//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===// // // This file is used to promote memory references to be register references. A // simple example of the transformation performed by this function is: // // FROM CODE TO CODE // %X = alloca int, uint 1 ret int 42 // store int 42, int *%X // %Y = load int* %X // ret int %Y // // The code is transformed by looping over all of the alloca instruction, // calculating dominator frontiers, then inserting phi-nodes following the usual // SSA construction algorithm. This code does not modify the CFG of the // function. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "llvm/Analysis/Dominators.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/iTerminators.h" #include "llvm/Function.h" #include "llvm/Constant.h" #include "llvm/Type.h" /// isAllocaPromotable - Return true if this alloca is legal for promotion. /// This is true if there are only loads and stores to the alloca... /// bool isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) { // FIXME: If the memory unit is of pointer or integer type, we can permit // assignments to subsections of the memory unit. // Only allow direct loads and stores... for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) // Loop over all of the uses of the alloca if (!isa(*UI)) if (const StoreInst *SI = dyn_cast(*UI)) { if (SI->getOperand(0) == AI) return false; // Don't allow a store of the AI, only INTO the AI. } else { return false; // Not a load or store? } return true; } namespace { struct PromoteMem2Reg { const std::vector &Allocas; // the alloca instructions.. DominanceFrontier &DF; const TargetData &TD; std::map AllocaLookup; // reverse mapping of above std::vector > PhiNodes;// Idx corresponds 2 Allocas // List of instructions to remove at end of pass std::vector KillList; std::map > NewPhiNodes; // the PhiNodes we're adding public: PromoteMem2Reg(const std::vector &A, DominanceFrontier &df, const TargetData &td) : Allocas(A), DF(df), TD(td) {} void run(); private: void RenamePass(BasicBlock *BB, BasicBlock *Pred, std::vector &IncVals, std::set &Visited); bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx); }; } // end of anonymous namespace void PromoteMem2Reg::run() { // If there is nothing to do, bail out... if (Allocas.empty()) return; Function &F = *DF.getRoot()->getParent(); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { assert(isAllocaPromotable(Allocas[i], TD) && "Cannot promote non-promotable alloca!"); assert(Allocas[i]->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); AllocaLookup[Allocas[i]] = i; } // Add each alloca to the KillList. Note: KillList is destroyed MOST recently // added to least recently. KillList.assign(Allocas.begin(), Allocas.end()); // Calculate the set of write-locations for each alloca. This is analogous to // counting the number of 'redefinitions' of each variable. std::vector > WriteSets;// Idx corresponds to Allocas WriteSets.resize(Allocas.size()); for (unsigned i = 0; i != Allocas.size(); ++i) { AllocaInst *AI = Allocas[i]; for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U) if (StoreInst *SI = dyn_cast(*U)) // jot down the basic-block it came from WriteSets[i].push_back(SI->getParent()); } // Compute the locations where PhiNodes need to be inserted. Look at the // dominance frontier of EACH basic-block we have a write in // PhiNodes.resize(Allocas.size()); for (unsigned i = 0; i != Allocas.size(); ++i) { for (unsigned j = 0; j != WriteSets[i].size(); j++) { // Look up the DF for this write, add it to PhiNodes DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]); DominanceFrontier::DomSetType S = it->second; for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end(); P != PE; ++P) QueuePhiNode(*P, i); } // Perform iterative step for (unsigned k = 0; k != PhiNodes[i].size(); k++) { DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]); DominanceFrontier::DomSetType S = it->second; for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end(); P != PE; ++P) QueuePhiNode(*P, i); } } // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. // std::vector Values(Allocas.size()); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType()); // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary // std::set Visited; // The basic blocks we've already visited RenamePass(F.begin(), 0, Values, Visited); // Remove all instructions marked by being placed in the KillList... // while (!KillList.empty()) { Instruction *I = KillList.back(); KillList.pop_back(); I->getParent()->getInstList().erase(I); } } // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific // Alloca returns true if there wasn't already a phi-node for that variable // bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) { // Look up the basic-block in question std::vector &BBPNs = NewPhiNodes[BB]; if (BBPNs.empty()) BBPNs.resize(Allocas.size()); // If the BB already has a phi node added for the i'th alloca then we're done! if (BBPNs[AllocaNo]) return false; // Create a PhiNode using the dereferenced type... and add the phi-node to the // BasicBlock PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(), Allocas[AllocaNo]->getName()+".mem2reg", BB->begin()); BBPNs[AllocaNo] = PN; PhiNodes[AllocaNo].push_back(BB); return true; } void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, std::vector &IncomingVals, std::set &Visited) { // If this is a BB needing a phi node, lookup/create the phinode for each // variable we need phinodes for. std::vector &BBPNs = NewPhiNodes[BB]; for (unsigned k = 0; k != BBPNs.size(); ++k) if (PHINode *PN = BBPNs[k]) { // at this point we can assume that the array has phi nodes.. let's add // the incoming data PN->addIncoming(IncomingVals[k], Pred); // also note that the active variable IS designated by the phi node IncomingVals[k] = PN; } // don't revisit nodes if (Visited.count(BB)) return; // mark as visited Visited.insert(BB); // keep track of the value of each variable we're watching.. how? for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) { Instruction *I = II; // get the instruction if (LoadInst *LI = dyn_cast(I)) { if (AllocaInst *Src = dyn_cast(LI->getPointerOperand())) { std::map::iterator AI = AllocaLookup.find(Src); if (AI != AllocaLookup.end()) { Value *V = IncomingVals[AI->second]; // walk the use list of this load and replace all uses with r LI->replaceAllUsesWith(V); KillList.push_back(LI); // Mark the load to be deleted } } } else if (StoreInst *SI = dyn_cast(I)) { // Delete this instruction and mark the name as the current holder of the // value if (AllocaInst *Dest = dyn_cast(SI->getPointerOperand())) { std::map::iterator ai =AllocaLookup.find(Dest); if (ai != AllocaLookup.end()) { // what value were we writing? IncomingVals[ai->second] = SI->getOperand(0); KillList.push_back(SI); // Mark the store to be deleted } } } else if (TerminatorInst *TI = dyn_cast(I)) { // Recurse across our successors for (unsigned i = 0; i != TI->getNumSuccessors(); i++) { std::vector OutgoingVals(IncomingVals); RenamePass(TI->getSuccessor(i), BB, OutgoingVals, Visited); } } } } /// PromoteMemToReg - Promote the specified list of alloca instructions into /// scalar registers, inserting PHI nodes as appropriate. This function makes /// use of DominanceFrontier information. This function does not modify the CFG /// of the function at all. All allocas must be from the same function. /// void PromoteMemToReg(const std::vector &Allocas, DominanceFrontier &DF, const TargetData &TD) { PromoteMem2Reg(Allocas, DF, TD).run(); }