /// PassInfoMap - Keep track of the passinfo object for each registered llvm /// pass. std::map PassInfoMap; /// AnalysisGroupInfo - Keep track of information for each analysis group. struct AnalysisGroupInfo { const PassInfo *DefaultImpl; std::set Implementations; AnalysisGroupInfo() : DefaultImpl(0) {} }; /// AnalysisGroupInfoMap - Information for each analysis group. std::map AnalysisGroupInfoMap; public: const PassInfo *GetPassInfo(const std::type_info &TI) const { std::map::const_iterator I = PassInfoMap.find(TI); return I != PassInfoMap.end() ? I->second : 0; } void RegisterPass(PassInfo &PI) { bool Inserted = PassInfoMap.insert(std::make_pair(TypeInfo(PI.getTypeInfo()),&PI)).second; assert(Inserted && "Pass registered multiple times!"); } void UnregisterPass(PassInfo &PI) { std::map::iterator I = PassInfoMap.find(PI.getTypeInfo()); assert(I != PassInfoMap.end() && "Pass registered but not in map!"); // Remove pass from the map. PassInfoMap.erase(I); } void EnumerateWith(PassRegistrationListener *L) { for (std::map::const_iterator I = PassInfoMap.begin(), E = PassInfoMap.end(); I != E; ++I) L->passEnumerate(I->second); } /// Analysis Group Mechanisms. void RegisterAnalysisGroup(PassInfo *InterfaceInfo, const PassInfo *ImplementationInfo, bool isDefault) { AnalysisGroupInfo &AGI = AnalysisGroupInfoMap[InterfaceInfo]; assert(AGI.Implementations.count(ImplementationInfo) == 0 && "Cannot add a pass to the same analysis group more than once!"); AGI.Implementations.insert(ImplementationInfo); if (isDefault) { assert(AGI.DefaultImpl == 0 && InterfaceInfo->getNormalCtor() == 0 && "Default implementation for analysis group already specified!"); assert(ImplementationInfo->getNormalCtor() && "Cannot specify pass as default if it does not have a default ctor"); AGI.DefaultImpl = ImplementationInfo; InterfaceInfo->setNormalCtor(ImplementationInfo->getNormalCtor()); } } }; } static ManagedStatic PassRegistrarObj; static std::vector *Listeners = 0; // getPassInfo - Return the PassInfo data structure that corresponds to this // pass... const PassInfo *Pass::getPassInfo() const { if (PassInfoCache) return PassInfoCache; return lookupPassInfo(typeid(*this)); } const PassInfo *Pass::lookupPassInfo(const std::type_info &TI) { return PassRegistrarObj->GetPassInfo(TI); } void RegisterPassBase::registerPass() { PassRegistrarObj->RegisterPass(PIObj); // Notify any listeners. if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passRegistered(&PIObj); } void RegisterPassBase::unregisterPass() { PassRegistrarObj->UnregisterPass(PIObj); } //===----------------------------------------------------------------------===// // Analysis Group Implementation Code //===----------------------------------------------------------------------===// // RegisterAGBase implementation // RegisterAGBase::RegisterAGBase(const std::type_info &Interface, const std::type_info *Pass, bool isDefault) : RegisterPassBase(Interface), ImplementationInfo(0), isDefaultImplementation(isDefault) { InterfaceInfo = const_cast(Pass::lookupPassInfo(Interface)); if (InterfaceInfo == 0) { // First reference to Interface, register it now. registerPass(); InterfaceInfo = &PIObj; } assert(PIObj.isAnalysisGroup() && "Trying to join an analysis group that is a normal pass!"); if (Pass) { ImplementationInfo = Pass::lookupPassInfo(*Pass); assert(ImplementationInfo && "Must register pass before adding to AnalysisGroup!"); // Make sure we keep track of the fact that the implementation implements // the interface. PassInfo *IIPI = const_cast(ImplementationInfo); IIPI->addInterfaceImplemented(InterfaceInfo); PassRegistrarObj->RegisterAnalysisGroup(InterfaceInfo, IIPI, isDefault); } } void RegisterAGBase::setGroupName(const char *Name) { assert(InterfaceInfo->getPassName()[0] == 0 && "Interface Name already set!"); InterfaceInfo->setPassName(Name); } //===----------------------------------------------------------------------===// // PassRegistrationListener implementation // // PassRegistrationListener ctor - Add the current object to the list of // PassRegistrationListeners... PassRegistrationListener::PassRegistrationListener() { if (!Listeners) Listeners = new std::vector(); Listeners->push_back(this); } // dtor - Remove object from list of listeners... PassRegistrationListener::~PassRegistrationListener() { std::vector::iterator I = std::find(Listeners->begin(), Listeners->end(), this); assert(Listeners && I != Listeners->end() && "PassRegistrationListener not registered!"); Listeners->erase(I); if (Listeners->empty()) { delete Listeners; Listeners = 0; } } // enumeratePasses - Iterate over the registered passes, calling the // passEnumerate callback on each PassInfo object. // void PassRegistrationListener::enumeratePasses() { PassRegistrarObj->EnumerateWith(this); } //===----------------------------------------------------------------------===// // AnalysisUsage Class Implementation // namespace { struct GetCFGOnlyPasses : public PassRegistrationListener { std::vector &CFGOnlyList; GetCFGOnlyPasses(std::vector &L) : CFGOnlyList(L) {} void passEnumerate(const PassInfo *P) { if (P->isCFGOnlyPass()) CFGOnlyList.push_back(P); } }; } // setPreservesCFG - This function should be called to by the pass, iff they do // not: // // 1. Add or remove basic blocks from the function // 2. Modify terminator instructions in any way. // // This function annotates the AnalysisUsage info object to say that analyses // that only depend on the CFG are preserved by this pass. // void AnalysisUsage::setPreservesCFG() { // Since this transformation doesn't modify the CFG, it preserves all analyses // that only depend on the CFG (like dominators, loop info, etc...) GetCFGOnlyPasses(Preserved).enumeratePasses(); }