//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PassManagerBuilder class, which is used to set up a // "standard" optimization sequence suitable for languages like C and C++. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm-c/Transforms/PassManagerBuilder.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Verifier.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Vectorize.h" using namespace llvm; static cl::opt<bool> RunLoopVectorization("vectorize-loops", cl::desc("Run the Loop vectorization passes")); static cl::opt<bool> LateVectorization("late-vectorize", cl::init(true), cl::Hidden, cl::desc("Run the vectorization pasess late in the pass " "pipeline (after the inliner)")); static cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::desc("Run the SLP vectorization passes")); static cl::opt<bool> RunBBVectorization("vectorize-slp-aggressive", cl::desc("Run the BB vectorization passes")); static cl::opt<bool> UseGVNAfterVectorization("use-gvn-after-vectorization", cl::init(false), cl::Hidden, cl::desc("Run GVN instead of Early CSE after vectorization passes")); static cl::opt<bool> UseNewSROA("use-new-sroa", cl::init(true), cl::Hidden, cl::desc("Enable the new, experimental SROA pass")); PassManagerBuilder::PassManagerBuilder() { OptLevel = 2; SizeLevel = 0; LibraryInfo = 0; Inliner = 0; DisableUnitAtATime = false; DisableUnrollLoops = false; BBVectorize = RunBBVectorization; SLPVectorize = RunSLPVectorization; LoopVectorize = RunLoopVectorization; LateVectorize = LateVectorization; } PassManagerBuilder::~PassManagerBuilder() { delete LibraryInfo; delete Inliner; } /// Set of global extensions, automatically added as part of the standard set. static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; void PassManagerBuilder::addGlobalExtension( PassManagerBuilder::ExtensionPointTy Ty, PassManagerBuilder::ExtensionFn Fn) { GlobalExtensions->push_back(std::make_pair(Ty, Fn)); } void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { Extensions.push_back(std::make_pair(Ty, Fn)); } void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, PassManagerBase &PM) const { for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i) if ((*GlobalExtensions)[i].first == ETy) (*GlobalExtensions)[i].second(*this, PM); for (unsigned i = 0, e = Extensions.size(); i != e; ++i) if (Extensions[i].first == ETy) Extensions[i].second(*this, PM); } void PassManagerBuilder::addInitialAliasAnalysisPasses(PassManagerBase &PM) const { // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. PM.add(createTypeBasedAliasAnalysisPass()); PM.add(createBasicAliasAnalysisPass()); } void PassManagerBuilder::populateFunctionPassManager(FunctionPassManager &FPM) { addExtensionsToPM(EP_EarlyAsPossible, FPM); // Add LibraryInfo if we have some. if (LibraryInfo) FPM.add(new TargetLibraryInfo(*LibraryInfo)); if (OptLevel == 0) return; addInitialAliasAnalysisPasses(FPM); FPM.add(createCFGSimplificationPass()); if (UseNewSROA) FPM.add(createSROAPass()); else FPM.add(createScalarReplAggregatesPass()); FPM.add(createEarlyCSEPass()); FPM.add(createLowerExpectIntrinsicPass()); } void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) { // If all optimizations are disabled, just run the always-inline pass. if (OptLevel == 0) { if (Inliner) { MPM.add(Inliner); Inliner = 0; } // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC // pass manager, but we don't want to add extensions into that pass manager. // To prevent this we must insert a no-op module pass to reset the pass // manager to get the same behavior as EP_OptimizerLast in non-O0 builds. if (!GlobalExtensions->empty() || !Extensions.empty()) MPM.add(createBarrierNoopPass()); addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); return; } // Add LibraryInfo if we have some. if (LibraryInfo) MPM.add(new TargetLibraryInfo(*LibraryInfo)); addInitialAliasAnalysisPasses(MPM); if (!DisableUnitAtATime) { addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); MPM.add(createGlobalOptimizerPass()); // Optimize out global vars MPM.add(createIPSCCPPass()); // IP SCCP MPM.add(createDeadArgEliminationPass()); // Dead argument elimination MPM.add(createInstructionCombiningPass());// Clean up after IPCP & DAE MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE } // Start of CallGraph SCC passes. if (!DisableUnitAtATime) MPM.add(createPruneEHPass()); // Remove dead EH info if (Inliner) { MPM.add(Inliner); Inliner = 0; } if (!DisableUnitAtATime) MPM.add(createFunctionAttrsPass()); // Set readonly/readnone attrs if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args // Start of function pass. // Break up aggregate allocas, using SSAUpdater. if (UseNewSROA) MPM.add(createSROAPass(/*RequiresDomTree*/ false)); else MPM.add(createScalarReplAggregatesPass(-1, false)); MPM.add(createEarlyCSEPass()); // Catch trivial redundancies MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Combine silly seq's MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions MPM.add(createLoopRotatePass()); // Rotate Loop MPM.add(createLICMPass()); // Hoist loop invariants MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createInstructionCombiningPass()); MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. MPM.add(createLoopDeletionPass()); // Delete dead loops if (!LateVectorize && LoopVectorize) MPM.add(createLoopVectorizePass(DisableUnrollLoops)); if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); // Unroll small loops addExtensionsToPM(EP_LoopOptimizerEnd, MPM); if (OptLevel > 1) MPM.add(createGVNPass()); // Remove redundancies MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. MPM.add(createInstructionCombiningPass()); MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores addExtensionsToPM(EP_ScalarOptimizerLate, MPM); if (SLPVectorize) MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (BBVectorize) { MPM.add(createBBVectorizePass()); MPM.add(createInstructionCombiningPass()); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass()); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Clean up after everything. // As an experimental mode, run any vectorization passes in a separate // pipeline from the CGSCC pass manager that runs iteratively with the // inliner. if (LateVectorize && LoopVectorize) { // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC // pass manager that we are specifically trying to avoid. To prevent this // we must insert a no-op module pass to reset the pass manager. MPM.add(createBarrierNoopPass()); // Add the various vectorization passes and relevant cleanup passes for // them since we are no longer in the middle of the main scalar pipeline. MPM.add(createLoopVectorizePass(DisableUnrollLoops)); MPM.add(createInstructionCombiningPass()); MPM.add(createCFGSimplificationPass()); } if (!DisableUnitAtATime) { // FIXME: We shouldn't bother with this anymore. MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes // GlobalOpt already deletes dead functions and globals, at -O2 try a // late pass of GlobalDCE. It is capable of deleting dead cycles. if (OptLevel > 1) { MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. MPM.add(createConstantMergePass()); // Merge dup global constants } } addExtensionsToPM(EP_OptimizerLast, MPM); } void PassManagerBuilder::populateLTOPassManager(PassManagerBase &PM, bool Internalize, bool RunInliner, bool DisableGVNLoadPRE) { // Provide AliasAnalysis services for optimizations. addInitialAliasAnalysisPasses(PM); // Now that composite has been compiled, scan through the module, looking // for a main function. If main is defined, mark all other functions // internal. if (Internalize) PM.add(createInternalizePass("main")); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); // Now that we internalized some globals, see if we can hack on them! PM.add(createGlobalOptimizerPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant. PM.add(createConstantMergePass()); // Remove unused arguments from functions. PM.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. PM.add(createInstructionCombiningPass()); // Inline small functions if (RunInliner) PM.add(createFunctionInliningPass()); PM.add(createPruneEHPass()); // Remove dead EH info. // Optimize globals again if we ran the inliner. if (RunInliner) PM.add(createGlobalOptimizerPass()); PM.add(createGlobalDCEPass()); // Remove dead functions. // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. PM.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. PM.add(createInstructionCombiningPass()); PM.add(createJumpThreadingPass()); // Break up allocas if (UseNewSROA) PM.add(createSROAPass()); else PM.add(createScalarReplAggregatesPass()); // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createFunctionAttrsPass()); // Add nocapture. PM.add(createGlobalsModRefPass()); // IP alias analysis. PM.add(createLICMPass()); // Hoist loop invariants. PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. PM.add(createMemCpyOptPass()); // Remove dead memcpys. // Nuke dead stores. PM.add(createDeadStoreEliminationPass()); // Cleanup and simplify the code after the scalar optimizations. PM.add(createInstructionCombiningPass()); PM.add(createJumpThreadingPass()); // Delete basic blocks, which optimization passes may have killed. PM.add(createCFGSimplificationPass()); // Now that we have optimized the program, discard unreachable functions. PM.add(createGlobalDCEPass()); } inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { return reinterpret_cast<PassManagerBuilder*>(P); } inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { return reinterpret_cast<LLVMPassManagerBuilderRef>(P); } LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { PassManagerBuilder *PMB = new PassManagerBuilder(); return wrap(PMB); } void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { PassManagerBuilder *Builder = unwrap(PMB); delete Builder; } void LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, unsigned OptLevel) { PassManagerBuilder *Builder = unwrap(PMB); Builder->OptLevel = OptLevel; } void LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, unsigned SizeLevel) { PassManagerBuilder *Builder = unwrap(PMB); Builder->SizeLevel = SizeLevel; } void LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { PassManagerBuilder *Builder = unwrap(PMB); Builder->DisableUnitAtATime = Value; } void LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { PassManagerBuilder *Builder = unwrap(PMB); Builder->DisableUnrollLoops = Value; } void LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, LLVMBool Value) { // NOTE: The simplify-libcalls pass has been removed. } void LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, unsigned Threshold) { PassManagerBuilder *Builder = unwrap(PMB); Builder->Inliner = createFunctionInliningPass(Threshold); } void LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM) { PassManagerBuilder *Builder = unwrap(PMB); FunctionPassManager *FPM = unwrap<FunctionPassManager>(PM); Builder->populateFunctionPassManager(*FPM); } void LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM) { PassManagerBuilder *Builder = unwrap(PMB); PassManagerBase *MPM = unwrap(PM); Builder->populateModulePassManager(*MPM); } void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, LLVMPassManagerRef PM, LLVMBool Internalize, LLVMBool RunInliner) { PassManagerBuilder *Builder = unwrap(PMB); PassManagerBase *LPM = unwrap(PM); Builder->populateLTOPassManager(*LPM, Internalize != 0, RunInliner != 0); }