//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// // // The LLVM Compiler Infrastructure // // This file was developed by the Evan Cheng and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a DAG pattern matching instruction selector for X86, // converting from a legalized dag to a X86 dag. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "X86.h" #include "X86InstrBuilder.h" #include "X86ISelLowering.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" #include "llvm/Support/CFG.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Pattern Matcher Implementation //===----------------------------------------------------------------------===// namespace { /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses /// SDOperand's instead of register numbers for the leaves of the matched /// tree. struct X86ISelAddressMode { enum { RegBase, FrameIndexBase, } BaseType; struct { // This is really a union, discriminated by BaseType! SDOperand Reg; int FrameIndex; } Base; unsigned Scale; SDOperand IndexReg; unsigned Disp; GlobalValue *GV; Constant *CP; unsigned Align; // CP alignment. X86ISelAddressMode() : BaseType(RegBase), Scale(1), IndexReg(), Disp(0), GV(0), CP(0), Align(0) { } }; } namespace { Statistic<> NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); //===--------------------------------------------------------------------===// /// ISel - X86 specific code to select X86 machine instructions for /// SelectionDAG operations. /// class X86DAGToDAGISel : public SelectionDAGISel { /// ContainsFPCode - Every instruction we select that uses or defines a FP /// register should set this to true. bool ContainsFPCode; /// X86Lowering - This object fully describes how to lower LLVM code to an /// X86-specific SelectionDAG. X86TargetLowering X86Lowering; /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; unsigned GlobalBaseReg; public: X86DAGToDAGISel(X86TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(*TM.getTargetLowering()) { Subtarget = &TM.getSubtarget(); } virtual bool runOnFunction(Function &Fn) { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseReg = 0; return SelectionDAGISel::runOnFunction(Fn); } virtual const char *getPassName() const { return "X86 DAG->DAG Instruction Selection"; } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); // Include the pieces autogenerated from the target description. #include "X86GenDAGISel.inc" private: void Select(SDOperand &Result, SDOperand N); bool MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot = true); bool SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp); bool SelectLEAAddr(SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp); bool TryFoldLoad(SDOperand P, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp); inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp) { Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, MVT::i32) : AM.Base.Reg; Scale = getI8Imm(AM.Scale); Index = AM.IndexReg; Disp = AM.GV ? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp) : (AM.CP ? CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp) : getI32Imm(AM.Disp)); } /// getI8Imm - Return a target constant with the specified value, of type /// i8. inline SDOperand getI8Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i8); } /// getI16Imm - Return a target constant with the specified value, of type /// i16. inline SDOperand getI16Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i16); } /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDOperand getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC /// base register. Return the virtual register that holds this value. SDOperand getGlobalBaseReg(); #ifndef NDEBUG unsigned Indent; #endif }; } /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel /// when it has created a SelectionDAG for us to codegen. void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); MachineFunction::iterator FirstMBB = BB; // Codegen the basic block. #ifndef NDEBUG DEBUG(std::cerr << "===== Instruction selection begins:\n"); Indent = 0; #endif DAG.setRoot(SelectRoot(DAG.getRoot())); #ifndef NDEBUG DEBUG(std::cerr << "===== Instruction selection ends:\n"); #endif CodeGenMap.clear(); DAG.RemoveDeadNodes(); // Emit machine code to BB. ScheduleAndEmitDAG(DAG); // If we are emitting FP stack code, scan the basic block to determine if this // block defines any FP values. If so, put an FP_REG_KILL instruction before // the terminator of the block. if (!Subtarget->hasSSE2()) { // Note that FP stack instructions *are* used in SSE code when returning // values, but these are not live out of the basic block, so we don't need // an FP_REG_KILL in this case either. bool ContainsFPCode = false; // Scan all of the machine instructions in these MBBs, checking for FP // stores. MachineFunction::iterator MBBI = FirstMBB; do { for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end(); !ContainsFPCode && I != E; ++I) { for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) { if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() && MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) && RegMap->getRegClass(I->getOperand(0).getReg()) == X86::RFPRegisterClass) { ContainsFPCode = true; break; } } } } while (!ContainsFPCode && &*(MBBI++) != BB); // Check PHI nodes in successor blocks. These PHI's will be lowered to have // a copy of the input value in this block. if (!ContainsFPCode) { // Final check, check LLVM BB's that are successors to the LLVM BB // corresponding to BB for FP PHI nodes. const BasicBlock *LLVMBB = BB->getBasicBlock(); const PHINode *PN; for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB); !ContainsFPCode && SI != E; ++SI) { for (BasicBlock::const_iterator II = SI->begin(); (PN = dyn_cast(II)); ++II) { if (PN->getType()->isFloatingPoint()) { ContainsFPCode = true; break; } } } } // Finally, if we found any FP code, emit the FP_REG_KILL instruction. if (ContainsFPCode) { BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); ++NumFPKill; } } } /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in /// the main function. static void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI) { // Switch the FPU to 64-bit precision mode for better compatibility and speed. int CWFrameIdx = MFI->CreateStackObject(2, 2); addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); // Set the high part to be 64-bit precision. addFrameReference(BuildMI(BB, X86::MOV8mi, 5), CWFrameIdx, 1).addImm(2); // Reload the modified control word now. addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); } void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { // If this is main, emit special code for main. MachineBasicBlock *BB = MF.begin(); if (Fn.hasExternalLinkage() && Fn.getName() == "main") EmitSpecialCodeForMain(BB, MF.getFrameInfo()); } /// MatchAddress - Add the specified node to the specified addressing mode, /// returning true if it cannot be done. This just pattern matches for the /// addressing mode bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot) { bool Available = false; // If N has already been selected, reuse the result unless in some very // specific cases. std::map::iterator CGMI= CodeGenMap.find(N.getValue(0)); if (CGMI != CodeGenMap.end()) { Available = true; } switch (N.getOpcode()) { default: break; case ISD::Constant: AM.Disp += cast(N)->getValue(); return false; case X86ISD::Wrapper: // If both base and index components have been picked, we can't fit // the result available in the register in the addressing mode. Duplicate // GlobalAddress or ConstantPool as displacement. if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) { if (ConstantPoolSDNode *CP = dyn_cast(N.getOperand(0))) { if (AM.CP == 0) { AM.CP = CP->get(); AM.Align = CP->getAlignment(); AM.Disp += CP->getOffset(); return false; } } else if (GlobalAddressSDNode *G = dyn_cast(N.getOperand(0))) { if (AM.GV == 0) { AM.GV = G->getGlobal(); AM.Disp += G->getOffset(); return false; } } } break; case ISD::FrameIndex: if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) { AM.BaseType = X86ISelAddressMode::FrameIndexBase; AM.Base.FrameIndex = cast(N)->getIndex(); return false; } break; case ISD::SHL: if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1) if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) { unsigned Val = CN->getValue(); if (Val == 1 || Val == 2 || Val == 3) { AM.Scale = 1 << Val; SDOperand ShVal = N.Val->getOperand(0); // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() && isa(ShVal.Val->getOperand(1))) { AM.IndexReg = ShVal.Val->getOperand(0); ConstantSDNode *AddVal = cast(ShVal.Val->getOperand(1)); AM.Disp += AddVal->getValue() << Val; } else { AM.IndexReg = ShVal; } return false; } } break; case ISD::MUL: // X*[3,5,9] -> X+X*[2,4,8] if (!Available && AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0 && AM.IndexReg.Val == 0) if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) { AM.Scale = unsigned(CN->getValue())-1; SDOperand MulVal = N.Val->getOperand(0); SDOperand Reg; // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() && isa(MulVal.Val->getOperand(1))) { Reg = MulVal.Val->getOperand(0); ConstantSDNode *AddVal = cast(MulVal.Val->getOperand(1)); AM.Disp += AddVal->getValue() * CN->getValue(); } else { Reg = N.Val->getOperand(0); } AM.IndexReg = AM.Base.Reg = Reg; return false; } break; case ISD::ADD: { if (!Available) { X86ISelAddressMode Backup = AM; if (!MatchAddress(N.Val->getOperand(0), AM, false) && !MatchAddress(N.Val->getOperand(1), AM, false)) return false; AM = Backup; if (!MatchAddress(N.Val->getOperand(1), AM, false) && !MatchAddress(N.Val->getOperand(0), AM, false)) return false; AM = Backup; } break; } } // Is the base register already occupied? if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) { // If so, check to see if the scale index register is set. if (AM.IndexReg.Val == 0) { AM.IndexReg = N; AM.Scale = 1; return false; } // Otherwise, we cannot select it. return true; } // Default, generate it as a register. AM.BaseType = X86ISelAddressMode::RegBase; AM.Base.Reg = N; return false; } /// SelectAddr - returns true if it is able pattern match an addressing mode. /// It returns the operands which make up the maximal addressing mode it can /// match by reference. bool X86DAGToDAGISel::SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp) { X86ISelAddressMode AM; if (MatchAddress(N, AM)) return false; if (AM.BaseType == X86ISelAddressMode::RegBase) { if (!AM.Base.Reg.Val) AM.Base.Reg = CurDAG->getRegister(0, MVT::i32); } if (!AM.IndexReg.Val) AM.IndexReg = CurDAG->getRegister(0, MVT::i32); getAddressOperands(AM, Base, Scale, Index, Disp); return true; } /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing /// mode it matches can be cost effectively emitted as an LEA instruction. /// For X86, it always is unless it's just a (Reg + const). bool X86DAGToDAGISel::SelectLEAAddr(SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp) { X86ISelAddressMode AM; if (MatchAddress(N, AM)) return false; unsigned Complexity = 0; if (AM.BaseType == X86ISelAddressMode::RegBase) if (AM.Base.Reg.Val) Complexity = 1; else AM.Base.Reg = CurDAG->getRegister(0, MVT::i32); else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) Complexity = 4; if (AM.IndexReg.Val) Complexity++; else AM.IndexReg = CurDAG->getRegister(0, MVT::i32); if (AM.Scale > 2) Complexity += 2; // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg else if (AM.Scale > 1) Complexity++; // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA // to a LEA. This is determined with some expermentation but is by no means // optimal (especially for code size consideration). LEA is nice because of // its three-address nature. Tweak the cost function again when we can run // convertToThreeAddress() at register allocation time. if (AM.GV || AM.CP) Complexity += 2; if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val)) Complexity++; if (Complexity > 2) { getAddressOperands(AM, Base, Scale, Index, Disp); return true; } return false; } bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N, SDOperand &Base, SDOperand &Scale, SDOperand &Index, SDOperand &Disp) { if (N.getOpcode() == ISD::LOAD && N.hasOneUse() && !CodeGenMap.count(N.getValue(0)) && (P.getNumOperands() == 1 || !isNonImmUse(P.Val, N.Val))) return SelectAddr(N.getOperand(1), Base, Scale, Index, Disp); return false; } static bool isRegister0(SDOperand Op) { if (RegisterSDNode *R = dyn_cast(Op)) return (R->getReg() == 0); return false; } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// SDOperand X86DAGToDAGISel::getGlobalBaseReg() { if (!GlobalBaseReg) { // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = BB->getParent()->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); SSARegMap *RegMap = BB->getParent()->getSSARegMap(); // FIXME: when we get to LP64, we will need to create the appropriate // type of register here. GlobalBaseReg = RegMap->createVirtualRegister(X86::R32RegisterClass); BuildMI(FirstMBB, MBBI, X86::MovePCtoStack, 0); BuildMI(FirstMBB, MBBI, X86::POP32r, 1, GlobalBaseReg); } return CurDAG->getRegister(GlobalBaseReg, MVT::i32); } void X86DAGToDAGISel::Select(SDOperand &Result, SDOperand N) { SDNode *Node = N.Val; MVT::ValueType NVT = Node->getValueType(0); unsigned Opc, MOpc; unsigned Opcode = Node->getOpcode(); #ifndef NDEBUG DEBUG(std::cerr << std::string(Indent, ' ')); DEBUG(std::cerr << "Selecting: "); DEBUG(Node->dump(CurDAG)); DEBUG(std::cerr << "\n"); Indent += 2; #endif if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) { Result = N; #ifndef NDEBUG DEBUG(std::cerr << std::string(Indent-2, ' ')); DEBUG(std::cerr << "== "); DEBUG(Node->dump(CurDAG)); DEBUG(std::cerr << "\n"); Indent -= 2; #endif return; // Already selected. } std::map::iterator CGMI = CodeGenMap.find(N); if (CGMI != CodeGenMap.end()) { Result = CGMI->second; #ifndef NDEBUG DEBUG(std::cerr << std::string(Indent-2, ' ')); DEBUG(std::cerr << "== "); DEBUG(Result.Val->dump(CurDAG)); DEBUG(std::cerr << "\n"); Indent -= 2; #endif return; } switch (Opcode) { default: break; case X86ISD::GlobalBaseReg: Result = getGlobalBaseReg(); return; case ISD::ADD: { // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd // code and is matched first so to prevent it from being turned into // LEA32r X+c. SDOperand N0 = N.getOperand(0); SDOperand N1 = N.getOperand(1); if (N.Val->getValueType(0) == MVT::i32 && N0.getOpcode() == X86ISD::Wrapper && N1.getOpcode() == ISD::Constant) { unsigned Offset = (unsigned)cast(N1)->getValue(); SDOperand C(0, 0); // TODO: handle ExternalSymbolSDNode. if (GlobalAddressSDNode *G = dyn_cast(N0.getOperand(0))) { C = CurDAG->getTargetGlobalAddress(G->getGlobal(), MVT::i32, G->getOffset() + Offset); } else if (ConstantPoolSDNode *CP = dyn_cast(N0.getOperand(0))) { C = CurDAG->getTargetConstantPool(CP->get(), MVT::i32, CP->getAlignment(), CP->getOffset()+Offset); } if (C.Val) { if (N.Val->hasOneUse()) { Result = CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, MVT::i32, C); } else { SDNode *ResNode = CurDAG->getTargetNode(X86::MOV32ri, MVT::i32, C); Result = CodeGenMap[N] = SDOperand(ResNode, 0); } return; } } // Other cases are handled by auto-generated code. break; } case ISD::MULHU: case ISD::MULHS: { if (Opcode == ISD::MULHU) switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; } else switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; } unsigned LoReg, HiReg; switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break; case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break; case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; } SDOperand N0 = Node->getOperand(0); SDOperand N1 = Node->getOperand(1); bool foldedLoad = false; SDOperand Tmp0, Tmp1, Tmp2, Tmp3; foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3); // MULHU and MULHS are commmutative if (!foldedLoad) { foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3); if (foldedLoad) { N0 = Node->getOperand(1); N1 = Node->getOperand(0); } } SDOperand Chain; if (foldedLoad) Select(Chain, N1.getOperand(0)); else Chain = CurDAG->getEntryNode(); SDOperand InFlag(0, 0); Select(N0, N0); Chain = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT), N0, InFlag); InFlag = Chain.getValue(1); if (foldedLoad) { Select(Tmp0, Tmp0); Select(Tmp1, Tmp1); Select(Tmp2, Tmp2); Select(Tmp3, Tmp3); SDNode *CNode = CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1, Tmp2, Tmp3, Chain, InFlag); Chain = SDOperand(CNode, 0); InFlag = SDOperand(CNode, 1); } else { Select(N1, N1); InFlag = SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0); } Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag); CodeGenMap[N.getValue(0)] = Result; if (foldedLoad) { CodeGenMap[N1.getValue(1)] = Result.getValue(1); AddHandleReplacement(N1.Val, 1, Result.Val, 1); } #ifndef NDEBUG DEBUG(std::cerr << std::string(Indent-2, ' ')); DEBUG(std::cerr << "== "); DEBUG(Result.Val->dump(CurDAG)); DEBUG(std::cerr << "\n"); Indent -= 2; #endif return; } case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: { bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM; bool isDiv = Opcode == ISD::SDIV || Opcode == ISD::UDIV; if (!isSigned) switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; } else switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; } unsigned LoReg, HiReg; unsigned ClrOpcode, SExtOpcode; switch (NVT) { default: assert(0 && "Unsupported VT!"); case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; ClrOpcode = X86::MOV8ri; SExtOpcode = X86::CBW; break; case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; ClrOpcode = X86::MOV16ri; SExtOpcode = X86::CWD; break; case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; ClrOpcode = X86::MOV32ri; SExtOpcode = X86::CDQ; break; } SDOperand N0 = Node->getOperand(0); SDOperand N1 = Node->getOperand(1); bool foldedLoad = false; SDOperand Tmp0, Tmp1, Tmp2, Tmp3; foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3); SDOperand Chain; if (foldedLoad) Select(Chain, N1.getOperand(0)); else Chain = CurDAG->getEntryNode(); SDOperand InFlag(0, 0); Select(N0, N0); Chain = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT), N0, InFlag); InFlag = Chain.getValue(1); if (isSigned) { // Sign extend the low part into the high part. InFlag = SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0); } else { // Zero out the high part, effectively zero extending the input. SDOperand ClrNode = SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT, CurDAG->getTargetConstant(0, NVT)), 0); Chain = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(HiReg, NVT), ClrNode, InFlag); InFlag = Chain.getValue(1); } if (foldedLoad) { Select(Tmp0, Tmp0); Select(Tmp1, Tmp1); Select(Tmp2, Tmp2); Select(Tmp3, Tmp3); SDNode *CNode = CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1, Tmp2, Tmp3, Chain, InFlag); Chain = SDOperand(CNode, 0); InFlag = SDOperand(CNode, 1); } else { Select(N1, N1); InFlag = SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0); } Result = CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg, NVT, InFlag); CodeGenMap[N.getValue(0)] = Result; if (foldedLoad) { CodeGenMap[N1.getValue(1)] = Result.getValue(1); AddHandleReplacement(N1.Val, 1, Result.Val, 1); } #ifndef NDEBUG DEBUG(std::cerr << std::string(Indent-2, ' ')); DEBUG(std::cerr << "== "); DEBUG(Result.Val->dump(CurDAG)); DEBUG(std::cerr << "\n"); Indent -= 2; #endif return; } case ISD::TRUNCATE: { unsigned Reg; MVT::ValueType VT; switch (Node->getOperand(0).getValueType()) { default: assert(0 && "Unknown truncate!"); case MVT::i16: Reg = X86::AX; Opc = X86::MOV16rr; VT = MVT::i16; break; case MVT::i32: Reg = X86::EAX; Opc = X86::MOV32rr; VT = MVT::i32; break; } SDOperand Tmp0, Tmp1; Select(Tmp0, Node->getOperand(0)); Select(Tmp1, SDOperand(CurDAG->getTargetNode(Opc, VT, Tmp0), 0)); SDOperand InFlag = SDOperand(0,0); Result = CurDAG->getCopyToReg(CurDAG->getEntryNode(), Reg, Tmp1, InFlag); SDOperand Chain = Result.getValue(0); InFlag = Result.getValue(1); switch (NVT) { default: assert(0 && "Unknown truncate!"); case MVT::i8: Reg = X86::AL; Opc = X86::MOV8rr; VT = MVT::i8; break; case MVT::i16: Reg = X86::AX; Opc = X86::MOV16rr; VT = MVT::i16; break; } Result = CurDAG->getCopyFromReg(Chain, Reg, VT, InFlag); if (N.Val->hasOneUse()) Result = CurDAG->SelectNodeTo(N.Val, Opc, VT, Result); else Result = CodeGenMap[N] = SDOperand(CurDAG->getTargetNode(Opc, VT, Result), 0); #ifndef NDEBUG DEBUG(std::cerr << std::string(Indent-2, ' ')); DEBUG(std::cerr << "== "); DEBUG(Result.Val->dump(CurDAG)); DEBUG(std::cerr << "\n"); Indent -= 2; #endif return; } } SelectCode(Result, N); #ifndef NDEBUG DEBUG(std::cerr << std::string(Indent-2, ' ')); DEBUG(std::cerr << "=> "); DEBUG(Result.Val->dump(CurDAG)); DEBUG(std::cerr << "\n"); Indent -= 2; #endif } /// createX86ISelDag - This pass converts a legalized DAG into a /// X86-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM) { return new X86DAGToDAGISel(TM); }