//===-- Value.cpp - Implement the Value class -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Value, ValueHandle, and User classes. // //===----------------------------------------------------------------------===// #include "llvm/Constant.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/InstrTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/Support/Debug.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/ValueHandle.h" #include "llvm/ADT/DenseMap.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// static inline const Type *checkType(const Type *Ty) { assert(Ty && "Value defined with a null type: Error!"); return Ty; } Value::Value(const Type *ty, unsigned scid) : SubclassID(scid), HasValueHandle(0), SubclassData(0), VTy(checkType(ty)), UseList(0), Name(0) { if (isa(this) || isa(this)) assert((VTy->isFirstClassType() || VTy == Type::VoidTy || isa(ty) || VTy->getTypeID() == Type::StructTyID) && "invalid CallInst type!"); else if (!isa(this) && !isa(this)) assert((VTy->isFirstClassType() || VTy == Type::VoidTy || isa(ty)) && "Cannot create non-first-class values except for constants!"); } Value::~Value() { // Notify all ValueHandles (if present) that this value is going away. if (HasValueHandle) ValueHandleBase::ValueIsDeleted(this); #ifndef NDEBUG // Only in -g mode... // Check to make sure that there are no uses of this value that are still // around when the value is destroyed. If there are, then we have a dangling // reference and something is wrong. This code is here to print out what is // still being referenced. The value in question should be printed as // a // if (!use_empty()) { cerr << "While deleting: " << *VTy << " %" << getNameStr() << "\n"; for (use_iterator I = use_begin(), E = use_end(); I != E; ++I) cerr << "Use still stuck around after Def is destroyed:" << **I << "\n"; } #endif assert(use_empty() && "Uses remain when a value is destroyed!"); // If this value is named, destroy the name. This should not be in a symtab // at this point. if (Name) Name->Destroy(); // There should be no uses of this object anymore, remove it. LeakDetector::removeGarbageObject(this); } /// hasNUses - Return true if this Value has exactly N users. /// bool Value::hasNUses(unsigned N) const { use_const_iterator UI = use_begin(), E = use_end(); for (; N; --N, ++UI) if (UI == E) return false; // Too few. return UI == E; } /// hasNUsesOrMore - Return true if this value has N users or more. This is /// logically equivalent to getNumUses() >= N. /// bool Value::hasNUsesOrMore(unsigned N) const { use_const_iterator UI = use_begin(), E = use_end(); for (; N; --N, ++UI) if (UI == E) return false; // Too few. return true; } /// isUsedInBasicBlock - Return true if this value is used in the specified /// basic block. bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { for (use_const_iterator I = use_begin(), E = use_end(); I != E; ++I) { const Instruction *User = dyn_cast(*I); if (User && User->getParent() == BB) return true; } return false; } /// getNumUses - This method computes the number of uses of this Value. This /// is a linear time operation. Use hasOneUse or hasNUses to check for specific /// values. unsigned Value::getNumUses() const { return (unsigned)std::distance(use_begin(), use_end()); } static bool getSymTab(Value *V, ValueSymbolTable *&ST) { ST = 0; if (Instruction *I = dyn_cast(V)) { if (BasicBlock *P = I->getParent()) if (Function *PP = P->getParent()) ST = &PP->getValueSymbolTable(); } else if (BasicBlock *BB = dyn_cast(V)) { if (Function *P = BB->getParent()) ST = &P->getValueSymbolTable(); } else if (GlobalValue *GV = dyn_cast(V)) { if (Module *P = GV->getParent()) ST = &P->getValueSymbolTable(); } else if (Argument *A = dyn_cast(V)) { if (Function *P = A->getParent()) ST = &P->getValueSymbolTable(); } else { assert(isa(V) && "Unknown value type!"); return true; // no name is setable for this. } return false; } /// getNameStart - Return a pointer to a null terminated string for this name. /// Note that names can have null characters within the string as well as at /// their end. This always returns a non-null pointer. const char *Value::getNameStart() const { if (Name == 0) return ""; return Name->getKeyData(); } /// getNameLen - Return the length of the string, correctly handling nul /// characters embedded into them. unsigned Value::getNameLen() const { return Name ? Name->getKeyLength() : 0; } /// isName - Return true if this value has the name specified by the provided /// nul terminated string. bool Value::isName(const char *N) const { unsigned InLen = strlen(N); return InLen == getNameLen() && memcmp(getNameStart(), N, InLen) == 0; } std::string Value::getNameStr() const { if (Name == 0) return ""; return std::string(Name->getKeyData(), Name->getKeyData()+Name->getKeyLength()); } void Value::setName(const std::string &name) { setName(&name[0], name.size()); } void Value::setName(const char *Name) { setName(Name, Name ? strlen(Name) : 0); } void Value::setName(const char *NameStr, unsigned NameLen) { if (NameLen == 0 && !hasName()) return; assert(getType() != Type::VoidTy && "Cannot assign a name to void values!"); // Get the symbol table to update for this object. ValueSymbolTable *ST; if (getSymTab(this, ST)) return; // Cannot set a name on this value (e.g. constant). if (!ST) { // No symbol table to update? Just do the change. if (NameLen == 0) { // Free the name for this value. Name->Destroy(); Name = 0; return; } if (Name) { // Name isn't changing? if (NameLen == Name->getKeyLength() && !memcmp(Name->getKeyData(), NameStr, NameLen)) return; Name->Destroy(); } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. // Create the new name. Name = ValueName::Create(NameStr, NameStr+NameLen); Name->setValue(this); return; } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. if (hasName()) { // Name isn't changing? if (NameLen == Name->getKeyLength() && !memcmp(Name->getKeyData(), NameStr, NameLen)) return; // Remove old name. ST->removeValueName(Name); Name->Destroy(); Name = 0; if (NameLen == 0) return; } // Name is changing to something new. Name = ST->createValueName(NameStr, NameLen, this); } /// takeName - transfer the name from V to this value, setting V's name to /// empty. It is an error to call V->takeName(V). void Value::takeName(Value *V) { ValueSymbolTable *ST = 0; // If this value has a name, drop it. if (hasName()) { // Get the symtab this is in. if (getSymTab(this, ST)) { // We can't set a name on this value, but we need to clear V's name if // it has one. if (V->hasName()) V->setName(0, 0); return; // Cannot set a name on this value (e.g. constant). } // Remove old name. if (ST) ST->removeValueName(Name); Name->Destroy(); Name = 0; } // Now we know that this has no name. // If V has no name either, we're done. if (!V->hasName()) return; // Get this's symtab if we didn't before. if (!ST) { if (getSymTab(this, ST)) { // Clear V's name. V->setName(0, 0); return; // Cannot set a name on this value (e.g. constant). } } // Get V's ST, this should always succed, because V has a name. ValueSymbolTable *VST; bool Failure = getSymTab(V, VST); assert(!Failure && "V has a name, so it should have a ST!"); Failure=Failure; // If these values are both in the same symtab, we can do this very fast. // This works even if both values have no symtab yet. if (ST == VST) { // Take the name! Name = V->Name; V->Name = 0; Name->setValue(this); return; } // Otherwise, things are slightly more complex. Remove V's name from VST and // then reinsert it into ST. if (VST) VST->removeValueName(V->Name); Name = V->Name; V->Name = 0; Name->setValue(this); if (ST) ST->reinsertValue(this); } // uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith, // except that it doesn't have all of the asserts. The asserts fail because we // are half-way done resolving types, which causes some types to exist as two // different Type*'s at the same time. This is a sledgehammer to work around // this problem. // void Value::uncheckedReplaceAllUsesWith(Value *New) { // Notify all ValueHandles (if present) that this value is going away. if (HasValueHandle) ValueHandleBase::ValueIsRAUWd(this, New); while (!use_empty()) { Use &U = *UseList; // Must handle Constants specially, we cannot call replaceUsesOfWith on a // constant because they are uniqued. if (Constant *C = dyn_cast(U.getUser())) { if (!isa(C)) { C->replaceUsesOfWithOnConstant(this, New, &U); continue; } } U.set(New); } } void Value::replaceAllUsesWith(Value *New) { assert(New && "Value::replaceAllUsesWith() is invalid!"); assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!"); assert(New->getType() == getType() && "replaceAllUses of value with new value of different type!"); uncheckedReplaceAllUsesWith(New); } Value *Value::stripPointerCasts() { if (!isa(getType())) return this; Value *V = this; do { if (ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() == Instruction::GetElementPtr) { for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) if (!CE->getOperand(i)->isNullValue()) return V; V = CE->getOperand(0); } else if (CE->getOpcode() == Instruction::BitCast) { V = CE->getOperand(0); } else { return V; } } else if (GetElementPtrInst *GEP = dyn_cast(V)) { if (!GEP->hasAllZeroIndices()) return V; V = GEP->getOperand(0); } else if (BitCastInst *CI = dyn_cast(V)) { V = CI->getOperand(0); } else { return V; } assert(isa(V->getType()) && "Unexpected operand type!"); } while (1); } Value *Value::getUnderlyingObject() { if (!isa(getType())) return this; Value *V = this; unsigned MaxLookup = 6; do { if (Instruction *I = dyn_cast(V)) { if (!isa(I) && !isa(I)) return V; V = I->getOperand(0); } else if (ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() != Instruction::BitCast && CE->getOpcode() != Instruction::GetElementPtr) return V; V = CE->getOperand(0); } else { return V; } assert(isa(V->getType()) && "Unexpected operand type!"); } while (--MaxLookup); return V; } /// DoPHITranslation - If this value is a PHI node with CurBB as its parent, /// return the value in the PHI node corresponding to PredBB. If not, return /// ourself. This is useful if you want to know the value something has in a /// predecessor block. Value *Value::DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { PHINode *PN = dyn_cast(this); if (PN && PN->getParent() == CurBB) return PN->getIncomingValueForBlock(PredBB); return this; } //===----------------------------------------------------------------------===// // ValueHandleBase Class //===----------------------------------------------------------------------===// /// ValueHandles - This map keeps track of all of the value handles that are /// watching a Value*. The Value::HasValueHandle bit is used to know whether or /// not a value has an entry in this map. typedef DenseMap ValueHandlesTy; static ManagedStatic ValueHandles; /// AddToUseList - Add this ValueHandle to the use list for VP, where List is /// known to point into the existing use list. void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { assert(List && "Handle list is null?"); // Splice ourselves into the list. Next = *List; *List = this; setPrevPtr(List); if (Next) { Next->setPrevPtr(&Next); assert(VP == Next->VP && "Added to wrong list?"); } } /// AddToUseList - Add this ValueHandle to the use list for VP. void ValueHandleBase::AddToUseList() { assert(VP && "Null pointer doesn't have a use list!"); if (VP->HasValueHandle) { // If this value already has a ValueHandle, then it must be in the // ValueHandles map already. ValueHandleBase *&Entry = (*ValueHandles)[VP]; assert(Entry != 0 && "Value doesn't have any handles?"); return AddToExistingUseList(&Entry); } // Ok, it doesn't have any handles yet, so we must insert it into the // DenseMap. However, doing this insertion could cause the DenseMap to // reallocate itself, which would invalidate all of the PrevP pointers that // point into the old table. Handle this by checking for reallocation and // updating the stale pointers only if needed. ValueHandlesTy &Handles = *ValueHandles; const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); ValueHandleBase *&Entry = Handles[VP]; assert(Entry == 0 && "Value really did already have handles?"); AddToExistingUseList(&Entry); VP->HasValueHandle = 1; // If reallocation didn't happen or if this was the first insertion, don't // walk the table. if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || Handles.size() == 1) return; // Okay, reallocation did happen. Fix the Prev Pointers. for (ValueHandlesTy::iterator I = Handles.begin(), E = Handles.end(); I != E; ++I) { assert(I->second && I->first == I->second->VP && "List invariant broken!"); I->second->setPrevPtr(&I->second); } } /// RemoveFromUseList - Remove this ValueHandle from its current use list. void ValueHandleBase::RemoveFromUseList() { assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!"); // Unlink this from its use list. ValueHandleBase **PrevPtr = getPrevPtr(); assert(*PrevPtr == this && "List invariant broken"); *PrevPtr = Next; if (Next) { assert(Next->getPrevPtr() == &Next && "List invariant broken"); Next->setPrevPtr(PrevPtr); return; } // If the Next pointer was null, then it is possible that this was the last // ValueHandle watching VP. If so, delete its entry from the ValueHandles // map. ValueHandlesTy &Handles = *ValueHandles; if (Handles.isPointerIntoBucketsArray(PrevPtr)) { Handles.erase(VP); VP->HasValueHandle = false; } } void ValueHandleBase::ValueIsDeleted(Value *V) { assert(V->HasValueHandle && "Should only be called if ValueHandles present"); // Get the linked list base, which is guaranteed to exist since the // HasValueHandle flag is set. ValueHandleBase *Entry = (*ValueHandles)[V]; assert(Entry && "Value bit set but no entries exist"); while (Entry) { // Advance pointer to avoid invalidation. ValueHandleBase *ThisNode = Entry; Entry = Entry->Next; switch (ThisNode->getKind()) { case Assert: #ifndef NDEBUG // Only in -g mode... cerr << "While deleting: " << *V->getType() << " %" << V->getNameStr() << "\n"; #endif cerr << "An asserting value handle still pointed to this value!\n"; abort(); case Weak: // Weak just goes to null, which will unlink it from the list. ThisNode->operator=(0); break; case Callback: // Forward to the subclass's implementation. static_cast(ThisNode)->deleted(); break; } } // All callbacks and weak references should be dropped by now. assert(!V->HasValueHandle && "All references to V were not removed?"); } void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); assert(Old != New && "Changing value into itself!"); // Get the linked list base, which is guaranteed to exist since the // HasValueHandle flag is set. ValueHandleBase *Entry = (*ValueHandles)[Old]; assert(Entry && "Value bit set but no entries exist"); while (Entry) { // Advance pointer to avoid invalidation. ValueHandleBase *ThisNode = Entry; Entry = Entry->Next; switch (ThisNode->getKind()) { case Assert: // Asserting handle does not follow RAUW implicitly. break; case Weak: // Weak goes to the new value, which will unlink it from Old's list. ThisNode->operator=(New); break; case Callback: // Forward to the subclass's implementation. static_cast(ThisNode)->allUsesReplacedWith(New); break; } } } /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable /// more than once. CallbackVH::~CallbackVH() {} //===----------------------------------------------------------------------===// // User Class //===----------------------------------------------------------------------===// // replaceUsesOfWith - Replaces all references to the "From" definition with // references to the "To" definition. // void User::replaceUsesOfWith(Value *From, Value *To) { if (From == To) return; // Duh what? assert((!isa(this) || isa(this)) && "Cannot call User::replaceUsesofWith on a constant!"); for (unsigned i = 0, E = getNumOperands(); i != E; ++i) if (getOperand(i) == From) { // Is This operand is pointing to oldval? // The side effects of this setOperand call include linking to // "To", adding "this" to the uses list of To, and // most importantly, removing "this" from the use list of "From". setOperand(i, To); // Fix it now... } }