//===-- DWARFCompileUnit.cpp ----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DWARFCompileUnit.h" #include "DWARFContext.h" #include "llvm/DebugInfo/DWARFFormValue.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Format.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace dwarf; bool DWARFCompileUnit::getAddrOffsetSectionItem(uint32_t Index, uint64_t &Result) const { uint32_t Offset = AddrOffsetSectionBase + Index * AddrSize; if (AddrOffsetSection.size() < Offset + AddrSize) return false; DataExtractor DA(AddrOffsetSection, isLittleEndian, AddrSize); Result = DA.getAddress(&Offset); return true; } bool DWARFCompileUnit::getStringOffsetSectionItem(uint32_t Index, uint32_t &Result) const { // FIXME: string offset section entries are 8-byte for DWARF64. const uint32_t ItemSize = 4; uint32_t Offset = Index * ItemSize; if (StringOffsetSection.size() < Offset + ItemSize) return false; DataExtractor DA(StringOffsetSection, isLittleEndian, 0); Result = DA.getU32(&Offset); return true; } bool DWARFCompileUnit::extract(DataExtractor debug_info, uint32_t *offset_ptr) { clear(); Offset = *offset_ptr; if (debug_info.isValidOffset(*offset_ptr)) { uint64_t abbrOffset; Length = debug_info.getU32(offset_ptr); Version = debug_info.getU16(offset_ptr); abbrOffset = debug_info.getU32(offset_ptr); AddrSize = debug_info.getU8(offset_ptr); bool lengthOK = debug_info.isValidOffset(getNextCompileUnitOffset()-1); bool versionOK = DWARFContext::isSupportedVersion(Version); bool abbrOffsetOK = AbbrevSection.size() > abbrOffset; bool addrSizeOK = AddrSize == 4 || AddrSize == 8; if (lengthOK && versionOK && addrSizeOK && abbrOffsetOK && Abbrev != NULL) { Abbrevs = Abbrev->getAbbreviationDeclarationSet(abbrOffset); return true; } // reset the offset to where we tried to parse from if anything went wrong *offset_ptr = Offset; } return false; } uint32_t DWARFCompileUnit::extract(uint32_t offset, DataExtractor debug_info_data, const DWARFAbbreviationDeclarationSet *abbrevs) { clear(); Offset = offset; if (debug_info_data.isValidOffset(offset)) { Length = debug_info_data.getU32(&offset); Version = debug_info_data.getU16(&offset); bool abbrevsOK = debug_info_data.getU32(&offset) == abbrevs->getOffset(); Abbrevs = abbrevs; AddrSize = debug_info_data.getU8(&offset); bool versionOK = DWARFContext::isSupportedVersion(Version); bool addrSizeOK = AddrSize == 4 || AddrSize == 8; if (versionOK && addrSizeOK && abbrevsOK && debug_info_data.isValidOffset(offset)) return offset; } return 0; } bool DWARFCompileUnit::extractRangeList(uint32_t RangeListOffset, DWARFDebugRangeList &RangeList) const { // Require that compile unit is extracted. assert(DieArray.size() > 0); DataExtractor RangesData(RangeSection, isLittleEndian, AddrSize); uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; return RangeList.extract(RangesData, &ActualRangeListOffset); } void DWARFCompileUnit::clear() { Offset = 0; Length = 0; Version = 0; Abbrevs = 0; AddrSize = 0; BaseAddr = 0; RangeSectionBase = 0; AddrOffsetSectionBase = 0; clearDIEs(false); DWO.reset(); } void DWARFCompileUnit::dump(raw_ostream &OS) { OS << format("0x%08x", Offset) << ": Compile Unit:" << " length = " << format("0x%08x", Length) << " version = " << format("0x%04x", Version) << " abbr_offset = " << format("0x%04x", Abbrevs->getOffset()) << " addr_size = " << format("0x%02x", AddrSize) << " (next CU at " << format("0x%08x", getNextCompileUnitOffset()) << ")\n"; const DWARFDebugInfoEntryMinimal *CU = getCompileUnitDIE(false); assert(CU && "Null Compile Unit?"); CU->dump(OS, this, -1U); } const char *DWARFCompileUnit::getCompilationDir() { extractDIEsIfNeeded(true); if (DieArray.empty()) return 0; return DieArray[0].getAttributeValueAsString(this, DW_AT_comp_dir, 0); } uint64_t DWARFCompileUnit::getDWOId() { extractDIEsIfNeeded(true); const uint64_t FailValue = -1ULL; if (DieArray.empty()) return FailValue; return DieArray[0] .getAttributeValueAsUnsigned(this, DW_AT_GNU_dwo_id, FailValue); } void DWARFCompileUnit::setDIERelations() { if (DieArray.empty()) return; DWARFDebugInfoEntryMinimal *die_array_begin = &DieArray.front(); DWARFDebugInfoEntryMinimal *die_array_end = &DieArray.back(); DWARFDebugInfoEntryMinimal *curr_die; // We purposely are skipping the last element in the array in the loop below // so that we can always have a valid next item for (curr_die = die_array_begin; curr_die < die_array_end; ++curr_die) { // Since our loop doesn't include the last element, we can always // safely access the next die in the array. DWARFDebugInfoEntryMinimal *next_die = curr_die + 1; const DWARFAbbreviationDeclaration *curr_die_abbrev = curr_die->getAbbreviationDeclarationPtr(); if (curr_die_abbrev) { // Normal DIE if (curr_die_abbrev->hasChildren()) next_die->setParent(curr_die); else curr_die->setSibling(next_die); } else { // NULL DIE that terminates a sibling chain DWARFDebugInfoEntryMinimal *parent = curr_die->getParent(); if (parent) parent->setSibling(next_die); } } // Since we skipped the last element, we need to fix it up! if (die_array_begin < die_array_end) curr_die->setParent(die_array_begin); } void DWARFCompileUnit::extractDIEsToVector( bool AppendCUDie, bool AppendNonCUDies, std::vector &Dies) const { if (!AppendCUDie && !AppendNonCUDies) return; // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. uint32_t Offset = getFirstDIEOffset(); uint32_t NextCUOffset = getNextCompileUnitOffset(); DWARFDebugInfoEntryMinimal DIE; uint32_t Depth = 0; const uint8_t *FixedFormSizes = DWARFFormValue::getFixedFormSizes(getAddressByteSize(), getVersion()); bool IsCUDie = true; while (Offset < NextCUOffset && DIE.extractFast(this, FixedFormSizes, &Offset)) { if (IsCUDie) { if (AppendCUDie) Dies.push_back(DIE); if (!AppendNonCUDies) break; // The average bytes per DIE entry has been seen to be // around 14-20 so let's pre-reserve the needed memory for // our DIE entries accordingly. Dies.reserve(Dies.size() + getDebugInfoSize() / 14); IsCUDie = false; } else { Dies.push_back(DIE); } const DWARFAbbreviationDeclaration *AbbrDecl = DIE.getAbbreviationDeclarationPtr(); if (AbbrDecl) { // Normal DIE if (AbbrDecl->hasChildren()) ++Depth; } else { // NULL DIE. if (Depth > 0) --Depth; if (Depth == 0) break; // We are done with this compile unit! } } // Give a little bit of info if we encounter corrupt DWARF (our offset // should always terminate at or before the start of the next compilation // unit header). if (Offset > NextCUOffset) fprintf(stderr, "warning: DWARF compile unit extends beyond its " "bounds cu 0x%8.8x at 0x%8.8x'\n", getOffset(), Offset); } size_t DWARFCompileUnit::extractDIEsIfNeeded(bool CUDieOnly) { if ((CUDieOnly && DieArray.size() > 0) || DieArray.size() > 1) return 0; // Already parsed. bool HasCUDie = DieArray.size() > 0; extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); if (DieArray.empty()) return 0; // If CU DIE was just parsed, copy several attribute values from it. if (!HasCUDie) { uint64_t BaseAddr = DieArray[0].getAttributeValueAsUnsigned(this, DW_AT_low_pc, -1U); if (BaseAddr == -1U) BaseAddr = DieArray[0].getAttributeValueAsUnsigned(this, DW_AT_entry_pc, 0); setBaseAddress(BaseAddr); AddrOffsetSectionBase = DieArray[0].getAttributeValueAsReference(this, DW_AT_GNU_addr_base, 0); RangeSectionBase = DieArray[0].getAttributeValueAsReference(this, DW_AT_GNU_ranges_base, 0); } setDIERelations(); return DieArray.size(); } DWARFCompileUnit::DWOHolder::DWOHolder(object::ObjectFile *DWOFile) : DWOFile(DWOFile), DWOContext(cast(DIContext::getDWARFContext(DWOFile))), DWOCU(0) { if (DWOContext->getNumDWOCompileUnits() > 0) DWOCU = DWOContext->getDWOCompileUnitAtIndex(0); } bool DWARFCompileUnit::parseDWO() { if (DWO.get() != 0) return false; extractDIEsIfNeeded(true); if (DieArray.empty()) return false; const char *DWOFileName = DieArray[0].getAttributeValueAsString(this, DW_AT_GNU_dwo_name, 0); if (DWOFileName == 0) return false; const char *CompilationDir = DieArray[0].getAttributeValueAsString(this, DW_AT_comp_dir, 0); SmallString<16> AbsolutePath; if (sys::path::is_relative(DWOFileName) && CompilationDir != 0) { sys::path::append(AbsolutePath, CompilationDir); } sys::path::append(AbsolutePath, DWOFileName); object::ObjectFile *DWOFile = object::ObjectFile::createObjectFile(AbsolutePath); if (!DWOFile) return false; // Reset DWOHolder. DWO.reset(new DWOHolder(DWOFile)); DWARFCompileUnit *DWOCU = DWO->getCU(); // Verify that compile unit in .dwo file is valid. if (DWOCU == 0 || DWOCU->getDWOId() != getDWOId()) { DWO.reset(); return false; } // Share .debug_addr and .debug_ranges section with compile unit in .dwo DWOCU->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase); DWOCU->setRangesSection(RangeSection, RangeSectionBase); return true; } void DWARFCompileUnit::clearDIEs(bool KeepCUDie) { if (DieArray.size() > (unsigned)KeepCUDie) { // std::vectors never get any smaller when resized to a smaller size, // or when clear() or erase() are called, the size will report that it // is smaller, but the memory allocated remains intact (call capacity() // to see this). So we need to create a temporary vector and swap the // contents which will cause just the internal pointers to be swapped // so that when temporary vector goes out of scope, it will destroy the // contents. std::vector TmpArray; DieArray.swap(TmpArray); // Save at least the compile unit DIE if (KeepCUDie) DieArray.push_back(TmpArray.front()); } } void DWARFCompileUnit::buildAddressRangeTable(DWARFDebugAranges *debug_aranges, bool clear_dies_if_already_not_parsed, uint32_t CUOffsetInAranges) { // This function is usually called if there in no .debug_aranges section // in order to produce a compile unit level set of address ranges that // is accurate. If the DIEs weren't parsed, then we don't want all dies for // all compile units to stay loaded when they weren't needed. So we can end // up parsing the DWARF and then throwing them all away to keep memory usage // down. const bool clear_dies = extractDIEsIfNeeded(false) > 1 && clear_dies_if_already_not_parsed; DieArray[0].buildAddressRangeTable(this, debug_aranges, CUOffsetInAranges); bool DWOCreated = parseDWO(); if (DWO.get()) { // If there is a .dwo file for this compile unit, then skeleton CU DIE // doesn't have children, and we should instead build address range table // from DIEs in the .debug_info.dwo section of .dwo file. DWO->getCU()->buildAddressRangeTable( debug_aranges, clear_dies_if_already_not_parsed, CUOffsetInAranges); } if (DWOCreated && clear_dies_if_already_not_parsed) DWO.reset(); // Keep memory down by clearing DIEs if this generate function // caused them to be parsed. if (clear_dies) clearDIEs(true); } const DWARFDebugInfoEntryMinimal * DWARFCompileUnit::getSubprogramForAddress(uint64_t Address) { extractDIEsIfNeeded(false); for (size_t i = 0, n = DieArray.size(); i != n; i++) if (DieArray[i].isSubprogramDIE() && DieArray[i].addressRangeContainsAddress(this, Address)) { return &DieArray[i]; } return 0; } DWARFDebugInfoEntryInlinedChain DWARFCompileUnit::getInlinedChainForAddress(uint64_t Address) { // First, find a subprogram that contains the given address (the root // of inlined chain). const DWARFCompileUnit *ChainCU = 0; const DWARFDebugInfoEntryMinimal *SubprogramDIE = getSubprogramForAddress(Address); if (SubprogramDIE) { ChainCU = this; } else { // Try to look for subprogram DIEs in the DWO file. parseDWO(); if (DWO.get()) { SubprogramDIE = DWO->getCU()->getSubprogramForAddress(Address); if (SubprogramDIE) ChainCU = DWO->getCU(); } } // Get inlined chain rooted at this subprogram DIE. if (!SubprogramDIE) return DWARFDebugInfoEntryInlinedChain(); return SubprogramDIE->getInlinedChainForAddress(ChainCU, Address); }