//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the X86 specific subclass of TargetMachine. // //===----------------------------------------------------------------------===// #include "X86MCAsmInfo.h" #include "X86TargetMachine.h" #include "X86.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegistry.h" using namespace llvm; static const MCAsmInfo *createMCAsmInfo(const Target &T, StringRef TT) { Triple TheTriple(TT); switch (TheTriple.getOS()) { case Triple::Darwin: return new X86MCAsmInfoDarwin(TheTriple); case Triple::MinGW32: case Triple::MinGW64: case Triple::Cygwin: return new X86MCAsmInfoCOFF(TheTriple); case Triple::Win32: return new X86WinMCAsmInfo(TheTriple); default: return new X86ELFMCAsmInfo(TheTriple); } } extern "C" void LLVMInitializeX86Target() { // Register the target. RegisterTargetMachine X(TheX86_32Target); RegisterTargetMachine Y(TheX86_64Target); // Register the target asm info. RegisterAsmInfoFn A(TheX86_32Target, createMCAsmInfo); RegisterAsmInfoFn B(TheX86_64Target, createMCAsmInfo); // Register the code emitter. TargetRegistry::RegisterCodeEmitter(TheX86_32Target, createX86MCCodeEmitter); TargetRegistry::RegisterCodeEmitter(TheX86_64Target, createX86MCCodeEmitter); } X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT, const std::string &FS) : X86TargetMachine(T, TT, FS, false) { } X86_64TargetMachine::X86_64TargetMachine(const Target &T, const std::string &TT, const std::string &FS) : X86TargetMachine(T, TT, FS, true) { } /// X86TargetMachine ctor - Create an X86 target. /// X86TargetMachine::X86TargetMachine(const Target &T, const std::string &TT, const std::string &FS, bool is64Bit) : LLVMTargetMachine(T, TT), Subtarget(TT, FS, is64Bit), DataLayout(Subtarget.getDataLayout()), FrameInfo(TargetFrameInfo::StackGrowsDown, Subtarget.getStackAlignment(), (Subtarget.isTargetWin64() ? -40 : (Subtarget.is64Bit() ? -8 : -4))), InstrInfo(*this), JITInfo(*this), TLInfo(*this), ELFWriterInfo(*this) { DefRelocModel = getRelocationModel(); // If no relocation model was picked, default as appropriate for the target. if (getRelocationModel() == Reloc::Default) { if (!Subtarget.isTargetDarwin()) setRelocationModel(Reloc::Static); else if (Subtarget.is64Bit()) setRelocationModel(Reloc::PIC_); else setRelocationModel(Reloc::DynamicNoPIC); } assert(getRelocationModel() != Reloc::Default && "Relocation mode not picked"); // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC // is defined as a model for code which may be used in static or dynamic // executables but not necessarily a shared library. On X86-32 we just // compile in -static mode, in x86-64 we use PIC. if (getRelocationModel() == Reloc::DynamicNoPIC) { if (is64Bit) setRelocationModel(Reloc::PIC_); else if (!Subtarget.isTargetDarwin()) setRelocationModel(Reloc::Static); } // If we are on Darwin, disallow static relocation model in X86-64 mode, since // the Mach-O file format doesn't support it. if (getRelocationModel() == Reloc::Static && Subtarget.isTargetDarwin() && is64Bit) setRelocationModel(Reloc::PIC_); // Determine the PICStyle based on the target selected. if (getRelocationModel() == Reloc::Static) { // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None. Subtarget.setPICStyle(PICStyles::None); } else if (Subtarget.isTargetCygMing()) { Subtarget.setPICStyle(PICStyles::None); } else if (Subtarget.isTargetDarwin()) { if (Subtarget.is64Bit()) Subtarget.setPICStyle(PICStyles::RIPRel); else if (getRelocationModel() == Reloc::PIC_) Subtarget.setPICStyle(PICStyles::StubPIC); else { assert(getRelocationModel() == Reloc::DynamicNoPIC); Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC); } } else if (Subtarget.isTargetELF()) { if (Subtarget.is64Bit()) Subtarget.setPICStyle(PICStyles::RIPRel); else Subtarget.setPICStyle(PICStyles::GOT); } // Finally, if we have "none" as our PIC style, force to static mode. if (Subtarget.getPICStyle() == PICStyles::None) setRelocationModel(Reloc::Static); } //===----------------------------------------------------------------------===// // Pass Pipeline Configuration //===----------------------------------------------------------------------===// bool X86TargetMachine::addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { // Install an instruction selector. PM.add(createX86ISelDag(*this, OptLevel)); // If we're using Fast-ISel, clean up the mess. if (EnableFastISel) PM.add(createDeadMachineInstructionElimPass()); // Install a pass to insert x87 FP_REG_KILL instructions, as needed. PM.add(createX87FPRegKillInserterPass()); return false; } bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { return false; // -print-machineinstr shouldn't print after this. } bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { PM.add(createX86FloatingPointStackifierPass()); return true; // -print-machineinstr should print after this. } bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel, JITCodeEmitter &JCE) { // FIXME: Move this to TargetJITInfo! // On Darwin, do not override 64-bit setting made in X86TargetMachine(). if (DefRelocModel == Reloc::Default && (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) { setRelocationModel(Reloc::Static); Subtarget.setPICStyle(PICStyles::None); } PM.add(createX86JITCodeEmitterPass(*this, JCE)); return false; } void X86TargetMachine::setCodeModelForStatic() { if (getCodeModel() != CodeModel::Default) return; // For static codegen, if we're not already set, use Small codegen. setCodeModel(CodeModel::Small); } void X86TargetMachine::setCodeModelForJIT() { if (getCodeModel() != CodeModel::Default) return; // 64-bit JIT places everything in the same buffer except external functions. if (Subtarget.is64Bit()) setCodeModel(CodeModel::Large); else setCodeModel(CodeModel::Small); } /// getLSDAEncoding - Returns the LSDA pointer encoding. The choices are 4-byte, /// 8-byte, and target default. The CIE is hard-coded to indicate that the LSDA /// pointer in the FDE section is an "sdata4", and should be encoded as a 4-byte /// pointer by default. However, some systems may require a different size due /// to bugs or other conditions. We will default to a 4-byte encoding unless the /// system tells us otherwise. /// /// The issue is when the CIE says their is an LSDA. That mandates that every /// FDE have an LSDA slot. But if the function does not need an LSDA. There /// needs to be some way to signify there is none. The LSDA is encoded as /// pc-rel. But you don't look for some magic value after adding the pc. You /// have to look for a zero before adding the pc. The problem is that the size /// of the zero to look for depends on the encoding. The unwinder bug in SL is /// that it always checks for a pointer-size zero. So on x86_64 it looks for 8 /// bytes of zero. If you have an LSDA, it works fine since the 8-bytes are /// non-zero so it goes ahead and then reads the value based on the encoding. /// But if you use sdata4 and there is no LSDA, then the test for zero gives a /// false negative and the unwinder thinks there is an LSDA. /// /// FIXME: This call-back isn't good! We should be using the correct encoding /// regardless of the system. However, there are some systems which have bugs /// that prevent this from occuring. DwarfLSDAEncoding::Encoding X86TargetMachine::getLSDAEncoding() const { if (Subtarget.isTargetDarwin() && Subtarget.getDarwinVers() != 10) return DwarfLSDAEncoding::Default; return DwarfLSDAEncoding::EightByte; }