//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements bookkeeping for "interesting" users of expressions // computed from induction variables. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "iv-users" #include "llvm/Analysis/IVUsers.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/DerivedTypes.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Assembly/AsmAnnotationWriter.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; char IVUsers::ID = 0; INITIALIZE_PASS(IVUsers, "iv-users", "Induction Variable Users", false, true); Pass *llvm::createIVUsersPass() { return new IVUsers(); } /// findInterestingAddRec - Test whether the given expression is interesting. /// Return the addrec with the current loop which makes it interesting, or /// null if it is not interesting. const SCEVAddRecExpr *IVUsers::findInterestingAddRec(const SCEV *S) const { // An addrec is interesting if it's affine or if it has an interesting start. if (const SCEVAddRecExpr *AR = dyn_cast(S)) { // Keep things simple. Don't touch loop-variant strides. if (AR->getLoop() == L) return AR; // We don't yet know how to do effective SCEV expansions for addrecs // with interesting steps. if (findInterestingAddRec(AR->getStepRecurrence(*SE))) return 0; // Otherwise recurse to see if the start value is interesting. return findInterestingAddRec(AR->getStart()); } // An add is interesting if exactly one of its operands is interesting. if (const SCEVAddExpr *Add = dyn_cast(S)) { for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end(); OI != OE; ++OI) if (const SCEVAddRecExpr *AR = findInterestingAddRec(*OI)) return AR; return 0; } // Nothing else is interesting here. return 0; } bool IVUsers::isInterestingUser(const Instruction *User) const { // Void and FP expressions cannot be reduced. if (!SE->isSCEVable(User->getType())) return false; // LSR is not APInt clean, do not touch integers bigger than 64-bits. if (SE->getTypeSizeInBits(User->getType()) > 64) return false; // Don't descend into PHI nodes outside the current loop. if (LI->getLoopFor(User->getParent()) != L && isa(User)) return false; // Otherwise, it may be interesting. return true; } /// AddUsersIfInteresting - Inspect the specified instruction. If it is a /// reducible SCEV, recursively add its users to the IVUsesByStride set and /// return true. Otherwise, return false. void IVUsers::AddUsersIfInteresting(Instruction *I) { // Stop if we've seen this before. if (!Processed.insert(I)) return; // If this PHI node is not SCEVable, ignore it. if (!SE->isSCEVable(I->getType())) return; // If this PHI node is not an addrec for this loop, ignore it. const SCEVAddRecExpr *Expr = findInterestingAddRec(SE->getSCEV(I)); if (!Expr) return; // Walk the def-use graph. SmallVector, 16> Worklist; Worklist.push_back(std::make_pair(I, Expr)); do { std::pair P = Worklist.pop_back_val(); Instruction *Op = P.first; const SCEVAddRecExpr *OpAR = P.second; // Visit Op's users. SmallPtrSet VisitedUsers; for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E; ++UI) { // Don't visit any individual user more than once. Instruction *User = cast(*UI); if (!VisitedUsers.insert(User)) continue; // If it's an affine addrec (which we can pretty safely re-expand) inside // the loop, or a potentially non-affine addrec outside the loop (which // we can evaluate outside of the loop), follow it. if (OpAR->isAffine() || !L->contains(User)) { if (isInterestingUser(User)) { const SCEV *UserExpr = SE->getSCEV(User); if (const SCEVAddRecExpr *AR = findInterestingAddRec(UserExpr)) { // Interesting. Keep searching. if (Processed.insert(User)) Worklist.push_back(std::make_pair(User, AR)); continue; } } } // Otherwise, this is the point where the def-use chain // becomes uninteresting. Call it an IV User. AddUser(User, Op); } } while (!Worklist.empty()); } IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { IVUses.push_back(new IVStrideUse(this, User, Operand)); IVStrideUse &NewUse = IVUses.back(); // Auto-detect and remember post-inc loops for this expression. const SCEV *S = SE->getSCEV(Operand); (void)TransformForPostIncUse(NormalizeAutodetect, S, User, Operand, NewUse.PostIncLoops, *SE, *DT); return NewUse; } IVUsers::IVUsers() : LoopPass(ID) { } void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) { L = l; LI = &getAnalysis(); DT = &getAnalysis(); SE = &getAnalysis(); // Find all uses of induction variables in this loop, and categorize // them by stride. Start by finding all of the PHI nodes in the header for // this loop. If they are induction variables, inspect their uses. for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) AddUsersIfInteresting(I); return false; } void IVUsers::print(raw_ostream &OS, const Module *M) const { OS << "IV Users for loop "; WriteAsOperand(OS, L->getHeader(), false); if (SE->hasLoopInvariantBackedgeTakenCount(L)) { OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); } OS << ":\n"; // Use a default AssemblyAnnotationWriter to suppress the default info // comments, which aren't relevant here. AssemblyAnnotationWriter Annotator; for (ilist::const_iterator UI = IVUses.begin(), E = IVUses.end(); UI != E; ++UI) { OS << " "; WriteAsOperand(OS, UI->getOperandValToReplace(), false); OS << " = " << *getReplacementExpr(*UI); for (PostIncLoopSet::const_iterator I = UI->PostIncLoops.begin(), E = UI->PostIncLoops.end(); I != E; ++I) { OS << " (post-inc with loop "; WriteAsOperand(OS, (*I)->getHeader(), false); OS << ")"; } OS << " in "; UI->getUser()->print(OS, &Annotator); OS << '\n'; } } void IVUsers::dump() const { print(dbgs()); } void IVUsers::releaseMemory() { Processed.clear(); IVUses.clear(); } /// getReplacementExpr - Return a SCEV expression which computes the /// value of the OperandValToReplace. const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { return SE->getSCEV(IU.getOperandValToReplace()); } /// getExpr - Return the expression for the use. const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { return TransformForPostIncUse(Normalize, getReplacementExpr(IU), IU.getUser(), IU.getOperandValToReplace(), const_cast(IU.getPostIncLoops()), *SE, *DT); } static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { if (const SCEVAddRecExpr *AR = dyn_cast(S)) { if (AR->getLoop() == L) return AR; return findAddRecForLoop(AR->getStart(), L); } if (const SCEVAddExpr *Add = dyn_cast(S)) { for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); I != E; ++I) if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L)) return AR; return 0; } return 0; } const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) return AR->getStepRecurrence(*SE); return 0; } void IVStrideUse::transformToPostInc(const Loop *L) { PostIncLoops.insert(L); } void IVStrideUse::deleted() { // Remove this user from the list. Parent->IVUses.erase(this); // this now dangles! }