//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RAGreedy function pass for register allocation in // optimized builds. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "AllocationOrder.h" #include "LiveIntervalUnion.h" #include "RegAllocBase.h" #include "Spiller.h" #include "VirtRegMap.h" #include "VirtRegRewriter.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Function.h" #include "llvm/PassAnalysisSupport.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Timer.h" using namespace llvm; static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", createGreedyRegisterAllocator); namespace { class RAGreedy : public MachineFunctionPass, public RegAllocBase { // context MachineFunction *MF; BitVector ReservedRegs; // analyses LiveStacks *LS; // state std::auto_ptr SpillerInstance; public: RAGreedy(); /// Return the pass name. virtual const char* getPassName() const { return "Greedy Register Allocator"; } /// RAGreedy analysis usage. virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); virtual Spiller &spiller() { return *SpillerInstance; } virtual float getPriority(LiveInterval *LI); virtual unsigned selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl &SplitVRegs); /// Perform register allocation. virtual bool runOnMachineFunction(MachineFunction &mf); static char ID; private: bool checkUncachedInterference(LiveInterval&, unsigned); LiveInterval *getSingleInterference(LiveInterval&, unsigned); bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg); bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg); unsigned tryReassign(LiveInterval&, AllocationOrder&); unsigned trySplit(LiveInterval&, AllocationOrder&, SmallVectorImpl&); }; } // end anonymous namespace char RAGreedy::ID = 0; FunctionPass* llvm::createGreedyRegisterAllocator() { return new RAGreedy(); } RAGreedy::RAGreedy(): MachineFunctionPass(ID) { initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); } void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); if (StrongPHIElim) AU.addRequiredID(StrongPHIEliminationID); AU.addRequiredTransitive(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } void RAGreedy::releaseMemory() { SpillerInstance.reset(0); RegAllocBase::releaseMemory(); } float RAGreedy::getPriority(LiveInterval *LI) { float Priority = LI->weight; // Prioritize hinted registers so they are allocated first. std::pair Hint; if (Hint.first || Hint.second) { // The hint can be target specific, a virtual register, or a physreg. Priority *= 2; // Prefer physreg hints above anything else. if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second)) Priority *= 2; } return Priority; } // Check interference without using the cache. bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg, unsigned PhysReg) { for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]); if (subQ.checkInterference()) return true; } return false; } /// getSingleInterference - Return the single interfering virtual register /// assigned to PhysReg. Return 0 if more than one virtual register is /// interfering. LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg, unsigned PhysReg) { // Check physreg and aliases. LiveInterval *Interference = 0; for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); if (Q.checkInterference()) { if (Interference) return 0; Q.collectInterferingVRegs(1); if (!Q.seenAllInterferences()) return 0; Interference = Q.interferingVRegs().front(); } } return Interference; } // Attempt to reassign this virtual register to a different physical register. // // FIXME: we are not yet caching these "second-level" interferences discovered // in the sub-queries. These interferences can change with each call to // selectOrSplit. However, we could implement a "may-interfere" cache that // could be conservatively dirtied when we reassign or split. // // FIXME: This may result in a lot of alias queries. We could summarize alias // live intervals in their parent register's live union, but it's messy. bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg, unsigned WantedPhysReg) { assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) && "Can only reassign virtual registers"); assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) && "inconsistent phys reg assigment"); AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs); while (unsigned PhysReg = Order.next()) { // Don't reassign to a WantedPhysReg alias. if (TRI->regsOverlap(PhysReg, WantedPhysReg)) continue; if (checkUncachedInterference(InterferingVReg, PhysReg)) continue; // Reassign the interfering virtual reg to this physical reg. unsigned OldAssign = VRM->getPhys(InterferingVReg.reg); DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " << TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n'); PhysReg2LiveUnion[OldAssign].extract(InterferingVReg); VRM->clearVirt(InterferingVReg.reg); VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg); PhysReg2LiveUnion[PhysReg].unify(InterferingVReg); return true; } return false; } /// reassignInterferences - Reassign all interferences to different physical /// registers such that Virtreg can be assigned to PhysReg. /// Currently this only works with a single interference. /// @param VirtReg Currently unassigned virtual register. /// @param PhysReg Physical register to be cleared. /// @return True on success, false if nothing was changed. bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) { LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg); if (!InterferingVReg) return false; if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg)) return false; return reassignVReg(*InterferingVReg, PhysReg); } /// tryReassign - Try to reassign interferences to different physregs. /// @param VirtReg Currently unassigned virtual register. /// @param Order Physregs to try. /// @return Physreg to assign VirtReg, or 0. unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order) { NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled); Order.rewind(); while (unsigned PhysReg = Order.next()) if (reassignInterferences(VirtReg, PhysReg)) return PhysReg; return 0; } /// trySplit - Try to split VirtReg or one of its interferences, making it /// assignable. /// @return Physreg when VirtReg may be assigned and/or new SplitVRegs. unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, SmallVectorImpl&SplitVRegs) { NamedRegionTimer T("Splitter", TimerGroupName, TimePassesIsEnabled); DEBUG({ Order.rewind(); while (unsigned PhysReg = Order.next()) { query(VirtReg, PhysReg).print(dbgs(), TRI); for (const unsigned *AI = TRI->getAliasSet(PhysReg); *AI; ++AI) query(VirtReg, *AI).print(dbgs(), TRI); } }); return 0; } unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl &SplitVRegs) { // Populate a list of physical register spill candidates. SmallVector PhysRegSpillCands; // Check for an available register in this class. AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs); while (unsigned PhysReg = Order.next()) { // Check interference and as a side effect, intialize queries for this // VirtReg and its aliases. unsigned InterfReg = checkPhysRegInterference(VirtReg, PhysReg); if (InterfReg == 0) { // Found an available register. return PhysReg; } assert(!VirtReg.empty() && "Empty VirtReg has interference"); LiveInterval *InterferingVirtReg = Queries[InterfReg].firstInterference().liveUnionPos().value(); // The current VirtReg must either be spillable, or one of its interferences // must have less spill weight. if (InterferingVirtReg->weight < VirtReg.weight ) PhysRegSpillCands.push_back(PhysReg); } // Try to reassign interferences. if (unsigned PhysReg = tryReassign(VirtReg, Order)) return PhysReg; // Try splitting VirtReg or interferences. unsigned PhysReg = trySplit(VirtReg, Order, SplitVRegs); if (PhysReg || !SplitVRegs.empty()) return PhysReg; // Try to spill another interfering reg with less spill weight. NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); // // FIXME: do this in two steps: (1) check for unspillable interferences while // accumulating spill weight; (2) spill the interferences with lowest // aggregate spill weight. for (SmallVectorImpl::iterator PhysRegI = PhysRegSpillCands.begin(), PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && "Interference after spill."); // Tell the caller to allocate to this newly freed physical register. return *PhysRegI; } // No other spill candidates were found, so spill the current VirtReg. DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); SmallVector pendingSpills; spiller().spill(&VirtReg, SplitVRegs, pendingSpills); // The live virtual register requesting allocation was spilled, so tell // the caller not to allocate anything during this round. return 0; } bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" << "********** Function: " << ((Value*)mf.getFunction())->getName() << '\n'); MF = &mf; RegAllocBase::init(getAnalysis(), getAnalysis()); ReservedRegs = TRI->getReservedRegs(*MF); SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); allocatePhysRegs(); addMBBLiveIns(MF); // Run rewriter { NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); std::auto_ptr rewriter(createVirtRegRewriter()); rewriter->runOnMachineFunction(*MF, *VRM, LIS); } // The pass output is in VirtRegMap. Release all the transient data. releaseMemory(); return true; }