//===- llvm/Support/InstVisitor.h - Define instruction visitors -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_INSTVISITOR_H #define LLVM_SUPPORT_INSTVISITOR_H #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Module.h" namespace llvm { // We operate on opaque instruction classes, so forward declare all instruction // types now... // #define HANDLE_INST(NUM, OPCODE, CLASS) class CLASS; #include "llvm/Instruction.def" // Forward declare the intermediate types... class TerminatorInst; class BinaryOperator; class AllocationInst; #define DELEGATE(CLASS_TO_VISIT) \ return static_cast(this)-> \ visit##CLASS_TO_VISIT(static_cast(I)) /// @brief Base class for instruction visitors /// /// Instruction visitors are used when you want to perform different action for /// different kinds of instruction without without having to use lots of casts /// and a big switch statement (in your code that is). /// /// To define your own visitor, inherit from this class, specifying your /// new type for the 'SubClass' template parameter, and "override" visitXXX /// functions in your class. I say "overriding" because this class is defined /// in terms of statically resolved overloading, not virtual functions. /// /// For example, here is a visitor that counts the number of malloc /// instructions processed: /// /// /// Declare the class. Note that we derive from InstVisitor instantiated /// /// with _our new subclasses_ type. /// /// /// struct CountMallocVisitor : public InstVisitor { /// unsigned Count; /// CountMallocVisitor() : Count(0) {} /// /// void visitMallocInst(MallocInst &MI) { ++Count; } /// }; /// /// And this class would be used like this: /// CountMallocVistor CMV; /// CMV.visit(function); /// NumMallocs = CMV.Count; /// /// The defined has 'visit' methods for Instruction, and also for BasicBlock, /// Function, and Module, which recursively process all conained instructions. /// /// Note that if you don't implement visitXXX for some instruction type, /// the visitXXX method for instruction superclass will be invoked. So /// if instructions are added in the future, they will be automatically /// supported, if you handle on of their superclasses. /// /// The optional second template argument specifies the type that instruction /// visitation functions should return. If you specify this, you *MUST* provide /// an implementation of visitInstruction though!. /// /// Note that this class is specifically designed as a template to avoid /// virtual function call overhead. Defining and using an InstVisitor is just /// as efficient as having your own switch statement over the instruction /// opcode. template class InstVisitor { //===--------------------------------------------------------------------===// // Interface code - This is the public interface of the InstVisitor that you // use to visit instructions... // public: // Generic visit method - Allow visitation to all instructions in a range template void visit(Iterator Start, Iterator End) { while (Start != End) static_cast(this)->visit(*Start++); } // Define visitors for functions and basic blocks... // void visit(Module &M) { static_cast(this)->visitModule(M); visit(M.begin(), M.end()); } void visit(Function &F) { static_cast(this)->visitFunction(F); visit(F.begin(), F.end()); } void visit(BasicBlock &BB) { static_cast(this)->visitBasicBlock(BB); visit(BB.begin(), BB.end()); } // Forwarding functions so that the user can visit with pointers AND refs. void visit(Module *M) { visit(*M); } void visit(Function *F) { visit(*F); } void visit(BasicBlock *BB) { visit(*BB); } RetTy visit(Instruction *I) { return visit(*I); } // visit - Finally, code to visit an instruction... // RetTy visit(Instruction &I) { switch (I.getOpcode()) { default: assert(0 && "Unknown instruction type encountered!"); abort(); // Build the switch statement using the Instruction.def file... #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: return \ static_cast(this)-> \ visit##OPCODE(static_cast(I)); #include "llvm/Instruction.def" } } //===--------------------------------------------------------------------===// // Visitation functions... these functions provide default fallbacks in case // the user does not specify what to do for a particular instruction type. // The default behavior is to generalize the instruction type to its subtype // and try visiting the subtype. All of this should be inlined perfectly, // because there are no virtual functions to get in the way. // // When visiting a module, function or basic block directly, these methods get // called to indicate when transitioning into a new unit. // void visitModule (Module &M) {} void visitFunction (Function &F) {} void visitBasicBlock(BasicBlock &BB) {} // Define instruction specific visitor functions that can be overridden to // handle SPECIFIC instructions. These functions automatically define // visitMul to proxy to visitBinaryOperator for instance in case the user does // not need this generality. // // The one problem case we have to handle here though is that the PHINode // class and opcode name are the exact same. Because of this, we cannot // define visitPHINode (the inst version) to forward to visitPHINode (the // generic version) without multiply defined symbols and recursion. To handle // this, we do not autoexpand "Other" instructions, we do it manually. // #define HANDLE_INST(NUM, OPCODE, CLASS) \ RetTy visit##OPCODE(CLASS &I) { DELEGATE(CLASS); } #include "llvm/Instruction.def" // Specific Instruction type classes... note that all of the casts are // necessary because we use the instruction classes as opaque types... // RetTy visitReturnInst(ReturnInst &I) { DELEGATE(TerminatorInst);} RetTy visitBranchInst(BranchInst &I) { DELEGATE(TerminatorInst);} RetTy visitSwitchInst(SwitchInst &I) { DELEGATE(TerminatorInst);} RetTy visitInvokeInst(InvokeInst &I) { DELEGATE(TerminatorInst);} RetTy visitUnwindInst(UnwindInst &I) { DELEGATE(TerminatorInst);} RetTy visitUnreachableInst(UnreachableInst &I) { DELEGATE(TerminatorInst);} RetTy visitICmpInst(ICmpInst &I) { DELEGATE(CmpInst);} RetTy visitFCmpInst(FCmpInst &I) { DELEGATE(CmpInst);} RetTy visitVICmpInst(VICmpInst &I) { DELEGATE(CmpInst);} RetTy visitVFCmpInst(VFCmpInst &I) { DELEGATE(CmpInst);} RetTy visitMallocInst(MallocInst &I) { DELEGATE(AllocationInst);} RetTy visitAllocaInst(AllocaInst &I) { DELEGATE(AllocationInst);} RetTy visitFreeInst(FreeInst &I) { DELEGATE(Instruction); } RetTy visitLoadInst(LoadInst &I) { DELEGATE(Instruction); } RetTy visitStoreInst(StoreInst &I) { DELEGATE(Instruction); } RetTy visitGetElementPtrInst(GetElementPtrInst &I){ DELEGATE(Instruction); } RetTy visitPHINode(PHINode &I) { DELEGATE(Instruction); } RetTy visitTruncInst(TruncInst &I) { DELEGATE(CastInst); } RetTy visitZExtInst(ZExtInst &I) { DELEGATE(CastInst); } RetTy visitSExtInst(SExtInst &I) { DELEGATE(CastInst); } RetTy visitFPTruncInst(FPTruncInst &I) { DELEGATE(CastInst); } RetTy visitFPExtInst(FPExtInst &I) { DELEGATE(CastInst); } RetTy visitFPToUIInst(FPToUIInst &I) { DELEGATE(CastInst); } RetTy visitFPToSIInst(FPToSIInst &I) { DELEGATE(CastInst); } RetTy visitUIToFPInst(UIToFPInst &I) { DELEGATE(CastInst); } RetTy visitSIToFPInst(SIToFPInst &I) { DELEGATE(CastInst); } RetTy visitPtrToIntInst(PtrToIntInst &I) { DELEGATE(CastInst); } RetTy visitIntToPtrInst(IntToPtrInst &I) { DELEGATE(CastInst); } RetTy visitBitCastInst(BitCastInst &I) { DELEGATE(CastInst); } RetTy visitSelectInst(SelectInst &I) { DELEGATE(Instruction); } RetTy visitCallInst(CallInst &I) { DELEGATE(Instruction); } RetTy visitVAArgInst(VAArgInst &I) { DELEGATE(Instruction); } RetTy visitExtractElementInst(ExtractElementInst &I) { DELEGATE(Instruction);} RetTy visitInsertElementInst(InsertElementInst &I) { DELEGATE(Instruction); } RetTy visitShuffleVectorInst(ShuffleVectorInst &I) { DELEGATE(Instruction); } RetTy visitGetResultInst(GetResultInst &I) { DELEGATE(Instruction); } RetTy visitExtractValueInst(ExtractValueInst &I) { DELEGATE(Instruction);} RetTy visitInsertValueInst(InsertValueInst &I) { DELEGATE(Instruction); } // Next level propagators... if the user does not overload a specific // instruction type, they can overload one of these to get the whole class // of instructions... // RetTy visitTerminatorInst(TerminatorInst &I) { DELEGATE(Instruction); } RetTy visitBinaryOperator(BinaryOperator &I) { DELEGATE(Instruction); } RetTy visitAllocationInst(AllocationInst &I) { DELEGATE(Instruction); } RetTy visitCmpInst(CmpInst &I) { DELEGATE(Instruction); } RetTy visitCastInst(CastInst &I) { DELEGATE(Instruction); } // If the user wants a 'default' case, they can choose to override this // function. If this function is not overloaded in the users subclass, then // this instruction just gets ignored. // // Note that you MUST override this function if your return type is not void. // void visitInstruction(Instruction &I) {} // Ignore unhandled instructions }; #undef DELEGATE } // End llvm namespace #endif