//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrBuilder.h" #include "X86ISelLowering.h" #include "X86TargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/ADT/VectorExtras.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; // FIXME: temporary. #include "llvm/Support/CommandLine.h" static cl::opt EnableFastCC("enable-x86-fastcc", cl::Hidden, cl::desc("Enable fastcc on X86")); X86TargetLowering::X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) { Subtarget = &TM.getSubtarget(); X86ScalarSSE = Subtarget->hasSSE2(); // Set up the TargetLowering object. // X86 is weird, it always uses i8 for shift amounts and setcc results. setShiftAmountType(MVT::i8); setSetCCResultType(MVT::i8); setSetCCResultContents(ZeroOrOneSetCCResult); setSchedulingPreference(SchedulingForRegPressure); setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 setStackPointerRegisterToSaveRestore(X86::ESP); if (!Subtarget->isTargetDarwin()) // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmpLongJmp(true); // Add legal addressing mode scale values. addLegalAddressScale(8); addLegalAddressScale(4); addLegalAddressScale(2); // Enter the ones which require both scale + index last. These are more // expensive. addLegalAddressScale(9); addLegalAddressScale(5); addLegalAddressScale(3); // Set up the register classes. addRegisterClass(MVT::i8, X86::GR8RegisterClass); addRegisterClass(MVT::i16, X86::GR16RegisterClass); addRegisterClass(MVT::i32, X86::GR32RegisterClass); // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this // operation. setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); if (X86ScalarSSE) // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead. setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); else setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have // this operation. setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); // SSE has no i16 to fp conversion, only i32 if (X86ScalarSSE) setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); else { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64 // isn't legal. setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have // this operation. setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); if (X86ScalarSSE) { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); } else { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } // Handle FP_TO_UINT by promoting the destination to a larger signed // conversion. setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); if (X86ScalarSSE && !Subtarget->hasSSE3()) // Expand FP_TO_UINT into a select. // FIXME: We would like to use a Custom expander here eventually to do // the optimal thing for SSE vs. the default expansion in the legalizer. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); else // With SSE3 we can use fisttpll to convert to a signed i64. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); setOperationAction(ISD::BRCOND , MVT::Other, Custom); setOperationAction(ISD::BR_CC , MVT::Other, Expand); setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::FREM , MVT::f64 , Expand); setOperationAction(ISD::CTPOP , MVT::i8 , Expand); setOperationAction(ISD::CTTZ , MVT::i8 , Expand); setOperationAction(ISD::CTLZ , MVT::i8 , Expand); setOperationAction(ISD::CTPOP , MVT::i16 , Expand); setOperationAction(ISD::CTTZ , MVT::i16 , Expand); setOperationAction(ISD::CTLZ , MVT::i16 , Expand); setOperationAction(ISD::CTPOP , MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::CTLZ , MVT::i32 , Expand); setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); setOperationAction(ISD::BSWAP , MVT::i16 , Expand); // These should be promoted to a larger select which is supported. setOperationAction(ISD::SELECT , MVT::i1 , Promote); setOperationAction(ISD::SELECT , MVT::i8 , Promote); // X86 wants to expand cmov itself. setOperationAction(ISD::SELECT , MVT::i16 , Custom); setOperationAction(ISD::SELECT , MVT::i32 , Custom); setOperationAction(ISD::SELECT , MVT::f32 , Custom); setOperationAction(ISD::SELECT , MVT::f64 , Custom); setOperationAction(ISD::SETCC , MVT::i8 , Custom); setOperationAction(ISD::SETCC , MVT::i16 , Custom); setOperationAction(ISD::SETCC , MVT::i32 , Custom); setOperationAction(ISD::SETCC , MVT::f32 , Custom); setOperationAction(ISD::SETCC , MVT::f64 , Custom); // X86 ret instruction may pop stack. setOperationAction(ISD::RET , MVT::Other, Custom); // Darwin ABI issue. setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); setOperationAction(ISD::JumpTable , MVT::i32 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); // X86 wants to expand memset / memcpy itself. setOperationAction(ISD::MEMSET , MVT::Other, Custom); setOperationAction(ISD::MEMCPY , MVT::Other, Custom); // We don't have line number support yet. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); // FIXME - use subtarget debug flags if (!Subtarget->isTargetDarwin()) setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); // Use the default implementation. setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); if (X86ScalarSSE) { // Set up the FP register classes. addRegisterClass(MVT::f32, X86::FR32RegisterClass); addRegisterClass(MVT::f64, X86::FR64RegisterClass); // Use ANDPD to simulate FABS. setOperationAction(ISD::FABS , MVT::f64, Custom); setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f64, Custom); setOperationAction(ISD::FNEG , MVT::f32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); // Expand FP immediates into loads from the stack, except for the special // cases we handle. setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); addLegalFPImmediate(+0.0); // xorps / xorpd } else { // Set up the FP register classes. addRegisterClass(MVT::f64, X86::RFPRegisterClass); setOperationAction(ISD::UNDEF, MVT::f64, Expand); if (!UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64 , Expand); setOperationAction(ISD::FCOS , MVT::f64 , Expand); } setOperationAction(ISD::ConstantFP, MVT::f64, Expand); addLegalFPImmediate(+0.0); // FLD0 addLegalFPImmediate(+1.0); // FLD1 addLegalFPImmediate(-0.0); // FLD0/FCHS addLegalFPImmediate(-1.0); // FLD1/FCHS } // First set operation action for all vector types to expand. Then we // will selectively turn on ones that can be effectively codegen'd. for (unsigned VT = (unsigned)MVT::Vector + 1; VT != (unsigned)MVT::LAST_VALUETYPE; VT++) { setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand); setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand); setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); } if (Subtarget->hasMMX()) { addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); // FIXME: add MMX packed arithmetics setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Expand); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Expand); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Expand); } if (Subtarget->hasSSE1()) { addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); setOperationAction(ISD::AND, MVT::v4f32, Legal); setOperationAction(ISD::OR, MVT::v4f32, Legal); setOperationAction(ISD::XOR, MVT::v4f32, Legal); setOperationAction(ISD::ADD, MVT::v4f32, Legal); setOperationAction(ISD::SUB, MVT::v4f32, Legal); setOperationAction(ISD::MUL, MVT::v4f32, Legal); setOperationAction(ISD::LOAD, MVT::v4f32, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::SELECT, MVT::v4f32, Custom); } if (Subtarget->hasSSE2()) { addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); setOperationAction(ISD::ADD, MVT::v2f64, Legal); setOperationAction(ISD::ADD, MVT::v16i8, Legal); setOperationAction(ISD::ADD, MVT::v8i16, Legal); setOperationAction(ISD::ADD, MVT::v4i32, Legal); setOperationAction(ISD::SUB, MVT::v2f64, Legal); setOperationAction(ISD::SUB, MVT::v16i8, Legal); setOperationAction(ISD::SUB, MVT::v8i16, Legal); setOperationAction(ISD::SUB, MVT::v4i32, Legal); setOperationAction(ISD::MUL, MVT::v8i16, Legal); setOperationAction(ISD::MUL, MVT::v2f64, Legal); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones. setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); // Custom lower build_vector, vector_shuffle, and extract_vector_elt. for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom); } setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64); setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64); setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64); setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64); setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64); } // Custom lower v2i64 and v2f64 selects. setOperationAction(ISD::LOAD, MVT::v2f64, Legal); setOperationAction(ISD::LOAD, MVT::v2i64, Legal); setOperationAction(ISD::SELECT, MVT::v2f64, Custom); setOperationAction(ISD::SELECT, MVT::v2i64, Custom); } // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); computeRegisterProperties(); // FIXME: These should be based on subtarget info. Plus, the values should // be smaller when we are in optimizing for size mode. maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores allowUnalignedMemoryAccesses = true; // x86 supports it! } std::vector X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { std::vector Args = TargetLowering::LowerArguments(F, DAG); FormalArgs.clear(); FormalArgLocs.clear(); // This sets BytesToPopOnReturn, BytesCallerReserves, etc. which have to be // set before the rest of the function can be lowered. if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) PreprocessFastCCArguments(Args, F, DAG); else PreprocessCCCArguments(Args, F, DAG); return Args; } std::pair X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { assert((!isVarArg || CallingConv == CallingConv::C || CallingConv == CallingConv::CSRet) && "Only CCC/CSRet takes varargs!"); // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); if (CallingConv == CallingConv::Fast && EnableFastCC) return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); return LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); } //===----------------------------------------------------------------------===// // C Calling Convention implementation //===----------------------------------------------------------------------===// /// AddLiveIn - This helper function adds the specified physical register to the /// MachineFunction as a live in value. It also creates a corresponding virtual /// register for it. static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC) { assert(RC->contains(PReg) && "Not the correct regclass!"); unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); MF.addLiveIn(PReg, VReg); return VReg; } /// HowToPassCCCArgument - Returns how an formal argument of the specified type /// should be passed. If it is through stack, returns the size of the stack /// frame; if it is through XMM register, returns the number of XMM registers /// are needed. static void HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs, unsigned &ObjSize, unsigned &ObjXMMRegs) { switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: ObjSize = 1; break; case MVT::i16: ObjSize = 2; break; case MVT::i32: ObjSize = 4; break; case MVT::i64: ObjSize = 8; break; case MVT::f32: ObjSize = 4; break; case MVT::f64: ObjSize = 8; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: if (NumXMMRegs < 3) ObjXMMRegs = 1; else ObjSize = 16; break; } } /// getFormalArgObjects - Returns itself if Op is a FORMAL_ARGUMENTS, otherwise /// returns the FORMAL_ARGUMENTS node(s) that made up parts of the node. static std::vector getFormalArgObjects(SDOperand Op) { unsigned Opc = Op.getOpcode(); std::vector Objs; if (Opc == ISD::TRUNCATE) { Op = Op.getOperand(0); assert(Op.getOpcode() == ISD::AssertSext || Op.getOpcode() == ISD::AssertZext); Objs.push_back(Op.getOperand(0)); } else if (Opc == ISD::FP_ROUND || Opc == ISD::VBIT_CONVERT) { Objs.push_back(Op.getOperand(0)); } else if (Opc == ISD::BUILD_PAIR) { Objs.push_back(Op.getOperand(0)); Objs.push_back(Op.getOperand(1)); } else { Objs.push_back(Op); } return Objs; } void X86TargetLowering::PreprocessCCCArguments(std::vector &Args, Function &F, SelectionDAG &DAG) { unsigned NumArgs = Args.size(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); // Add DAG nodes to load the arguments... On entry to a function on the X86, // the stack frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first argument (leftmost lexically) // [ESP + 8] -- second argument, if first argument is four bytes in size // ... // unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2 }; for (unsigned i = 0; i < NumArgs; ++i) { SDOperand Op = Args[i]; std::vector Objs = getFormalArgObjects(Op); for (std::vector::iterator I = Objs.begin(), E = Objs.end(); I != E; ++I) { SDOperand Obj = *I; MVT::ValueType ObjectVT = Obj.getValueType(); unsigned ArgIncrement = 4; unsigned ObjSize = 0; unsigned ObjXMMRegs = 0; HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs); if (ObjSize >= 8) ArgIncrement = ObjSize; if (ObjXMMRegs) { // Passed in a XMM register. unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass); std::pair Loc = std::make_pair(FALocInfo(FALocInfo::LiveInRegLoc, Reg, ObjectVT), FALocInfo()); FormalArgLocs.push_back(Loc); NumXMMRegs += ObjXMMRegs; } else { // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); std::pair Loc = std::make_pair(FALocInfo(FALocInfo::StackFrameLoc, FI), FALocInfo()); FormalArgLocs.push_back(Loc); ArgOffset += ArgIncrement; // Move on to the next argument... } } } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (F.isVarArg()) VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); ReturnAddrIndex = 0; // No return address slot generated yet. BytesToPopOnReturn = 0; // Callee pops nothing. BytesCallerReserves = ArgOffset; } void X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) { unsigned NumArgs = Op.Val->getNumValues() - 1; MachineFunction &MF = DAG.getMachineFunction(); for (unsigned i = 0; i < NumArgs; ++i) { std::pair Loc = FormalArgLocs[i]; SDOperand ArgValue; if (Loc.first.Kind == FALocInfo::StackFrameLoc) { // Create the SelectionDAG nodes corresponding to a load from this // parameter. unsigned FI = FormalArgLocs[i].first.Loc; SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); ArgValue = DAG.getLoad(Op.Val->getValueType(i), DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); } else { // Must be a CopyFromReg ArgValue= DAG.getCopyFromReg(DAG.getEntryNode(), Loc.first.Loc, Loc.first.Typ); } FormalArgs.push_back(ArgValue); } // Provide a chain. Note that this isn't the right one, but it works as well // as before. FormalArgs.push_back(DAG.getEntryNode()); } std::pair X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; // Keep track of the number of XMM regs passed so far. unsigned NumXMMRegs = 0; unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2 }; std::vector RegValuesToPass; if (Args.empty()) { // Save zero bytes. Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(0, getPointerTy())); } else { for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getValueType(Args[i].second)) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: NumBytes += 4; break; case MVT::i64: case MVT::f64: NumBytes += 8; break; case MVT::Vector: if (NumXMMRegs < 3) ++NumXMMRegs; else NumBytes += 16; break; } Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, getPointerTy())); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; NumXMMRegs = 0; SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); std::vector Stores; for (unsigned i = 0, e = Args.size(); i != e; ++i) { switch (getValueType(Args[i].second)) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: case MVT::i8: case MVT::i16: // Promote the integer to 32 bits. If the input type is signed use a // sign extend, otherwise use a zero extend. if (Args[i].second->isSigned()) Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); else Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); // FALL THROUGH case MVT::i32: case MVT::f32: { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 4; break; } case MVT::i64: case MVT::f64: { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 8; break; } case MVT::Vector: if (NumXMMRegs < 3) { RegValuesToPass.push_back(Args[i].first); NumXMMRegs++; } else { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 16; } } } if (!Stores.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); RetVals.push_back(MVT::Other); // The result values produced have to be legal. Promote the result. switch (RetTyVT) { case MVT::isVoid: break; default: RetVals.push_back(RetTyVT); break; case MVT::i1: case MVT::i8: case MVT::i16: RetVals.push_back(MVT::i32); break; case MVT::f32: if (X86ScalarSSE) RetVals.push_back(MVT::f32); else RetVals.push_back(MVT::f64); break; case MVT::i64: RetVals.push_back(MVT::i32); RetVals.push_back(MVT::i32); break; } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDOperand InFlag; for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { unsigned CCReg = XMMArgRegs[i]; SDOperand RegToPass = RegValuesToPass[i]; assert(RegToPass.getValueType() == MVT::Vector); unsigned NumElems = cast(*(RegToPass.Val->op_end()-2))->getValue(); MVT::ValueType EVT = cast(*(RegToPass.Val->op_end()-1))->getVT(); MVT::ValueType PVT = getVectorType(EVT, NumElems); SDOperand CCRegNode = DAG.getRegister(CCReg, PVT); RegToPass = DAG.getNode(ISD::VBIT_CONVERT, PVT, RegToPass); Chain = DAG.getCopyToReg(Chain, CCRegNode, RegToPass, InFlag); InFlag = Chain.getValue(1); } std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (InFlag.Val) Ops.push_back(InFlag); // FIXME: Do not generate X86ISD::TAILCALL for now. Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); Ops.push_back(DAG.getConstant(0, getPointerTy())); Ops.push_back(InFlag); Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); InFlag = Chain.getValue(1); SDOperand RetVal; if (RetTyVT != MVT::isVoid) { switch (RetTyVT) { default: assert(0 && "Unknown value type to return!"); case MVT::i1: case MVT::i8: RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); Chain = RetVal.getValue(1); if (RetTyVT == MVT::i1) RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); break; case MVT::i16: RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); Chain = RetVal.getValue(1); break; case MVT::i32: RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); Chain = RetVal.getValue(1); break; case MVT::i64: { SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, Lo.getValue(2)); RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); Chain = Hi.getValue(1); break; } case MVT::f32: case MVT::f64: { std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(InFlag); RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); Chain = RetVal.getValue(1); InFlag = RetVal.getValue(2); if (X86ScalarSSE) { // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys.clear(); Tys.push_back(MVT::Other); Ops.clear(); Ops.push_back(Chain); Ops.push_back(RetVal); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(RetTyVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, Ops); RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, DAG.getSrcValue(NULL)); Chain = RetVal.getValue(1); } if (RetTyVT == MVT::f32 && !X86ScalarSSE) // FIXME: we would really like to remember that this FP_ROUND // operation is okay to eliminate if we allow excess FP precision. RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); break; } case MVT::Vector: { const PackedType *PTy = cast(RetTy); MVT::ValueType EVT; MVT::ValueType LVT; unsigned NumRegs = getPackedTypeBreakdown(PTy, EVT, LVT); assert(NumRegs == 1 && "Unsupported type!"); RetVal = DAG.getCopyFromReg(Chain, X86::XMM0, EVT, InFlag); Chain = RetVal.getValue(1); break; } } } return std::make_pair(RetVal, Chain); } //===----------------------------------------------------------------------===// // Fast Calling Convention implementation //===----------------------------------------------------------------------===// // // The X86 'fast' calling convention passes up to two integer arguments in // registers (an appropriate portion of EAX/EDX), passes arguments in C order, // and requires that the callee pop its arguments off the stack (allowing proper // tail calls), and has the same return value conventions as C calling convs. // // This calling convention always arranges for the callee pop value to be 8n+4 // bytes, which is needed for tail recursion elimination and stack alignment // reasons. // // Note that this can be enhanced in the future to pass fp vals in registers // (when we have a global fp allocator) and do other tricks. // // FASTCC_NUM_INT_ARGS_INREGS - This is the max number of integer arguments // to pass in registers. 0 is none, 1 is is "use EAX", 2 is "use EAX and // EDX". Anything more is illegal. // // FIXME: The linscan register allocator currently has problem with // coalescing. At the time of this writing, whenever it decides to coalesce // a physreg with a virtreg, this increases the size of the physreg's live // range, and the live range cannot ever be reduced. This causes problems if // too many physregs are coaleced with virtregs, which can cause the register // allocator to wedge itself. // // This code triggers this problem more often if we pass args in registers, // so disable it until this is fixed. // // NOTE: this isn't marked const, so that GCC doesn't emit annoying warnings // about code being dead. // static unsigned FASTCC_NUM_INT_ARGS_INREGS = 0; /// HowToPassFastCCArgument - Returns how an formal argument of the specified /// type should be passed. If it is through stack, returns the size of the stack /// frame; if it is through integer or XMM register, returns the number of /// integer or XMM registers are needed. static void HowToPassFastCCArgument(MVT::ValueType ObjectVT, unsigned NumIntRegs, unsigned NumXMMRegs, unsigned &ObjSize, unsigned &ObjIntRegs, unsigned &ObjXMMRegs) { ObjSize = 0; NumIntRegs = 0; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) ObjIntRegs = 1; else ObjSize = 1; break; case MVT::i16: if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) ObjIntRegs = 1; else ObjSize = 2; break; case MVT::i32: if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) ObjIntRegs = 1; else ObjSize = 4; break; case MVT::i64: if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) { ObjIntRegs = 2; } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) { ObjIntRegs = 1; ObjSize = 4; } else ObjSize = 8; case MVT::f32: ObjSize = 4; break; case MVT::f64: ObjSize = 8; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: if (NumXMMRegs < 3) ObjXMMRegs = 1; else ObjSize = 16; break; } } void X86TargetLowering::PreprocessFastCCArguments(std::vector &Args, Function &F, SelectionDAG &DAG) { unsigned NumArgs = Args.size(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); // Add DAG nodes to load the arguments... On entry to a function the stack // frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first nonreg argument (leftmost lexically) // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size // ... unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot // Keep track of the number of integer regs passed so far. This can be either // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both // used). unsigned NumIntRegs = 0; unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. unsigned XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2 }; for (unsigned i = 0; i < NumArgs; ++i) { SDOperand Op = Args[i]; std::vector Objs = getFormalArgObjects(Op); for (std::vector::iterator I = Objs.begin(), E = Objs.end(); I != E; ++I) { SDOperand Obj = *I; MVT::ValueType ObjectVT = Obj.getValueType(); unsigned ArgIncrement = 4; unsigned ObjSize = 0; unsigned ObjIntRegs = 0; unsigned ObjXMMRegs = 0; HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs, ObjSize, ObjIntRegs, ObjXMMRegs); if (ObjSize >= 8) ArgIncrement = ObjSize; unsigned Reg; std::pair Loc = std::make_pair(FALocInfo(), FALocInfo()); if (ObjIntRegs) { switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, X86::GR8RegisterClass); Loc.first.Kind = FALocInfo::LiveInRegLoc; Loc.first.Loc = Reg; Loc.first.Typ = MVT::i8; break; case MVT::i16: Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, X86::GR16RegisterClass); Loc.first.Kind = FALocInfo::LiveInRegLoc; Loc.first.Loc = Reg; Loc.first.Typ = MVT::i16; break; case MVT::i32: Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX, X86::GR32RegisterClass); Loc.first.Kind = FALocInfo::LiveInRegLoc; Loc.first.Loc = Reg; Loc.first.Typ = MVT::i32; break; case MVT::i64: Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX, X86::GR32RegisterClass); Loc.first.Kind = FALocInfo::LiveInRegLoc; Loc.first.Loc = Reg; Loc.first.Typ = MVT::i32; if (ObjIntRegs == 2) { Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass); Loc.second.Kind = FALocInfo::LiveInRegLoc; Loc.second.Loc = Reg; Loc.second.Typ = MVT::i32; } break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass); Loc.first.Kind = FALocInfo::LiveInRegLoc; Loc.first.Loc = Reg; Loc.first.Typ = ObjectVT; break; } NumIntRegs += ObjIntRegs; NumXMMRegs += ObjXMMRegs; } if (ObjSize) { int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); if (ObjectVT == MVT::i64 && ObjIntRegs) { Loc.second.Kind = FALocInfo::StackFrameLoc; Loc.second.Loc = FI; } else { Loc.first.Kind = FALocInfo::StackFrameLoc; Loc.first.Loc = FI; } ArgOffset += ArgIncrement; // Move on to the next argument. } FormalArgLocs.push_back(Loc); } } // Make sure the instruction takes 8n+4 bytes to make sure the start of the // arguments and the arguments after the retaddr has been pushed are aligned. if ((ArgOffset & 7) == 0) ArgOffset += 4; VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. ReturnAddrIndex = 0; // No return address slot generated yet. BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. BytesCallerReserves = 0; // Finally, inform the code generator which regs we return values in. switch (getValueType(F.getReturnType())) { default: assert(0 && "Unknown type!"); case MVT::isVoid: break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: MF.addLiveOut(X86::EAX); break; case MVT::i64: MF.addLiveOut(X86::EAX); MF.addLiveOut(X86::EDX); break; case MVT::f32: case MVT::f64: MF.addLiveOut(X86::ST0); break; case MVT::Vector: { const PackedType *PTy = cast(F.getReturnType()); MVT::ValueType EVT; MVT::ValueType LVT; unsigned NumRegs = getPackedTypeBreakdown(PTy, EVT, LVT); assert(NumRegs == 1 && "Unsupported type!"); MF.addLiveOut(X86::XMM0); break; } } } void X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) { unsigned NumArgs = Op.Val->getNumValues()-1; MachineFunction &MF = DAG.getMachineFunction(); for (unsigned i = 0; i < NumArgs; ++i) { MVT::ValueType VT = Op.Val->getValueType(i); std::pair Loc = FormalArgLocs[i]; SDOperand ArgValue; if (Loc.first.Kind == FALocInfo::StackFrameLoc) { // Create the SelectionDAG nodes corresponding to a load from this // parameter. SDOperand FIN = DAG.getFrameIndex(Loc.first.Loc, MVT::i32); ArgValue = DAG.getLoad(Op.Val->getValueType(i), DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); } else { // Must be a CopyFromReg ArgValue= DAG.getCopyFromReg(DAG.getEntryNode(), Loc.first.Loc, Loc.first.Typ); } if (Loc.second.Kind != FALocInfo::None) { SDOperand ArgValue2; if (Loc.second.Kind == FALocInfo::StackFrameLoc) { // Create the SelectionDAG nodes corresponding to a load from this // parameter. SDOperand FIN = DAG.getFrameIndex(Loc.second.Loc, MVT::i32); ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); } else { // Must be a CopyFromReg ArgValue2 = DAG.getCopyFromReg(DAG.getEntryNode(), Loc.second.Loc, Loc.second.Typ); } ArgValue = DAG.getNode(ISD::BUILD_PAIR, VT, ArgValue, ArgValue2); } FormalArgs.push_back(ArgValue); } // Provide a chain. Note that this isn't the right one, but it works as well // as before. FormalArgs.push_back(DAG.getEntryNode()); } std::pair X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; // Keep track of the number of integer regs passed so far. This can be either // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both // used). unsigned NumIntRegs = 0; for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getValueType(Args[i].second)) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { ++NumIntRegs; break; } // fall through case MVT::f32: NumBytes += 4; break; case MVT::i64: if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) { NumIntRegs += 2; break; } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) { NumIntRegs = FASTCC_NUM_INT_ARGS_INREGS; NumBytes += 4; break; } // fall through case MVT::f64: NumBytes += 8; break; } // Make sure the instruction takes 8n+4 bytes to make sure the start of the // arguments and the arguments after the retaddr has been pushed are aligned. if ((NumBytes & 7) == 0) NumBytes += 4; Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); NumIntRegs = 0; std::vector Stores; std::vector RegValuesToPass; for (unsigned i = 0, e = Args.size(); i != e; ++i) { switch (getValueType(Args[i].second)) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: Args[i].first = DAG.getNode(ISD::ANY_EXTEND, MVT::i8, Args[i].first); // Fall through. case MVT::i8: case MVT::i16: case MVT::i32: if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { RegValuesToPass.push_back(Args[i].first); ++NumIntRegs; break; } // Fall through case MVT::f32: { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 4; break; } case MVT::i64: // Can pass (at least) part of it in regs? if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Args[i].first, DAG.getConstant(1, MVT::i32)); SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Args[i].first, DAG.getConstant(0, MVT::i32)); RegValuesToPass.push_back(Lo); ++NumIntRegs; // Pass both parts in regs? if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { RegValuesToPass.push_back(Hi); ++NumIntRegs; } else { // Pass the high part in memory. SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Hi, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 4; } break; } // Fall through case MVT::f64: SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 8; break; } } if (!Stores.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); // Make sure the instruction takes 8n+4 bytes to make sure the start of the // arguments and the arguments after the retaddr has been pushed are aligned. if ((ArgOffset & 7) == 0) ArgOffset += 4; std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); RetVals.push_back(MVT::Other); // The result values produced have to be legal. Promote the result. switch (RetTyVT) { case MVT::isVoid: break; default: RetVals.push_back(RetTyVT); break; case MVT::i1: case MVT::i8: case MVT::i16: RetVals.push_back(MVT::i32); break; case MVT::f32: if (X86ScalarSSE) RetVals.push_back(MVT::f32); else RetVals.push_back(MVT::f64); break; case MVT::i64: RetVals.push_back(MVT::i32); RetVals.push_back(MVT::i32); break; } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDOperand InFlag; for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { unsigned CCReg; SDOperand RegToPass = RegValuesToPass[i]; switch (RegToPass.getValueType()) { default: assert(0 && "Bad thing to pass in regs"); case MVT::i8: CCReg = (i == 0) ? X86::AL : X86::DL; break; case MVT::i16: CCReg = (i == 0) ? X86::AX : X86::DX; break; case MVT::i32: CCReg = (i == 0) ? X86::EAX : X86::EDX; break; } Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag); InFlag = Chain.getValue(1); } std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (InFlag.Val) Ops.push_back(InFlag); // FIXME: Do not generate X86ISD::TAILCALL for now. Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, NodeTys, Ops); InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); Ops.push_back(InFlag); Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); InFlag = Chain.getValue(1); SDOperand RetVal; if (RetTyVT != MVT::isVoid) { switch (RetTyVT) { default: assert(0 && "Unknown value type to return!"); case MVT::i1: case MVT::i8: RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); Chain = RetVal.getValue(1); if (RetTyVT == MVT::i1) RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); break; case MVT::i16: RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); Chain = RetVal.getValue(1); break; case MVT::i32: RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); Chain = RetVal.getValue(1); break; case MVT::i64: { SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, Lo.getValue(2)); RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); Chain = Hi.getValue(1); break; } case MVT::f32: case MVT::f64: { std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(InFlag); RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); Chain = RetVal.getValue(1); InFlag = RetVal.getValue(2); if (X86ScalarSSE) { // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys.clear(); Tys.push_back(MVT::Other); Ops.clear(); Ops.push_back(Chain); Ops.push_back(RetVal); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(RetTyVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, Ops); RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, DAG.getSrcValue(NULL)); Chain = RetVal.getValue(1); } if (RetTyVT == MVT::f32 && !X86ScalarSSE) // FIXME: we would really like to remember that this FP_ROUND // operation is okay to eliminate if we allow excess FP precision. RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); break; } } } return std::make_pair(RetVal, Chain); } SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. MachineFunction &MF = DAG.getMachineFunction(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); } return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); } std::pair X86TargetLowering:: LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { SDOperand Result; if (Depth) // Depths > 0 not supported yet! Result = DAG.getConstant(0, getPointerTy()); else { SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); if (!isFrameAddress) // Just load the return address Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, DAG.getSrcValue(NULL)); else Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, DAG.getConstant(4, MVT::i32)); } return std::make_pair(Result, Chain); } /// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode /// which corresponds to the condition code. static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) { switch (X86CC) { default: assert(0 && "Unknown X86 conditional code!"); case X86ISD::COND_A: return X86::JA; case X86ISD::COND_AE: return X86::JAE; case X86ISD::COND_B: return X86::JB; case X86ISD::COND_BE: return X86::JBE; case X86ISD::COND_E: return X86::JE; case X86ISD::COND_G: return X86::JG; case X86ISD::COND_GE: return X86::JGE; case X86ISD::COND_L: return X86::JL; case X86ISD::COND_LE: return X86::JLE; case X86ISD::COND_NE: return X86::JNE; case X86ISD::COND_NO: return X86::JNO; case X86ISD::COND_NP: return X86::JNP; case X86ISD::COND_NS: return X86::JNS; case X86ISD::COND_O: return X86::JO; case X86ISD::COND_P: return X86::JP; case X86ISD::COND_S: return X86::JS; } } /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 /// specific condition code. It returns a false if it cannot do a direct /// translation. X86CC is the translated CondCode. Flip is set to true if the /// the order of comparison operands should be flipped. static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, unsigned &X86CC, bool &Flip) { Flip = false; X86CC = X86ISD::COND_INVALID; if (!isFP) { switch (SetCCOpcode) { default: break; case ISD::SETEQ: X86CC = X86ISD::COND_E; break; case ISD::SETGT: X86CC = X86ISD::COND_G; break; case ISD::SETGE: X86CC = X86ISD::COND_GE; break; case ISD::SETLT: X86CC = X86ISD::COND_L; break; case ISD::SETLE: X86CC = X86ISD::COND_LE; break; case ISD::SETNE: X86CC = X86ISD::COND_NE; break; case ISD::SETULT: X86CC = X86ISD::COND_B; break; case ISD::SETUGT: X86CC = X86ISD::COND_A; break; case ISD::SETULE: X86CC = X86ISD::COND_BE; break; case ISD::SETUGE: X86CC = X86ISD::COND_AE; break; } } else { // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered switch (SetCCOpcode) { default: break; case ISD::SETUEQ: case ISD::SETEQ: X86CC = X86ISD::COND_E; break; case ISD::SETOLT: Flip = true; // Fallthrough case ISD::SETOGT: case ISD::SETGT: X86CC = X86ISD::COND_A; break; case ISD::SETOLE: Flip = true; // Fallthrough case ISD::SETOGE: case ISD::SETGE: X86CC = X86ISD::COND_AE; break; case ISD::SETUGT: Flip = true; // Fallthrough case ISD::SETULT: case ISD::SETLT: X86CC = X86ISD::COND_B; break; case ISD::SETUGE: Flip = true; // Fallthrough case ISD::SETULE: case ISD::SETLE: X86CC = X86ISD::COND_BE; break; case ISD::SETONE: case ISD::SETNE: X86CC = X86ISD::COND_NE; break; case ISD::SETUO: X86CC = X86ISD::COND_P; break; case ISD::SETO: X86CC = X86ISD::COND_NP; break; } } return X86CC != X86ISD::COND_INVALID; } static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC, bool &Flip) { return translateX86CC(cast(CC)->get(), isFP, X86CC, Flip); } /// hasFPCMov - is there a floating point cmov for the specific X86 condition /// code. Current x86 isa includes the following FP cmov instructions: /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. static bool hasFPCMov(unsigned X86CC) { switch (X86CC) { default: return false; case X86ISD::COND_B: case X86ISD::COND_BE: case X86ISD::COND_E: case X86ISD::COND_P: case X86ISD::COND_A: case X86ISD::COND_AE: case X86ISD::COND_NE: case X86ISD::COND_NP: return true; } } MachineBasicBlock * X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *BB) { switch (MI->getOpcode()) { default: assert(false && "Unexpected instr type to insert"); case X86::CMOV_FR32: case X86::CMOV_FR64: case X86::CMOV_V4F32: case X86::CMOV_V2F64: case X86::CMOV_V2I64: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue()); BuildMI(BB, Opc, 1).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), e = BB->succ_end(); i != e; ++i) sinkMBB->addSuccessor(*i); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while(!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); delete MI; // The pseudo instruction is gone now. return BB; } case X86::FP_TO_INT16_IN_MEM: case X86::FP_TO_INT32_IN_MEM: case X86::FP_TO_INT64_IN_MEM: { // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. MachineFunction *F = BB->getParent(); int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned OldCW = F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass); addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); // Set the high part to be round to zero... addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); // Reload the modified control word now... addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); // Get the X86 opcode to use. unsigned Opc; switch (MI->getOpcode()) { default: assert(0 && "illegal opcode!"); case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; } X86AddressMode AM; MachineOperand &Op = MI->getOperand(0); if (Op.isRegister()) { AM.BaseType = X86AddressMode::RegBase; AM.Base.Reg = Op.getReg(); } else { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = Op.getFrameIndex(); } Op = MI->getOperand(1); if (Op.isImmediate()) AM.Scale = Op.getImmedValue(); Op = MI->getOperand(2); if (Op.isImmediate()) AM.IndexReg = Op.getImmedValue(); Op = MI->getOperand(3); if (Op.isGlobalAddress()) { AM.GV = Op.getGlobal(); } else { AM.Disp = Op.getImmedValue(); } addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg()); // Reload the original control word now. addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); delete MI; // The pseudo instruction is gone now. return BB; } } } //===----------------------------------------------------------------------===// // X86 Custom Lowering Hooks //===----------------------------------------------------------------------===// /// DarwinGVRequiresExtraLoad - true if accessing the GV requires an extra /// load. For Darwin, external and weak symbols are indirect, loading the value /// at address GV rather then the value of GV itself. This means that the /// GlobalAddress must be in the base or index register of the address, not the /// GV offset field. static bool DarwinGVRequiresExtraLoad(GlobalValue *GV) { return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || (GV->isExternal() && !GV->hasNotBeenReadFromBytecode())); } /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if its value falls within the specified range (L, H]. static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { if (Op.getOpcode() == ISD::UNDEF) return true; unsigned Val = cast(Op)->getValue(); return (Val >= Low && Val < Hi); } /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if its value equal to the specified value. static bool isUndefOrEqual(SDOperand Op, unsigned Val) { if (Op.getOpcode() == ISD::UNDEF) return true; return cast(Op)->getValue() == Val; } /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFD. bool X86::isPSHUFDMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Check if the value doesn't reference the second vector. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); if (cast(Arg)->getValue() >= 4) return false; } return true; } /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFHW. bool X86::isPSHUFHWMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 8) return false; // Lower quadword copied in order. for (unsigned i = 0; i != 4; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); if (cast(Arg)->getValue() != i) return false; } // Upper quadword shuffled. for (unsigned i = 4; i != 8; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val < 4 || Val > 7) return false; } return true; } /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFLW. bool X86::isPSHUFLWMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 8) return false; // Upper quadword copied in order. for (unsigned i = 4; i != 8; ++i) if (!isUndefOrEqual(N->getOperand(i), i)) return false; // Lower quadword shuffled. for (unsigned i = 0; i != 4; ++i) if (!isUndefOrInRange(N->getOperand(i), 0, 4)) return false; return true; } /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to SHUFP*. static bool isSHUFPMask(std::vector &N) { unsigned NumElems = N.size(); if (NumElems != 2 && NumElems != 4) return false; unsigned Half = NumElems / 2; for (unsigned i = 0; i < Half; ++i) if (!isUndefOrInRange(N[i], 0, NumElems)) return false; for (unsigned i = Half; i < NumElems; ++i) if (!isUndefOrInRange(N[i], NumElems, NumElems*2)) return false; return true; } bool X86::isSHUFPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return ::isSHUFPMask(Ops); } /// isCommutedSHUFP - Returns true if the shuffle mask is except /// the reverse of what x86 shuffles want. x86 shuffles requires the lower /// half elements to come from vector 1 (which would equal the dest.) and /// the upper half to come from vector 2. static bool isCommutedSHUFP(std::vector &Ops) { unsigned NumElems = Ops.size(); if (NumElems != 2 && NumElems != 4) return false; unsigned Half = NumElems / 2; for (unsigned i = 0; i < Half; ++i) if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2)) return false; for (unsigned i = Half; i < NumElems; ++i) if (!isUndefOrInRange(Ops[i], 0, NumElems)) return false; return true; } static bool isCommutedSHUFP(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return isCommutedSHUFP(Ops); } /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHLPS. bool X86::isMOVHLPSMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 return isUndefOrEqual(N->getOperand(0), 6) && isUndefOrEqual(N->getOperand(1), 7) && isUndefOrEqual(N->getOperand(2), 2) && isUndefOrEqual(N->getOperand(3), 3); } /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. bool X86::isMOVLPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); unsigned NumElems = N->getNumOperands(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0; i < NumElems/2; ++i) if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) return false; for (unsigned i = NumElems/2; i < NumElems; ++i) if (!isUndefOrEqual(N->getOperand(i), i)) return false; return true; } /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} /// and MOVLHPS. bool X86::isMOVHPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); unsigned NumElems = N->getNumOperands(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0; i < NumElems/2; ++i) if (!isUndefOrEqual(N->getOperand(i), i)) return false; for (unsigned i = 0; i < NumElems/2; ++i) { SDOperand Arg = N->getOperand(i + NumElems/2); if (!isUndefOrEqual(Arg, i + NumElems)) return false; } return true; } /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKL. bool static isUNPCKLMask(std::vector &N, bool V2IsSplat = false) { unsigned NumElems = N.size(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { SDOperand BitI = N[i]; SDOperand BitI1 = N[i+1]; if (!isUndefOrEqual(BitI, j)) return false; if (V2IsSplat) { if (isUndefOrEqual(BitI1, NumElems)) return false; } else { if (!isUndefOrEqual(BitI1, j + NumElems)) return false; } } return true; } bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return ::isUNPCKLMask(Ops, V2IsSplat); } /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKH. bool static isUNPCKHMask(std::vector &N, bool V2IsSplat = false) { unsigned NumElems = N.size(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { SDOperand BitI = N[i]; SDOperand BitI1 = N[i+1]; if (!isUndefOrEqual(BitI, j + NumElems/2)) return false; if (V2IsSplat) { if (isUndefOrEqual(BitI1, NumElems)) return false; } else { if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems)) return false; } } return true; } bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return ::isUNPCKHMask(Ops, V2IsSplat); } /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, /// <0, 0, 1, 1> bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); unsigned NumElems = N->getNumOperands(); if (NumElems != 4 && NumElems != 8 && NumElems != 16) return false; for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { SDOperand BitI = N->getOperand(i); SDOperand BitI1 = N->getOperand(i+1); if (!isUndefOrEqual(BitI, j)) return false; if (!isUndefOrEqual(BitI1, j)) return false; } return true; } /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSS, /// MOVSD, and MOVD, i.e. setting the lowest element. static bool isMOVLMask(std::vector &N) { unsigned NumElems = N.size(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; if (!isUndefOrEqual(N[0], NumElems)) return false; for (unsigned i = 1; i < NumElems; ++i) { SDOperand Arg = N[i]; if (!isUndefOrEqual(Arg, i)) return false; } return true; } bool X86::isMOVLMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return ::isMOVLMask(Ops); } /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse /// of what x86 movss want. X86 movs requires the lowest element to be lowest /// element of vector 2 and the other elements to come from vector 1 in order. static bool isCommutedMOVL(std::vector &Ops, bool V2IsSplat = false) { unsigned NumElems = Ops.size(); if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) return false; if (!isUndefOrEqual(Ops[0], 0)) return false; for (unsigned i = 1; i < NumElems; ++i) { SDOperand Arg = Ops[i]; if (V2IsSplat) { if (!isUndefOrEqual(Arg, NumElems)) return false; } else { if (!isUndefOrEqual(Arg, i+NumElems)) return false; } } return true; } static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false) { assert(N->getOpcode() == ISD::BUILD_VECTOR); std::vector Ops(N->op_begin(), N->op_end()); return isCommutedMOVL(Ops, V2IsSplat); } /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. bool X86::isMOVSHDUPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Expect 1, 1, 3, 3 for (unsigned i = 0; i < 2; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val != 1) return false; } bool HasHi = false; for (unsigned i = 2; i < 4; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val != 3) return false; HasHi = true; } // Don't use movshdup if it can be done with a shufps. return HasHi; } /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. bool X86::isMOVSLDUPMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 4) return false; // Expect 0, 0, 2, 2 for (unsigned i = 0; i < 2; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val != 0) return false; } bool HasHi = false; for (unsigned i = 2; i < 4; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val != 2) return false; HasHi = true; } // Don't use movshdup if it can be done with a shufps. return HasHi; } /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies /// a splat of a single element. static bool isSplatMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); // This is a splat operation if each element of the permute is the same, and // if the value doesn't reference the second vector. unsigned NumElems = N->getNumOperands(); SDOperand ElementBase; unsigned i = 0; for (; i != NumElems; ++i) { SDOperand Elt = N->getOperand(i); if (ConstantSDNode *EltV = dyn_cast(Elt)) { ElementBase = Elt; break; } } if (!ElementBase.Val) return false; for (; i != NumElems; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); if (Arg != ElementBase) return false; } // Make sure it is a splat of the first vector operand. return cast(ElementBase)->getValue() < NumElems; } /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies /// a splat of a single element and it's a 2 or 4 element mask. bool X86::isSplatMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); // We can only splat 64-bit, and 32-bit quantities with a single instruction. if (N->getNumOperands() != 4 && N->getNumOperands() != 2) return false; return ::isSplatMask(N); } /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* /// instructions. unsigned X86::getShuffleSHUFImmediate(SDNode *N) { unsigned NumOperands = N->getNumOperands(); unsigned Shift = (NumOperands == 4) ? 2 : 1; unsigned Mask = 0; for (unsigned i = 0; i < NumOperands; ++i) { unsigned Val = 0; SDOperand Arg = N->getOperand(NumOperands-i-1); if (Arg.getOpcode() != ISD::UNDEF) Val = cast(Arg)->getValue(); if (Val >= NumOperands) Val -= NumOperands; Mask |= Val; if (i != NumOperands - 1) Mask <<= Shift; } return Mask; } /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW /// instructions. unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { unsigned Mask = 0; // 8 nodes, but we only care about the last 4. for (unsigned i = 7; i >= 4; --i) { unsigned Val = 0; SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() != ISD::UNDEF) Val = cast(Arg)->getValue(); Mask |= (Val - 4); if (i != 4) Mask <<= 2; } return Mask; } /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW /// instructions. unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { unsigned Mask = 0; // 8 nodes, but we only care about the first 4. for (int i = 3; i >= 0; --i) { unsigned Val = 0; SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() != ISD::UNDEF) Val = cast(Arg)->getValue(); Mask |= Val; if (i != 0) Mask <<= 2; } return Mask; } /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand /// specifies a 8 element shuffle that can be broken into a pair of /// PSHUFHW and PSHUFLW. static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (N->getNumOperands() != 8) return false; // Lower quadword shuffled. for (unsigned i = 0; i != 4; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val > 4) return false; } // Upper quadword shuffled. for (unsigned i = 4; i != 8; ++i) { SDOperand Arg = N->getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) continue; assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val < 4 || Val > 7) return false; } return true; } /// CommuteVectorShuffle - Swap vector_shuffle operandsas well as /// values in ther permute mask. static SDOperand CommuteVectorShuffle(SDOperand Op, SelectionDAG &DAG) { SDOperand V1 = Op.getOperand(0); SDOperand V2 = Op.getOperand(1); SDOperand Mask = Op.getOperand(2); MVT::ValueType VT = Op.getValueType(); MVT::ValueType MaskVT = Mask.getValueType(); MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT); unsigned NumElems = Mask.getNumOperands(); std::vector MaskVec; for (unsigned i = 0; i != NumElems; ++i) { SDOperand Arg = Mask.getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) { MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); continue; } assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Val = cast(Arg)->getValue(); if (Val < NumElems) MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); else MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); } Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1, Mask); } /// ShouldXformToMOVHLPS - Return true if the node should be transformed to /// match movhlps. The lower half elements should come from upper half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). static bool ShouldXformToMOVHLPS(SDNode *Mask) { unsigned NumElems = Mask->getNumOperands(); if (NumElems != 4) return false; for (unsigned i = 0, e = 2; i != e; ++i) if (!isUndefOrEqual(Mask->getOperand(i), i+2)) return false; for (unsigned i = 2; i != 4; ++i) if (!isUndefOrEqual(Mask->getOperand(i), i+4)) return false; return true; } /// isScalarLoadToVector - Returns true if the node is a scalar load that /// is promoted to a vector. static inline bool isScalarLoadToVector(SDNode *N) { if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { N = N->getOperand(0).Val; return (N->getOpcode() == ISD::LOAD); } return false; } /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to /// match movlp{s|d}. The lower half elements should come from lower half of /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). And since V1 will become the source of the /// MOVLP, it must be either a vector load or a scalar load to vector. static bool ShouldXformToMOVLP(SDNode *V1, SDNode *Mask) { if (V1->getOpcode() != ISD::LOAD && !isScalarLoadToVector(V1)) return false; unsigned NumElems = Mask->getNumOperands(); if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) if (!isUndefOrEqual(Mask->getOperand(i), i)) return false; for (unsigned i = NumElems/2; i != NumElems; ++i) if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) return false; return true; } /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are /// all the same. static bool isSplatVector(SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; SDOperand SplatValue = N->getOperand(0); for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i) != SplatValue) return false; return true; } /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements /// that point to V2 points to its first element. static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { assert(Mask.getOpcode() == ISD::BUILD_VECTOR); bool Changed = false; std::vector MaskVec; unsigned NumElems = Mask.getNumOperands(); for (unsigned i = 0; i != NumElems; ++i) { SDOperand Arg = Mask.getOperand(i); if (Arg.getOpcode() != ISD::UNDEF) { unsigned Val = cast(Arg)->getValue(); if (Val > NumElems) { Arg = DAG.getConstant(NumElems, Arg.getValueType()); Changed = true; } } MaskVec.push_back(Arg); } if (Changed) Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), MaskVec); return Mask; } /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd /// operation of specified width. static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); for (unsigned i = 1; i != NumElems; ++i) MaskVec.push_back(DAG.getConstant(i, BaseVT)); return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); } /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation /// of specified width. static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; for (unsigned i = 0, e = NumElems/2; i != e; ++i) { MaskVec.push_back(DAG.getConstant(i, BaseVT)); MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); } return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); } /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation /// of specified width. static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); unsigned Half = NumElems/2; std::vector MaskVec; for (unsigned i = 0; i != Half; ++i) { MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); } return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); } /// getZeroVector - Returns a vector of specified type with all zero elements. /// static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) { assert(MVT::isVector(VT) && "Expected a vector type"); unsigned NumElems = getVectorNumElements(VT); MVT::ValueType EVT = MVT::getVectorBaseType(VT); bool isFP = MVT::isFloatingPoint(EVT); SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT); std::vector ZeroVec(NumElems, Zero); return DAG.getNode(ISD::BUILD_VECTOR, VT, ZeroVec); } /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32. /// static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) { SDOperand V1 = Op.getOperand(0); SDOperand Mask = Op.getOperand(2); MVT::ValueType VT = Op.getValueType(); unsigned NumElems = Mask.getNumOperands(); Mask = getUnpacklMask(NumElems, DAG); while (NumElems != 4) { V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); NumElems >>= 1; } V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1); MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); Mask = getZeroVector(MaskVT, DAG); SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask); return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); } /// isZeroNode - Returns true if Elt is a constant zero or a floating point /// constant +0.0. static inline bool isZeroNode(SDOperand Elt) { return ((isa(Elt) && cast(Elt)->getValue() == 0) || (isa(Elt) && cast(Elt)->isExactlyValue(0.0))); } /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified /// vector and zero or undef vector. static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT, unsigned NumElems, unsigned Idx, bool isZero, SelectionDAG &DAG) { SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT); MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); SDOperand Zero = DAG.getConstant(0, EVT); std::vector MaskVec(NumElems, Zero); MaskVec[Idx] = DAG.getConstant(NumElems, EVT); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); } /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. /// static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG) { if (NumNonZero > 8) return SDOperand(); SDOperand V(0, 0); bool First = true; for (unsigned i = 0; i < 16; ++i) { bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; if (ThisIsNonZero && First) { if (NumZero) V = getZeroVector(MVT::v8i16, DAG); else V = DAG.getNode(ISD::UNDEF, MVT::v8i16); First = false; } if ((i & 1) != 0) { SDOperand ThisElt(0, 0), LastElt(0, 0); bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; if (LastIsNonZero) { LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); } if (ThisIsNonZero) { ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); ThisElt = DAG.getNode(ISD::SHL, MVT::i16, ThisElt, DAG.getConstant(8, MVT::i8)); if (LastIsNonZero) ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); } else ThisElt = LastElt; if (ThisElt.Val) V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, DAG.getConstant(i/2, MVT::i32)); } } return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); } /// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16. /// static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, unsigned NumNonZero, unsigned NumZero, SelectionDAG &DAG) { if (NumNonZero > 4) return SDOperand(); SDOperand V(0, 0); bool First = true; for (unsigned i = 0; i < 8; ++i) { bool isNonZero = (NonZeros & (1 << i)) != 0; if (isNonZero) { if (First) { if (NumZero) V = getZeroVector(MVT::v8i16, DAG); else V = DAG.getNode(ISD::UNDEF, MVT::v8i16); First = false; } V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), DAG.getConstant(i, MVT::i32)); } } return V; } SDOperand X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { // All zero's are handled with pxor. if (ISD::isBuildVectorAllZeros(Op.Val)) return Op; // All one's are handled with pcmpeqd. if (ISD::isBuildVectorAllOnes(Op.Val)) return Op; MVT::ValueType VT = Op.getValueType(); MVT::ValueType EVT = MVT::getVectorBaseType(VT); unsigned EVTBits = MVT::getSizeInBits(EVT); unsigned NumElems = Op.getNumOperands(); unsigned NumZero = 0; unsigned NumNonZero = 0; unsigned NonZeros = 0; std::set Values; for (unsigned i = 0; i < NumElems; ++i) { SDOperand Elt = Op.getOperand(i); if (Elt.getOpcode() != ISD::UNDEF) { Values.insert(Elt); if (isZeroNode(Elt)) NumZero++; else { NonZeros |= (1 << i); NumNonZero++; } } } if (NumNonZero == 0) // Must be a mix of zero and undef. Return a zero vector. return getZeroVector(VT, DAG); // Splat is obviously ok. Let legalizer expand it to a shuffle. if (Values.size() == 1) return SDOperand(); // Special case for single non-zero element. if (NumNonZero == 1) { unsigned Idx = CountTrailingZeros_32(NonZeros); SDOperand Item = Op.getOperand(Idx); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); if (Idx == 0) // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx, NumZero > 0, DAG); if (EVTBits == 32) { // Turn it into a shuffle of zero and zero-extended scalar to vector. Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0, DAG); MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; for (unsigned i = 0; i < NumElems; i++) MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, DAG.getNode(ISD::UNDEF, VT), Mask); } } // Let legalizer expand 2-widde build_vector's. if (EVTBits == 64) return SDOperand(); // If element VT is < 32 bits, convert it to inserts into a zero vector. if (EVTBits == 8) { SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG); if (V.Val) return V; } if (EVTBits == 16) { SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG); if (V.Val) return V; } // If element VT is == 32 bits, turn it into a number of shuffles. std::vector V(NumElems); if (NumElems == 4 && NumZero > 0) { for (unsigned i = 0; i < 4; ++i) { bool isZero = !(NonZeros & (1 << i)); if (isZero) V[i] = getZeroVector(VT, DAG); else V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); } for (unsigned i = 0; i < 2; ++i) { switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { default: break; case 0: V[i] = V[i*2]; // Must be a zero vector. break; case 1: V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], getMOVLMask(NumElems, DAG)); break; case 2: V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], getMOVLMask(NumElems, DAG)); break; case 3: V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], getUnpacklMask(NumElems, DAG)); break; } } // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd) // clears the upper bits. // FIXME: we can do the same for v4f32 case when we know both parts of // the lower half come from scalar_to_vector (loadf32). We should do // that in post legalizer dag combiner with target specific hooks. if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0) return V[0]; MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; bool Reverse = (NonZeros & 0x3) == 2; for (unsigned i = 0; i < 2; ++i) if (Reverse) MaskVec.push_back(DAG.getConstant(1-i, EVT)); else MaskVec.push_back(DAG.getConstant(i, EVT)); Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; for (unsigned i = 0; i < 2; ++i) if (Reverse) MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); else MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); } if (Values.size() > 2) { // Expand into a number of unpckl*. // e.g. for v4f32 // Step 1: unpcklps 0, 2 ==> X: // : unpcklps 1, 3 ==> Y: // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); for (unsigned i = 0; i < NumElems; ++i) V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); NumElems >>= 1; while (NumElems != 0) { for (unsigned i = 0; i < NumElems; ++i) V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], UnpckMask); NumElems >>= 1; } return V[0]; } return SDOperand(); } SDOperand X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { SDOperand V1 = Op.getOperand(0); SDOperand V2 = Op.getOperand(1); SDOperand PermMask = Op.getOperand(2); MVT::ValueType VT = Op.getValueType(); unsigned NumElems = PermMask.getNumOperands(); bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; if (isSplatMask(PermMask.Val)) { if (NumElems <= 4) return Op; // Promote it to a v4i32 splat. return PromoteSplat(Op, DAG); } if (X86::isMOVLMask(PermMask.Val)) return (V1IsUndef) ? V2 : Op; if (X86::isMOVSHDUPMask(PermMask.Val) || X86::isMOVSLDUPMask(PermMask.Val) || X86::isMOVHLPSMask(PermMask.Val) || X86::isMOVHPMask(PermMask.Val) || X86::isMOVLPMask(PermMask.Val)) return Op; if (ShouldXformToMOVHLPS(PermMask.Val) || ShouldXformToMOVLP(V1.Val, PermMask.Val)) return CommuteVectorShuffle(Op, DAG); bool V1IsSplat = isSplatVector(V1.Val) || V1.getOpcode() == ISD::UNDEF; bool V2IsSplat = isSplatVector(V2.Val) || V2.getOpcode() == ISD::UNDEF; if (V1IsSplat && !V2IsSplat) { Op = CommuteVectorShuffle(Op, DAG); V1 = Op.getOperand(0); V2 = Op.getOperand(1); PermMask = Op.getOperand(2); V2IsSplat = true; } if (isCommutedMOVL(PermMask.Val, V2IsSplat)) { if (V2IsUndef) return V1; Op = CommuteVectorShuffle(Op, DAG); V1 = Op.getOperand(0); V2 = Op.getOperand(1); PermMask = Op.getOperand(2); if (V2IsSplat) { // V2 is a splat, so the mask may be malformed. That is, it may point // to any V2 element. The instruction selectior won't like this. Get // a corrected mask and commute to form a proper MOVS{S|D}. SDOperand NewMask = getMOVLMask(NumElems, DAG); if (NewMask.Val != PermMask.Val) Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); } return Op; } if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || X86::isUNPCKLMask(PermMask.Val) || X86::isUNPCKHMask(PermMask.Val)) return Op; if (V2IsSplat) { // Normalize mask so all entries that point to V2 points to its first // element then try to match unpck{h|l} again. If match, return a // new vector_shuffle with the corrected mask. SDOperand NewMask = NormalizeMask(PermMask, DAG); if (NewMask.Val != PermMask.Val) { if (X86::isUNPCKLMask(PermMask.Val, true)) { SDOperand NewMask = getUnpacklMask(NumElems, DAG); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); } else if (X86::isUNPCKHMask(PermMask.Val, true)) { SDOperand NewMask = getUnpackhMask(NumElems, DAG); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); } } } // Normalize the node to match x86 shuffle ops if needed if (V2.getOpcode() != ISD::UNDEF) if (isCommutedSHUFP(PermMask.Val)) { Op = CommuteVectorShuffle(Op, DAG); V1 = Op.getOperand(0); V2 = Op.getOperand(1); PermMask = Op.getOperand(2); } // If VT is integer, try PSHUF* first, then SHUFP*. if (MVT::isInteger(VT)) { if (X86::isPSHUFDMask(PermMask.Val) || X86::isPSHUFHWMask(PermMask.Val) || X86::isPSHUFLWMask(PermMask.Val)) { if (V2.getOpcode() != ISD::UNDEF) return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); return Op; } if (X86::isSHUFPMask(PermMask.Val)) return Op; // Handle v8i16 shuffle high / low shuffle node pair. if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) { MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; for (unsigned i = 0; i != 4; ++i) MaskVec.push_back(PermMask.getOperand(i)); for (unsigned i = 4; i != 8; ++i) MaskVec.push_back(DAG.getConstant(i, BaseVT)); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); MaskVec.clear(); for (unsigned i = 0; i != 4; ++i) MaskVec.push_back(DAG.getConstant(i, BaseVT)); for (unsigned i = 4; i != 8; ++i) MaskVec.push_back(PermMask.getOperand(i)); Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); } } else { // Floating point cases in the other order. if (X86::isSHUFPMask(PermMask.Val)) return Op; if (X86::isPSHUFDMask(PermMask.Val) || X86::isPSHUFHWMask(PermMask.Val) || X86::isPSHUFLWMask(PermMask.Val)) { if (V2.getOpcode() != ISD::UNDEF) return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); return Op; } } if (NumElems == 4) { MVT::ValueType MaskVT = PermMask.getValueType(); MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); std::vector > Locs; Locs.reserve(NumElems); std::vector Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); std::vector Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); unsigned NumHi = 0; unsigned NumLo = 0; // If no more than two elements come from either vector. This can be // implemented with two shuffles. First shuffle gather the elements. // The second shuffle, which takes the first shuffle as both of its // vector operands, put the elements into the right order. for (unsigned i = 0; i != NumElems; ++i) { SDOperand Elt = PermMask.getOperand(i); if (Elt.getOpcode() == ISD::UNDEF) { Locs[i] = std::make_pair(-1, -1); } else { unsigned Val = cast(Elt)->getValue(); if (Val < NumElems) { Locs[i] = std::make_pair(0, NumLo); Mask1[NumLo] = Elt; NumLo++; } else { Locs[i] = std::make_pair(1, NumHi); if (2+NumHi < NumElems) Mask1[2+NumHi] = Elt; NumHi++; } } } if (NumLo <= 2 && NumHi <= 2) { V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, Mask1)); for (unsigned i = 0; i != NumElems; ++i) { if (Locs[i].first == -1) continue; else { unsigned Idx = (i < NumElems/2) ? 0 : NumElems; Idx += Locs[i].first * (NumElems/2) + Locs[i].second; Mask2[i] = DAG.getConstant(Idx, MaskEVT); } } return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, Mask2)); } // Break it into (shuffle shuffle_hi, shuffle_lo). Locs.clear(); std::vector LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); std::vector HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); std::vector *MaskPtr = &LoMask; unsigned MaskIdx = 0; unsigned LoIdx = 0; unsigned HiIdx = NumElems/2; for (unsigned i = 0; i != NumElems; ++i) { if (i == NumElems/2) { MaskPtr = &HiMask; MaskIdx = 1; LoIdx = 0; HiIdx = NumElems/2; } SDOperand Elt = PermMask.getOperand(i); if (Elt.getOpcode() == ISD::UNDEF) { Locs[i] = std::make_pair(-1, -1); } else if (cast(Elt)->getValue() < NumElems) { Locs[i] = std::make_pair(MaskIdx, LoIdx); (*MaskPtr)[LoIdx] = Elt; LoIdx++; } else { Locs[i] = std::make_pair(MaskIdx, HiIdx); (*MaskPtr)[HiIdx] = Elt; HiIdx++; } } SDOperand LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, LoMask)); SDOperand HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, HiMask)); std::vector MaskOps; for (unsigned i = 0; i != NumElems; ++i) { if (Locs[i].first == -1) { MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); } else { unsigned Idx = Locs[i].first * NumElems + Locs[i].second; MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); } } return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskOps)); } return SDOperand(); } SDOperand X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { if (!isa(Op.getOperand(1))) return SDOperand(); MVT::ValueType VT = Op.getValueType(); // TODO: handle v16i8. if (MVT::getSizeInBits(VT) == 16) { // Transform it so it match pextrw which produces a 32-bit result. MVT::ValueType EVT = (MVT::ValueType)(VT+1); SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, Op.getOperand(0), Op.getOperand(1)); SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, DAG.getValueType(VT)); return DAG.getNode(ISD::TRUNCATE, VT, Assert); } else if (MVT::getSizeInBits(VT) == 32) { SDOperand Vec = Op.getOperand(0); unsigned Idx = cast(Op.getOperand(1))->getValue(); if (Idx == 0) return Op; // SHUFPS the element to the lowest double word, then movss. MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); SDOperand IdxNode = DAG.getConstant((Idx < 2) ? Idx : Idx+4, MVT::getVectorBaseType(MaskVT)); std::vector IdxVec; IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT))); IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, IdxVec); Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), Vec, Vec, Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, DAG.getConstant(0, MVT::i32)); } else if (MVT::getSizeInBits(VT) == 64) { SDOperand Vec = Op.getOperand(0); unsigned Idx = cast(Op.getOperand(1))->getValue(); if (Idx == 0) return Op; // UNPCKHPD the element to the lowest double word, then movsd. // Note if the lower 64 bits of the result of the UNPCKHPD is then stored // to a f64mem, the whole operation is folded into a single MOVHPDmr. MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); std::vector IdxVec; IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT))); IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, IdxVec); Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, DAG.getConstant(0, MVT::i32)); } return SDOperand(); } SDOperand X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { // Transform it so it match pinsrw which expects a 16-bit value in a GR32 // as its second argument. MVT::ValueType VT = Op.getValueType(); MVT::ValueType BaseVT = MVT::getVectorBaseType(VT); SDOperand N0 = Op.getOperand(0); SDOperand N1 = Op.getOperand(1); SDOperand N2 = Op.getOperand(2); if (MVT::getSizeInBits(BaseVT) == 16) { if (N1.getValueType() != MVT::i32) N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); if (N2.getValueType() != MVT::i32) N2 = DAG.getConstant(cast(N2)->getValue(), MVT::i32); return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); } else if (MVT::getSizeInBits(BaseVT) == 32) { unsigned Idx = cast(N2)->getValue(); if (Idx == 0) { // Use a movss. N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1); MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); std::vector MaskVec; MaskVec.push_back(DAG.getConstant(4, BaseVT)); for (unsigned i = 1; i <= 3; ++i) MaskVec.push_back(DAG.getConstant(i, BaseVT)); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1, DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec)); } else { // Use two pinsrw instructions to insert a 32 bit value. Idx <<= 1; if (MVT::isFloatingPoint(N1.getValueType())) { if (N1.getOpcode() == ISD::LOAD) { // Just load directly from f32mem to GR32. N1 = DAG.getLoad(MVT::i32, N1.getOperand(0), N1.getOperand(1), N1.getOperand(2)); } else { N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1); N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1); N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1, DAG.getConstant(0, MVT::i32)); } } N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0); N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, DAG.getConstant(Idx, MVT::i32)); N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8)); N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, DAG.getConstant(Idx+1, MVT::i32)); return DAG.getNode(ISD::BIT_CONVERT, VT, N0); } } return SDOperand(); } SDOperand X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOV32ri. SDOperand X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { ConstantPoolSDNode *CP = cast(Op); SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), DAG.getTargetConstantPool(CP->get(), getPointerTy(), CP->getAlignment())); if (Subtarget->isTargetDarwin()) { // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC) Result = DAG.getNode(ISD::ADD, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); } return Result; } SDOperand X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { GlobalValue *GV = cast(Op)->getGlobal(); SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), DAG.getTargetGlobalAddress(GV, getPointerTy())); if (Subtarget->isTargetDarwin()) { // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC) Result = DAG.getNode(ISD::ADD, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); // For Darwin, external and weak symbols are indirect, so we want to load // the value at address GV, not the value of GV itself. This means that // the GlobalAddress must be in the base or index register of the address, // not the GV offset field. if (getTargetMachine().getRelocationModel() != Reloc::Static && DarwinGVRequiresExtraLoad(GV)) Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), Result, DAG.getSrcValue(NULL)); } return Result; } SDOperand X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { const char *Sym = cast(Op)->getSymbol(); SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), DAG.getTargetExternalSymbol(Sym, getPointerTy())); if (Subtarget->isTargetDarwin()) { // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC) Result = DAG.getNode(ISD::ADD, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); } return Result; } SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && "Not an i64 shift!"); bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; SDOperand ShOpLo = Op.getOperand(0); SDOperand ShOpHi = Op.getOperand(1); SDOperand ShAmt = Op.getOperand(2); SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) : DAG.getConstant(0, MVT::i32); SDOperand Tmp2, Tmp3; if (Op.getOpcode() == ISD::SHL_PARTS) { Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); } else { Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); } SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag, ShAmt, DAG.getConstant(32, MVT::i8)); SDOperand Hi, Lo; SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); std::vector Tys; Tys.push_back(MVT::i32); Tys.push_back(MVT::Flag); std::vector Ops; if (Op.getOpcode() == ISD::SHL_PARTS) { Ops.push_back(Tmp2); Ops.push_back(Tmp3); Ops.push_back(CC); Ops.push_back(InFlag); Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); InFlag = Hi.getValue(1); Ops.clear(); Ops.push_back(Tmp3); Ops.push_back(Tmp1); Ops.push_back(CC); Ops.push_back(InFlag); Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); } else { Ops.push_back(Tmp2); Ops.push_back(Tmp3); Ops.push_back(CC); Ops.push_back(InFlag); Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); InFlag = Lo.getValue(1); Ops.clear(); Ops.push_back(Tmp3); Ops.push_back(Tmp1); Ops.push_back(CC); Ops.push_back(InFlag); Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); } Tys.clear(); Tys.push_back(MVT::i32); Tys.push_back(MVT::i32); Ops.clear(); Ops.push_back(Lo); Ops.push_back(Hi); return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); } SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { assert(Op.getOperand(0).getValueType() <= MVT::i64 && Op.getOperand(0).getValueType() >= MVT::i16 && "Unknown SINT_TO_FP to lower!"); SDOperand Result; MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); unsigned Size = MVT::getSizeInBits(SrcVT)/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(), Op.getOperand(0), StackSlot, DAG.getSrcValue(NULL)); // Build the FILD std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); if (X86ScalarSSE) Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(SrcVT)); Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, Tys, Ops); if (X86ScalarSSE) { Chain = Result.getValue(1); SDOperand InFlag = Result.getValue(2); // FIXME: Currently the FST is flagged to the FILD_FLAG. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); std::vector Tys; Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(Result); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(Op.getValueType())); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, Ops); Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, DAG.getSrcValue(NULL)); } return Result; } SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && "Unknown FP_TO_SINT to lower!"); // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary // stack slot. MachineFunction &MF = DAG.getMachineFunction(); unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); unsigned Opc; switch (Op.getValueType()) { default: assert(0 && "Invalid FP_TO_SINT to lower!"); case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; } SDOperand Chain = DAG.getEntryNode(); SDOperand Value = Op.getOperand(0); if (X86ScalarSSE) { assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot, DAG.getSrcValue(0)); std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType())); Value = DAG.getNode(X86ISD::FLD, Tys, Ops); Chain = Value.getValue(1); SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); } // Build the FP_TO_INT*_IN_MEM std::vector Ops; Ops.push_back(Chain); Ops.push_back(Value); Ops.push_back(StackSlot); SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); // Load the result. return DAG.getLoad(Op.getValueType(), FIST, StackSlot, DAG.getSrcValue(NULL)); } SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); const Type *OpNTy = MVT::getTypeForValueType(VT); std::vector CV; if (VT == MVT::f64) { CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } else { CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } Constant *CS = ConstantStruct::get(CV); SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); } SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); const Type *OpNTy = MVT::getTypeForValueType(VT); std::vector CV; if (VT == MVT::f64) { CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } else { CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } Constant *CS = ConstantStruct::get(CV); SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); } SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) { assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); SDOperand Cond; SDOperand CC = Op.getOperand(2); ISD::CondCode SetCCOpcode = cast(CC)->get(); bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); bool Flip; unsigned X86CC; if (translateX86CC(CC, isFP, X86CC, Flip)) { if (Flip) Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Op.getOperand(1), Op.getOperand(0)); else Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(X86ISD::SETCC, MVT::i8, DAG.getConstant(X86CC, MVT::i8), Cond); } else { assert(isFP && "Illegal integer SetCC!"); Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Op.getOperand(0), Op.getOperand(1)); std::vector Tys; std::vector Ops; switch (SetCCOpcode) { default: assert(false && "Illegal floating point SetCC!"); case ISD::SETOEQ: { // !PF & ZF Tys.push_back(MVT::i8); Tys.push_back(MVT::Flag); Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); Ops.push_back(Cond); SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, DAG.getConstant(X86ISD::COND_E, MVT::i8), Tmp1.getValue(1)); return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); } case ISD::SETUNE: { // PF | !ZF Tys.push_back(MVT::i8); Tys.push_back(MVT::Flag); Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); Ops.push_back(Cond); SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, DAG.getConstant(X86ISD::COND_NE, MVT::i8), Tmp1.getValue(1)); return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); } } } } SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); bool isFPStack = MVT::isFloatingPoint(VT) && !X86ScalarSSE; bool addTest = false; SDOperand Op0 = Op.getOperand(0); SDOperand Cond, CC; if (Op0.getOpcode() == ISD::SETCC) Op0 = LowerOperation(Op0, DAG); if (Op0.getOpcode() == X86ISD::SETCC) { // If condition flag is set by a X86ISD::CMP, then make a copy of it // (since flag operand cannot be shared). If the X86ISD::SETCC does not // have another use it will be eliminated. // If the X86ISD::SETCC has more than one use, then it's probably better // to use a test instead of duplicating the X86ISD::CMP (for register // pressure reason). unsigned CmpOpc = Op0.getOperand(1).getOpcode(); if (CmpOpc == X86ISD::CMP || CmpOpc == X86ISD::COMI || CmpOpc == X86ISD::UCOMI) { if (!Op0.hasOneUse()) { std::vector Tys; for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i) Tys.push_back(Op0.Val->getValueType(i)); std::vector Ops; for (unsigned i = 0; i < Op0.getNumOperands(); ++i) Ops.push_back(Op0.getOperand(i)); Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops); } CC = Op0.getOperand(0); Cond = Op0.getOperand(1); // Make a copy as flag result cannot be used by more than one. Cond = DAG.getNode(CmpOpc, MVT::Flag, Cond.getOperand(0), Cond.getOperand(1)); addTest = isFPStack && !hasFPCMov(cast(CC)->getSignExtended()); } else addTest = true; } else addTest = true; if (addTest) { CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0); } std::vector Tys; Tys.push_back(Op.getValueType()); Tys.push_back(MVT::Flag); std::vector Ops; // X86ISD::CMOV means set the result (which is operand 1) to the RHS if // condition is true. Ops.push_back(Op.getOperand(2)); Ops.push_back(Op.getOperand(1)); Ops.push_back(CC); Ops.push_back(Cond); return DAG.getNode(X86ISD::CMOV, Tys, Ops); } SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { bool addTest = false; SDOperand Cond = Op.getOperand(1); SDOperand Dest = Op.getOperand(2); SDOperand CC; if (Cond.getOpcode() == ISD::SETCC) Cond = LowerOperation(Cond, DAG); if (Cond.getOpcode() == X86ISD::SETCC) { // If condition flag is set by a X86ISD::CMP, then make a copy of it // (since flag operand cannot be shared). If the X86ISD::SETCC does not // have another use it will be eliminated. // If the X86ISD::SETCC has more than one use, then it's probably better // to use a test instead of duplicating the X86ISD::CMP (for register // pressure reason). unsigned CmpOpc = Cond.getOperand(1).getOpcode(); if (CmpOpc == X86ISD::CMP || CmpOpc == X86ISD::COMI || CmpOpc == X86ISD::UCOMI) { if (!Cond.hasOneUse()) { std::vector Tys; for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i) Tys.push_back(Cond.Val->getValueType(i)); std::vector Ops; for (unsigned i = 0; i < Cond.getNumOperands(); ++i) Ops.push_back(Cond.getOperand(i)); Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops); } CC = Cond.getOperand(0); Cond = Cond.getOperand(1); // Make a copy as flag result cannot be used by more than one. Cond = DAG.getNode(CmpOpc, MVT::Flag, Cond.getOperand(0), Cond.getOperand(1)); } else addTest = true; } else addTest = true; if (addTest) { CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond); } return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), Op.getOperand(0), Op.getOperand(2), CC, Cond); } SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { JumpTableSDNode *JT = cast(Op); SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), DAG.getTargetJumpTable(JT->getIndex(), getPointerTy())); if (Subtarget->isTargetDarwin()) { // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC) Result = DAG.getNode(ISD::ADD, getPointerTy(), DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); } return Result; } SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { SDOperand Copy; switch(Op.getNumOperands()) { default: assert(0 && "Do not know how to return this many arguments!"); abort(); case 1: // ret void. return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); case 2: { MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); if (MVT::isVector(ArgVT)) { // Integer or FP vector result -> XMM0. if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(X86::XMM0); Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1), SDOperand()); } else if (MVT::isInteger(ArgVT)) { // Integer result -> EAX if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(X86::EAX); Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1), SDOperand()); } else if (!X86ScalarSSE) { // FP return with fp-stack value. if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(X86::ST0); std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Op.getOperand(0)); Ops.push_back(Op.getOperand(1)); Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); } else { // FP return with ScalarSSE (return on fp-stack). if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(X86::ST0); SDOperand MemLoc; SDOperand Chain = Op.getOperand(0); SDOperand Value = Op.getOperand(1); if (Value.getOpcode() == ISD::LOAD && (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { Chain = Value.getOperand(0); MemLoc = Value.getOperand(1); } else { // Spill the value to memory and reload it into top of stack. unsigned Size = MVT::getSizeInBits(ArgVT)/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), Value, MemLoc, DAG.getSrcValue(0)); } std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(MemLoc); Ops.push_back(DAG.getValueType(ArgVT)); Copy = DAG.getNode(X86ISD::FLD, Tys, Ops); Tys.clear(); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); Ops.clear(); Ops.push_back(Copy.getValue(1)); Ops.push_back(Copy); Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); } break; } case 3: if (DAG.getMachineFunction().liveout_empty()) { DAG.getMachineFunction().addLiveOut(X86::EAX); DAG.getMachineFunction().addLiveOut(X86::EDX); } Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(2), SDOperand()); Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1)); break; } return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), Copy.getValue(1)); } SDOperand X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { if (FormalArgs.size() == 0) { unsigned CC = cast(Op.getOperand(1))->getValue(); if (CC == CallingConv::Fast && EnableFastCC) LowerFastCCArguments(Op, DAG); else LowerCCCArguments(Op, DAG); } // Return the new list of results. std::vector RetVTs(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVTs, FormalArgs); } SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) { SDOperand InFlag(0, 0); SDOperand Chain = Op.getOperand(0); unsigned Align = (unsigned)cast(Op.getOperand(4))->getValue(); if (Align == 0) Align = 1; ConstantSDNode *I = dyn_cast(Op.getOperand(3)); // If not DWORD aligned, call memset if size is less than the threshold. // It knows how to align to the right boundary first. if ((Align & 3) != 0 || (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { MVT::ValueType IntPtr = getPointerTy(); const Type *IntPtrTy = getTargetData()->getIntPtrType(); std::vector > Args; Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); // Extend the ubyte argument to be an int value for the call. SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); Args.push_back(std::make_pair(Val, IntPtrTy)); Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); std::pair CallResult = LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, DAG.getExternalSymbol("memset", IntPtr), Args, DAG); return CallResult.second; } MVT::ValueType AVT; SDOperand Count; ConstantSDNode *ValC = dyn_cast(Op.getOperand(2)); unsigned BytesLeft = 0; bool TwoRepStos = false; if (ValC) { unsigned ValReg; unsigned Val = ValC->getValue() & 255; // If the value is a constant, then we can potentially use larger sets. switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; Count = DAG.getConstant(I->getValue() / 2, MVT::i32); BytesLeft = I->getValue() % 2; Val = (Val << 8) | Val; ValReg = X86::AX; break; case 0: // DWORD aligned AVT = MVT::i32; if (I) { Count = DAG.getConstant(I->getValue() / 4, MVT::i32); BytesLeft = I->getValue() % 4; } else { Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), DAG.getConstant(2, MVT::i8)); TwoRepStos = true; } Val = (Val << 8) | Val; Val = (Val << 16) | Val; ValReg = X86::EAX; break; default: // Byte aligned AVT = MVT::i8; Count = Op.getOperand(3); ValReg = X86::AL; break; } Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), InFlag); InFlag = Chain.getValue(1); } else { AVT = MVT::i8; Count = Op.getOperand(3); Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); InFlag = Chain.getValue(1); } Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); InFlag = Chain.getValue(1); std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(DAG.getValueType(AVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::REP_STOS, Tys, Ops); if (TwoRepStos) { InFlag = Chain.getValue(1); Count = Op.getOperand(3); MVT::ValueType CVT = Count.getValueType(); SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, DAG.getConstant(3, CVT)); Chain = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag); InFlag = Chain.getValue(1); Tys.clear(); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getValueType(MVT::i8)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::REP_STOS, Tys, Ops); } else if (BytesLeft) { // Issue stores for the last 1 - 3 bytes. SDOperand Value; unsigned Val = ValC->getValue() & 255; unsigned Offset = I->getValue() - BytesLeft; SDOperand DstAddr = Op.getOperand(1); MVT::ValueType AddrVT = DstAddr.getValueType(); if (BytesLeft >= 2) { Value = DAG.getConstant((Val << 8) | Val, MVT::i16); Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, DAG.getNode(ISD::ADD, AddrVT, DstAddr, DAG.getConstant(Offset, AddrVT)), DAG.getSrcValue(NULL)); BytesLeft -= 2; Offset += 2; } if (BytesLeft == 1) { Value = DAG.getConstant(Val, MVT::i8); Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, DAG.getNode(ISD::ADD, AddrVT, DstAddr, DAG.getConstant(Offset, AddrVT)), DAG.getSrcValue(NULL)); } } return Chain; } SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) { SDOperand Chain = Op.getOperand(0); unsigned Align = (unsigned)cast(Op.getOperand(4))->getValue(); if (Align == 0) Align = 1; ConstantSDNode *I = dyn_cast(Op.getOperand(3)); // If not DWORD aligned, call memcpy if size is less than the threshold. // It knows how to align to the right boundary first. if ((Align & 3) != 0 || (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { MVT::ValueType IntPtr = getPointerTy(); const Type *IntPtrTy = getTargetData()->getIntPtrType(); std::vector > Args; Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy)); Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); std::pair CallResult = LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); return CallResult.second; } MVT::ValueType AVT; SDOperand Count; unsigned BytesLeft = 0; bool TwoRepMovs = false; switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; Count = DAG.getConstant(I->getValue() / 2, MVT::i32); BytesLeft = I->getValue() % 2; break; case 0: // DWORD aligned AVT = MVT::i32; if (I) { Count = DAG.getConstant(I->getValue() / 4, MVT::i32); BytesLeft = I->getValue() % 4; } else { Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), DAG.getConstant(2, MVT::i8)); TwoRepMovs = true; } break; default: // Byte aligned AVT = MVT::i8; Count = Op.getOperand(3); break; } SDOperand InFlag(0, 0); Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag); InFlag = Chain.getValue(1); std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(DAG.getValueType(AVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops); if (TwoRepMovs) { InFlag = Chain.getValue(1); Count = Op.getOperand(3); MVT::ValueType CVT = Count.getValueType(); SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, DAG.getConstant(3, CVT)); Chain = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag); InFlag = Chain.getValue(1); Tys.clear(); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getValueType(MVT::i8)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops); } else if (BytesLeft) { // Issue loads and stores for the last 1 - 3 bytes. unsigned Offset = I->getValue() - BytesLeft; SDOperand DstAddr = Op.getOperand(1); MVT::ValueType DstVT = DstAddr.getValueType(); SDOperand SrcAddr = Op.getOperand(2); MVT::ValueType SrcVT = SrcAddr.getValueType(); SDOperand Value; if (BytesLeft >= 2) { Value = DAG.getLoad(MVT::i16, Chain, DAG.getNode(ISD::ADD, SrcVT, SrcAddr, DAG.getConstant(Offset, SrcVT)), DAG.getSrcValue(NULL)); Chain = Value.getValue(1); Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, DAG.getNode(ISD::ADD, DstVT, DstAddr, DAG.getConstant(Offset, DstVT)), DAG.getSrcValue(NULL)); BytesLeft -= 2; Offset += 2; } if (BytesLeft == 1) { Value = DAG.getLoad(MVT::i8, Chain, DAG.getNode(ISD::ADD, SrcVT, SrcAddr, DAG.getConstant(Offset, SrcVT)), DAG.getSrcValue(NULL)); Chain = Value.getValue(1); Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, DAG.getNode(ISD::ADD, DstVT, DstAddr, DAG.getConstant(Offset, DstVT)), DAG.getSrcValue(NULL)); } } return Chain; } SDOperand X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) { std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Op.getOperand(0)); SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops); Ops.clear(); Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1))); Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX, MVT::i32, Ops[0].getValue(2))); Ops.push_back(Ops[1].getValue(1)); Tys[0] = Tys[1] = MVT::i32; Tys.push_back(MVT::Other); return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); } SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. // FIXME: Replace MVT::i32 with PointerTy SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, Op.getOperand(1), Op.getOperand(2)); } SDOperand X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { unsigned IntNo = cast(Op.getOperand(0))->getValue(); switch (IntNo) { default: return SDOperand(); // Don't custom lower most intrinsics. // Comparison intrinsics. case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_comieq_sd: case Intrinsic::x86_sse2_comilt_sd: case Intrinsic::x86_sse2_comile_sd: case Intrinsic::x86_sse2_comigt_sd: case Intrinsic::x86_sse2_comige_sd: case Intrinsic::x86_sse2_comineq_sd: case Intrinsic::x86_sse2_ucomieq_sd: case Intrinsic::x86_sse2_ucomilt_sd: case Intrinsic::x86_sse2_ucomile_sd: case Intrinsic::x86_sse2_ucomigt_sd: case Intrinsic::x86_sse2_ucomige_sd: case Intrinsic::x86_sse2_ucomineq_sd: { unsigned Opc = 0; ISD::CondCode CC = ISD::SETCC_INVALID; switch (IntNo) { default: break; case Intrinsic::x86_sse_comieq_ss: case Intrinsic::x86_sse2_comieq_sd: Opc = X86ISD::COMI; CC = ISD::SETEQ; break; case Intrinsic::x86_sse_comilt_ss: case Intrinsic::x86_sse2_comilt_sd: Opc = X86ISD::COMI; CC = ISD::SETLT; break; case Intrinsic::x86_sse_comile_ss: case Intrinsic::x86_sse2_comile_sd: Opc = X86ISD::COMI; CC = ISD::SETLE; break; case Intrinsic::x86_sse_comigt_ss: case Intrinsic::x86_sse2_comigt_sd: Opc = X86ISD::COMI; CC = ISD::SETGT; break; case Intrinsic::x86_sse_comige_ss: case Intrinsic::x86_sse2_comige_sd: Opc = X86ISD::COMI; CC = ISD::SETGE; break; case Intrinsic::x86_sse_comineq_ss: case Intrinsic::x86_sse2_comineq_sd: Opc = X86ISD::COMI; CC = ISD::SETNE; break; case Intrinsic::x86_sse_ucomieq_ss: case Intrinsic::x86_sse2_ucomieq_sd: Opc = X86ISD::UCOMI; CC = ISD::SETEQ; break; case Intrinsic::x86_sse_ucomilt_ss: case Intrinsic::x86_sse2_ucomilt_sd: Opc = X86ISD::UCOMI; CC = ISD::SETLT; break; case Intrinsic::x86_sse_ucomile_ss: case Intrinsic::x86_sse2_ucomile_sd: Opc = X86ISD::UCOMI; CC = ISD::SETLE; break; case Intrinsic::x86_sse_ucomigt_ss: case Intrinsic::x86_sse2_ucomigt_sd: Opc = X86ISD::UCOMI; CC = ISD::SETGT; break; case Intrinsic::x86_sse_ucomige_ss: case Intrinsic::x86_sse2_ucomige_sd: Opc = X86ISD::UCOMI; CC = ISD::SETGE; break; case Intrinsic::x86_sse_ucomineq_ss: case Intrinsic::x86_sse2_ucomineq_sd: Opc = X86ISD::UCOMI; CC = ISD::SETNE; break; } bool Flip; unsigned X86CC; translateX86CC(CC, true, X86CC, Flip); SDOperand Cond = DAG.getNode(Opc, MVT::Flag, Op.getOperand(Flip?2:1), Op.getOperand(Flip?1:2)); SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, DAG.getConstant(X86CC, MVT::i8), Cond); return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); } } } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Should not custom lower this!"); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: return LowerShift(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FABS: return LowerFABS(Op, DAG); case ISD::FNEG: return LowerFNEG(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::RET: return LowerRET(Op, DAG); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); case ISD::MEMSET: return LowerMEMSET(Op, DAG); case ISD::MEMCPY: return LowerMEMCPY(Op, DAG); case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); } } const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return NULL; case X86ISD::SHLD: return "X86ISD::SHLD"; case X86ISD::SHRD: return "X86ISD::SHRD"; case X86ISD::FAND: return "X86ISD::FAND"; case X86ISD::FXOR: return "X86ISD::FXOR"; case X86ISD::FILD: return "X86ISD::FILD"; case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; case X86ISD::FLD: return "X86ISD::FLD"; case X86ISD::FST: return "X86ISD::FST"; case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT"; case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; case X86ISD::CALL: return "X86ISD::CALL"; case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; case X86ISD::CMP: return "X86ISD::CMP"; case X86ISD::TEST: return "X86ISD::TEST"; case X86ISD::COMI: return "X86ISD::COMI"; case X86ISD::UCOMI: return "X86ISD::UCOMI"; case X86ISD::SETCC: return "X86ISD::SETCC"; case X86ISD::CMOV: return "X86ISD::CMOV"; case X86ISD::BRCOND: return "X86ISD::BRCOND"; case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK"; case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; case X86ISD::Wrapper: return "X86ISD::Wrapper"; case X86ISD::S2VEC: return "X86ISD::S2VEC"; case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; case X86ISD::PINSRW: return "X86ISD::PINSRW"; } } void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth) const { unsigned Opc = Op.getOpcode(); assert((Opc >= ISD::BUILTIN_OP_END || Opc == ISD::INTRINSIC_WO_CHAIN || Opc == ISD::INTRINSIC_W_CHAIN || Opc == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); KnownZero = KnownOne = 0; // Don't know anything. switch (Opc) { default: break; case X86ISD::SETCC: KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); break; } } std::vector X86TargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() == 1) { // FIXME: not handling fp-stack yet! // FIXME: not handling MMX registers yet ('y' constraint). switch (Constraint[0]) { // GCC X86 Constraint Letters default: break; // Unknown constriant letter case 'r': // GENERAL_REGS case 'R': // LEGACY_REGS if (VT == MVT::i32) return make_vector(X86::EAX, X86::EDX, X86::ECX, X86::EBX, X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0); else if (VT == MVT::i16) return make_vector(X86::AX, X86::DX, X86::CX, X86::BX, X86::SI, X86::DI, X86::BP, X86::SP, 0); else if (VT == MVT::i8) return make_vector(X86::AL, X86::DL, X86::CL, X86::DL, 0); break; case 'l': // INDEX_REGS if (VT == MVT::i32) return make_vector(X86::EAX, X86::EDX, X86::ECX, X86::EBX, X86::ESI, X86::EDI, X86::EBP, 0); else if (VT == MVT::i16) return make_vector(X86::AX, X86::DX, X86::CX, X86::BX, X86::SI, X86::DI, X86::BP, 0); else if (VT == MVT::i8) return make_vector(X86::AL, X86::DL, X86::CL, X86::DL, 0); break; case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) case 'Q': // Q_REGS if (VT == MVT::i32) return make_vector(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); else if (VT == MVT::i16) return make_vector(X86::AX, X86::DX, X86::CX, X86::BX, 0); else if (VT == MVT::i8) return make_vector(X86::AL, X86::DL, X86::CL, X86::DL, 0); break; case 'x': // SSE_REGS if SSE1 allowed if (Subtarget->hasSSE1()) return make_vector(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, 0); return std::vector(); case 'Y': // SSE_REGS if SSE2 allowed if (Subtarget->hasSSE2()) return make_vector(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, 0); return std::vector(); } } return std::vector(); } /// isLegalAddressImmediate - Return true if the integer value or /// GlobalValue can be used as the offset of the target addressing mode. bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const { // X86 allows a sign-extended 32-bit immediate field. return (V > -(1LL << 32) && V < (1LL << 32)-1); } bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { if (Subtarget->isTargetDarwin()) { Reloc::Model RModel = getTargetMachine().getRelocationModel(); if (RModel == Reloc::Static) return true; else if (RModel == Reloc::DynamicNoPIC) return !DarwinGVRequiresExtraLoad(GV); else return false; } else return true; } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { // Only do shuffles on 128-bit vector types for now. if (MVT::getSizeInBits(VT) == 64) return false; return (Mask.Val->getNumOperands() <= 4 || isSplatMask(Mask.Val) || isPSHUFHW_PSHUFLWMask(Mask.Val) || X86::isUNPCKLMask(Mask.Val) || X86::isUNPCKL_v_undef_Mask(Mask.Val) || X86::isUNPCKHMask(Mask.Val)); } bool X86TargetLowering::isVectorClearMaskLegal(std::vector &BVOps, MVT::ValueType EVT, SelectionDAG &DAG) const { unsigned NumElts = BVOps.size(); // Only do shuffles on 128-bit vector types for now. if (MVT::getSizeInBits(EVT) * NumElts == 64) return false; if (NumElts == 2) return true; if (NumElts == 4) { return (isMOVLMask(BVOps) || isCommutedMOVL(BVOps, true) || isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps)); } return false; }