//===-- Execution.cpp - Implement code to simulate the program ------------===// // // This file contains the actual instruction interpreter. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "ExecutionAnnotations.h" #include "llvm/iOther.h" #include "llvm/iTerminators.h" #include "llvm/iMemory.h" #include "llvm/Type.h" #include "llvm/ConstPoolVals.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/DataTypes.h" #include "llvm/Target/TargetData.h" static unsigned getOperandSlot(Value *V) { SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID); assert(SN && "Operand does not have a slot number annotation!"); return SN->SlotNum; } #define GET_CONST_VAL(TY, CLASS) \ case Type::TY##TyID: Result.TY##Val = ((CLASS*)CPV)->getValue(); break static GenericValue getOperandValue(Value *V, ExecutionContext &SF) { if (ConstPoolVal *CPV = V->castConstant()) { GenericValue Result; switch (CPV->getType()->getPrimitiveID()) { GET_CONST_VAL(Bool , ConstPoolBool); GET_CONST_VAL(UByte , ConstPoolUInt); GET_CONST_VAL(SByte , ConstPoolSInt); GET_CONST_VAL(UShort , ConstPoolUInt); GET_CONST_VAL(Short , ConstPoolSInt); GET_CONST_VAL(UInt , ConstPoolUInt); GET_CONST_VAL(Int , ConstPoolSInt); GET_CONST_VAL(Float , ConstPoolFP); GET_CONST_VAL(Double , ConstPoolFP); default: cout << "ERROR: Constant unimp for type: " << CPV->getType() << endl; } return Result; } else { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value return SF.Values[TyP][getOperandSlot(V)]; } } static void printOperandInfo(Value *V, ExecutionContext &SF) { if (!V->isConstant()) { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value unsigned Slot = getOperandSlot(V); cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot << " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF << endl; } } static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value //cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)] << endl; SF.Values[TyP][getOperandSlot(V)] = Val; } //===----------------------------------------------------------------------===// // Binary Instruction Implementations //===----------------------------------------------------------------------===// #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break #define IMPLEMENT_BINARY_PTR_OPERATOR(OP) \ case Type::PointerTyID: Dest.PointerVal = \ (GenericValue*)((unsigned long)Src1.PointerVal OP (unsigned long)Src2.PointerVal); break static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(+, UByte); IMPLEMENT_BINARY_OPERATOR(+, SByte); IMPLEMENT_BINARY_OPERATOR(+, UShort); IMPLEMENT_BINARY_OPERATOR(+, Short); IMPLEMENT_BINARY_OPERATOR(+, UInt); IMPLEMENT_BINARY_OPERATOR(+, Int); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); IMPLEMENT_BINARY_PTR_OPERATOR(+); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for Add instruction: " << Ty << endl; } return Dest; } static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(-, UByte); IMPLEMENT_BINARY_OPERATOR(-, SByte); IMPLEMENT_BINARY_OPERATOR(-, UShort); IMPLEMENT_BINARY_OPERATOR(-, Short); IMPLEMENT_BINARY_OPERATOR(-, UInt); IMPLEMENT_BINARY_OPERATOR(-, Int); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); IMPLEMENT_BINARY_PTR_OPERATOR(-); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for Sub instruction: " << Ty << endl; } return Dest; } #define IMPLEMENT_SETCC(OP, TY) \ case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(==, UByte); IMPLEMENT_SETCC(==, SByte); IMPLEMENT_SETCC(==, UShort); IMPLEMENT_SETCC(==, Short); IMPLEMENT_SETCC(==, UInt); IMPLEMENT_SETCC(==, Int); IMPLEMENT_SETCC(==, Float); IMPLEMENT_SETCC(==, Double); IMPLEMENT_SETCC(==, Pointer); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for SetEQ instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(!=, UByte); IMPLEMENT_SETCC(!=, SByte); IMPLEMENT_SETCC(!=, UShort); IMPLEMENT_SETCC(!=, Short); IMPLEMENT_SETCC(!=, UInt); IMPLEMENT_SETCC(!=, Int); IMPLEMENT_SETCC(!=, Float); IMPLEMENT_SETCC(!=, Double); IMPLEMENT_SETCC(!=, Pointer); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for SetNE instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(<=, UByte); IMPLEMENT_SETCC(<=, SByte); IMPLEMENT_SETCC(<=, UShort); IMPLEMENT_SETCC(<=, Short); IMPLEMENT_SETCC(<=, UInt); IMPLEMENT_SETCC(<=, Int); IMPLEMENT_SETCC(<=, Float); IMPLEMENT_SETCC(<=, Double); IMPLEMENT_SETCC(<=, Pointer); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for SetLE instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(>=, UByte); IMPLEMENT_SETCC(>=, SByte); IMPLEMENT_SETCC(>=, UShort); IMPLEMENT_SETCC(>=, Short); IMPLEMENT_SETCC(>=, UInt); IMPLEMENT_SETCC(>=, Int); IMPLEMENT_SETCC(>=, Float); IMPLEMENT_SETCC(>=, Double); IMPLEMENT_SETCC(>=, Pointer); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for SetGE instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(<, UByte); IMPLEMENT_SETCC(<, SByte); IMPLEMENT_SETCC(<, UShort); IMPLEMENT_SETCC(<, Short); IMPLEMENT_SETCC(<, UInt); IMPLEMENT_SETCC(<, Int); IMPLEMENT_SETCC(<, Float); IMPLEMENT_SETCC(<, Double); IMPLEMENT_SETCC(<, Pointer); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for SetLT instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(>, UByte); IMPLEMENT_SETCC(>, SByte); IMPLEMENT_SETCC(>, UShort); IMPLEMENT_SETCC(>, Short); IMPLEMENT_SETCC(>, UInt); IMPLEMENT_SETCC(>, Int); IMPLEMENT_SETCC(>, Float); IMPLEMENT_SETCC(>, Double); IMPLEMENT_SETCC(>, Pointer); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for SetGT instruction: " << Ty << endl; } return Dest; } static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) { const Type *Ty = I->getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I->getOperand(0), SF); GenericValue Src2 = getOperandValue(I->getOperand(1), SF); GenericValue R; // Result switch (I->getOpcode()) { case Instruction::Add: R = executeAddInst(Src1, Src2, Ty, SF); break; case Instruction::Sub: R = executeSubInst(Src1, Src2, Ty, SF); break; case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break; case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break; case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break; case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break; case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break; case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break; default: cout << "Don't know how to handle this binary operator!\n-->" << I; } SetValue(I, R, SF); } //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) { const Type *RetTy = 0; GenericValue Result; // Save away the return value... (if we are not 'ret void') if (I->getNumOperands()) { RetTy = I->getReturnValue()->getType(); Result = getOperandValue(I->getReturnValue(), SF); } // Save previously executing meth const Method *M = ECStack.back().CurMethod; // Pop the current stack frame... this invalidates SF ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... if (RetTy) { // Nonvoid return type? cout << "Method " << M->getType() << " \"" << M->getName() << "\" returned "; printValue(RetTy, Result); cout << endl; if (RetTy->isIntegral()) ExitCode = Result.SByteVal; // Capture the exit code of the program } else { ExitCode = 0; } return; } // If we have a previous stack frame, and we have a previous call, fill in // the return value... // ExecutionContext &NewSF = ECStack.back(); if (NewSF.Caller) { if (NewSF.Caller->getType() != Type::VoidTy) // Save result... SetValue(NewSF.Caller, Result, NewSF); NewSF.Caller = 0; // We returned from the call... } else { // This must be a function that is executing because of a user 'call' // instruction. cout << "Method " << M->getType() << " \"" << M->getName() << "\" returned "; printValue(RetTy, Result); cout << endl; } } void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) { SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work... BasicBlock *Dest; Dest = I->getSuccessor(0); // Uncond branches have a fixed dest... if (!I->isUnconditional()) { if (getOperandValue(I->getCondition(), SF).BoolVal == 0) // If false cond... Dest = I->getSuccessor(1); } SF.CurBB = Dest; // Update CurBB to branch destination SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... } //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// // Create a TargetData structure to handle memory addressing and size/alignment // computations // static TargetData TD("lli Interpreter"); void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) { const Type *Ty = I->getType()->getValueType(); // Type to be allocated unsigned NumElements = 1; if (I->getNumOperands()) { // Allocating a unsized array type? assert(Ty->isArrayType() && Ty->castArrayType()->isUnsized() && "Allocation inst with size operand for !unsized array type???"); Ty = ((const ArrayType*)Ty)->getElementType(); // Get the actual type... // Get the number of elements being allocated by the array... GenericValue NumEl = getOperandValue(I->getOperand(0), SF); NumElements = NumEl.UIntVal; } // Allocate enough memory to hold the type... GenericValue Result; Result.PointerVal = (GenericValue*)malloc(NumElements * TD.getTypeSize(Ty)); assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); SetValue(I, Result, SF); if (I->getOpcode() == Instruction::Alloca) { // Keep track to free it later... } } static void executeFreeInst(FreeInst *I, ExecutionContext &SF) { assert(I->getOperand(0)->getType()->isPointerType() && "Freeing nonptr?"); GenericValue Value = getOperandValue(I->getOperand(0), SF); // TODO: Check to make sure memory is allocated free(Value.PointerVal); // Free memory } static void executeLoadInst(LoadInst *I, ExecutionContext &SF) { assert(I->getNumOperands() == 1 && "NI!"); GenericValue *Ptr = getOperandValue(I->getPtrOperand(), SF).PointerVal; GenericValue Result; switch (I->getType()->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break; case Type::UShortTyID: case Type::ShortTyID: Result.ShortVal = Ptr->ShortVal; break; case Type::UIntTyID: case Type::IntTyID: Result.IntVal = Ptr->IntVal; break; //case Type::ULongTyID: //case Type::LongTyID: Result.LongVal = Ptr->LongVal; break; case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break; case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break; case Type::PointerTyID: Result.PointerVal = Ptr->PointerVal; break; default: cout << "Cannot load value of type " << I->getType() << "!\n"; } SetValue(I, Result, SF); } static void executeStoreInst(StoreInst *I, ExecutionContext &SF) { GenericValue *Ptr = getOperandValue(I->getPtrOperand(), SF).PointerVal; GenericValue Val = getOperandValue(I->getOperand(0), SF); assert(I->getNumOperands() == 2 && "NI!"); switch (I->getOperand(0)->getType()->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break; case Type::UShortTyID: case Type::ShortTyID: Ptr->ShortVal = Val.ShortVal; break; case Type::UIntTyID: case Type::IntTyID: Ptr->IntVal = Val.IntVal; break; //case Type::ULongTyID: //case Type::LongTyID: Ptr->LongVal = Val.LongVal; break; case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break; case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break; case Type::PointerTyID: Ptr->PointerVal = Val.PointerVal; break; default: cout << "Cannot store value of type " << I->getType() << "!\n"; } } //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) { ECStack.back().Caller = I; vector ArgVals; ArgVals.reserve(I->getNumOperands()-1); for (unsigned i = 1; i < I->getNumOperands(); ++i) ArgVals.push_back(getOperandValue(I->getOperand(i), SF)); callMethod(I->getCalledMethod(), ArgVals); } static void executePHINode(PHINode *I, ExecutionContext &SF) { BasicBlock *PrevBB = SF.PrevBB; Value *IncomingValue = 0; // Search for the value corresponding to this previous bb... for (unsigned i = I->getNumIncomingValues(); i > 0;) { if (I->getIncomingBlock(--i) == PrevBB) { IncomingValue = I->getIncomingValue(i); break; } } assert(IncomingValue && "No PHI node predecessor for current PrevBB!"); // Found the value, set as the result... SetValue(I, getOperandValue(IncomingValue, SF), SF); } #define IMPLEMENT_SHIFT(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break static void executeShlInst(ShiftInst *I, ExecutionContext &SF) { const Type *Ty = I->getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I->getOperand(0), SF); GenericValue Src2 = getOperandValue(I->getOperand(1), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SHIFT(<<, UByte); IMPLEMENT_SHIFT(<<, SByte); IMPLEMENT_SHIFT(<<, UShort); IMPLEMENT_SHIFT(<<, Short); IMPLEMENT_SHIFT(<<, UInt); IMPLEMENT_SHIFT(<<, Int); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for Shl instruction: " << Ty << endl; } SetValue(I, Dest, SF); } static void executeShrInst(ShiftInst *I, ExecutionContext &SF) { const Type *Ty = I->getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I->getOperand(0), SF); GenericValue Src2 = getOperandValue(I->getOperand(1), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SHIFT(>>, UByte); IMPLEMENT_SHIFT(>>, SByte); IMPLEMENT_SHIFT(>>, UShort); IMPLEMENT_SHIFT(>>, Short); IMPLEMENT_SHIFT(>>, UInt); IMPLEMENT_SHIFT(>>, Int); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled type for Shr instruction: " << Ty << endl; } SetValue(I, Dest, SF); } #define IMPLEMENT_CAST(DTY, DCTY, STY) \ case Type::STY##TyID: Dest.DTY##Val = (DCTY)Src.STY##Val; break; #define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ case Type::DESTTY##TyID: \ switch (SrcTy->getPrimitiveID()) { \ IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Int); #define IMPLEMENT_CAST_CASE_PTR_IMP(DESTTY, DESTCTY) \ IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer) #define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Double) #define IMPLEMENT_CAST_CASE_END() \ default: cout << "Unhandled cast: " << SrcTy << " to " << Ty << endl; \ break; \ } \ break #define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_PTR_IMP(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_END() #define IMPLEMENT_CAST_CASE_FP(DESTTY, DESTCTY) \ IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_END() #define IMPLEMENT_CAST_CASE_PTR(DESTTY, DESTCTY) \ IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_PTR_IMP(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_END() static void executeCastInst(CastInst *I, ExecutionContext &SF) { const Type *Ty = I->getType(); const Type *SrcTy = I->getOperand(0)->getType(); GenericValue Src = getOperandValue(I->getOperand(0), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_CAST_CASE(UByte , unsigned char); IMPLEMENT_CAST_CASE(SByte , signed char); IMPLEMENT_CAST_CASE(UShort, unsigned short); IMPLEMENT_CAST_CASE(Short , signed char); IMPLEMENT_CAST_CASE(UInt , unsigned int ); IMPLEMENT_CAST_CASE(Int , signed int ); IMPLEMENT_CAST_CASE_FP(Float , float); IMPLEMENT_CAST_CASE_FP(Double, double); IMPLEMENT_CAST_CASE_PTR(Pointer, GenericValue *); case Type::ULongTyID: case Type::LongTyID: default: cout << "Unhandled dest type for cast instruction: " << Ty << endl; } SetValue(I, Dest, SF); } //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// MethodInfo::MethodInfo(Method *M) : Annotation(MethodInfoAID) { // Assign slot numbers to the method arguments... const Method::ArgumentListType &ArgList = M->getArgumentList(); for (Method::ArgumentListType::const_iterator AI = ArgList.begin(), AE = ArgList.end(); AI != AE; ++AI) { MethodArgument *MA = *AI; MA->addAnnotation(new SlotNumber(getValueSlot(MA))); } // Iterate over all of the instructions... unsigned InstNum = 0; for (Method::inst_iterator MI = M->inst_begin(), ME = M->inst_end(); MI != ME; ++MI) { Instruction *I = *MI; // For each instruction... I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I))); // Add Annote } } unsigned MethodInfo::getValueSlot(const Value *V) { unsigned Plane = V->getType()->getUniqueID(); if (Plane >= NumPlaneElements.size()) NumPlaneElements.resize(Plane+1, 0); return NumPlaneElements[Plane]++; } void Interpreter::initializeExecutionEngine() { AnnotationManager::registerAnnotationFactory(MethodInfoAID, CreateMethodInfo); } //===----------------------------------------------------------------------===// // callMethod - Execute the specified method... // void Interpreter::callMethod(Method *M, const vector &ArgVals) { assert((ECStack.empty() || ECStack.back().Caller == 0 || ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); if (M->isExternal()) { callExternalMethod(M, ArgVals); return; } // Process the method, assigning instruction numbers to the instructions in // the method. Also calculate the number of values for each type slot active. // MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID); ECStack.push_back(ExecutionContext()); // Make a new stack frame... ExecutionContext &StackFrame = ECStack.back(); // Fill it in... StackFrame.CurMethod = M; StackFrame.CurBB = M->front(); StackFrame.CurInst = StackFrame.CurBB->begin(); StackFrame.MethInfo = MethInfo; // Initialize the values to nothing... StackFrame.Values.resize(MethInfo->NumPlaneElements.size()); for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i) StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]); StackFrame.PrevBB = 0; // No previous BB for PHI nodes... // Run through the method arguments and initialize their values... unsigned i = 0; for (Method::ArgumentListType::iterator MI = M->getArgumentList().begin(), ME = M->getArgumentList().end(); MI != ME; ++MI, ++i) { SetValue(*MI, ArgVals[i], StackFrame); } } // executeInstruction - Interpret a single instruction, increment the "PC", and // return true if the next instruction is a breakpoint... // bool Interpreter::executeInstruction() { assert(!ECStack.empty() && "No program running, cannot execute inst!"); ExecutionContext &SF = ECStack.back(); // Current stack frame Instruction *I = *SF.CurInst++; // Increment before execute if (I->isBinaryOp()) { executeBinaryInst((BinaryOperator*)I, SF); } else { switch (I->getOpcode()) { // Terminators case Instruction::Ret: executeRetInst ((ReturnInst*)I, SF); break; case Instruction::Br: executeBrInst ((BranchInst*)I, SF); break; // Memory Instructions case Instruction::Alloca: case Instruction::Malloc: executeAllocInst ((AllocationInst*)I, SF); break; case Instruction::Free: executeFreeInst ((FreeInst*) I, SF); break; case Instruction::Load: executeLoadInst ((LoadInst*) I, SF); break; case Instruction::Store: executeStoreInst ((StoreInst*) I, SF); break; // Miscellaneous Instructions case Instruction::Call: executeCallInst ((CallInst*) I, SF); break; case Instruction::PHINode: executePHINode ((PHINode*) I, SF); break; case Instruction::Shl: executeShlInst ((ShiftInst*) I, SF); break; case Instruction::Shr: executeShrInst ((ShiftInst*) I, SF); break; case Instruction::Cast: executeCastInst ((CastInst*) I, SF); break; default: cout << "Don't know how to execute this instruction!\n-->" << I; } } // Reset the current frame location to the top of stack CurFrame = ECStack.size()-1; if (CurFrame == -1) return false; // No breakpoint if no code // Return true if there is a breakpoint annotation on the instruction... return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0; } void Interpreter::stepInstruction() { // Do the 'step' command if (ECStack.empty()) { cout << "Error: no program running, cannot step!\n"; return; } // Run an instruction... executeInstruction(); // Print the next instruction to execute... printCurrentInstruction(); } // --- UI Stuff... void Interpreter::nextInstruction() { // Do the 'next' command if (ECStack.empty()) { cout << "Error: no program running, cannot 'next'!\n"; return; } // If this is a call instruction, step over the call instruction... // TODO: ICALL, CALL WITH, ... if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) { // Step into the function... if (executeInstruction()) { // Hit a breakpoint, print current instruction, then return to user... cout << "Breakpoint hit!\n"; printCurrentInstruction(); return; } // Finish executing the function... finish(); } else { // Normal instruction, just step... stepInstruction(); } } void Interpreter::run() { if (ECStack.empty()) { cout << "Error: no program running, cannot run!\n"; return; } bool HitBreakpoint = false; while (!ECStack.empty() && !HitBreakpoint) { // Run an instruction... HitBreakpoint = executeInstruction(); } if (HitBreakpoint) { cout << "Breakpoint hit!\n"; } // Print the next instruction to execute... printCurrentInstruction(); } void Interpreter::finish() { if (ECStack.empty()) { cout << "Error: no program running, cannot run!\n"; return; } unsigned StackSize = ECStack.size(); bool HitBreakpoint = false; while (ECStack.size() >= StackSize && !HitBreakpoint) { // Run an instruction... HitBreakpoint = executeInstruction(); } if (HitBreakpoint) { cout << "Breakpoint hit!\n"; } // Print the next instruction to execute... printCurrentInstruction(); } // printCurrentInstruction - Print out the instruction that the virtual PC is // at, or fail silently if no program is running. // void Interpreter::printCurrentInstruction() { if (!ECStack.empty()) { Instruction *I = *ECStack.back().CurInst; InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID); assert(IN && "Instruction has no numbering annotation!"); cout << "#" << IN->InstNum << I; } } void Interpreter::printValue(const Type *Ty, GenericValue V) { cout << Ty << " "; switch (Ty->getPrimitiveID()) { case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break; case Type::SByteTyID: cout << V.SByteVal; break; case Type::UByteTyID: cout << V.UByteVal; break; case Type::ShortTyID: cout << V.ShortVal; break; case Type::UShortTyID: cout << V.UShortVal; break; case Type::IntTyID: cout << V.IntVal; break; case Type::UIntTyID: cout << V.UIntVal; break; case Type::FloatTyID: cout << V.FloatVal; break; case Type::DoubleTyID: cout << V.DoubleVal; break; case Type::PointerTyID:cout << V.PointerVal; break; default: cout << "- Don't know how to print value of this type!"; break; } } void Interpreter::printValue(const string &Name) { Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); if (!PickedVal) return; if (const Method *M = dyn_cast(PickedVal)) { cout << M; // Print the method } else { // Otherwise there should be an annotation for the slot# printValue(PickedVal->getType(), getOperandValue(PickedVal, ECStack[CurFrame])); cout << endl; } } void Interpreter::infoValue(const string &Name) { Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); if (!PickedVal) return; cout << "Value: "; printValue(PickedVal->getType(), getOperandValue(PickedVal, ECStack[CurFrame])); cout << endl; printOperandInfo(PickedVal, ECStack[CurFrame]); } void Interpreter::list() { if (ECStack.empty()) cout << "Error: No program executing!\n"; else cout << ECStack[CurFrame].CurMethod; // Just print the method out... } void Interpreter::printStackTrace() { if (ECStack.empty()) cout << "No program executing!\n"; for (unsigned i = 0; i < ECStack.size(); ++i) { cout << (((int)i == CurFrame) ? '>' : '-'); cout << "#" << i << ". " << ECStack[i].CurMethod->getType() << " \"" << ECStack[i].CurMethod->getName() << "\"("; // TODO: Print Args cout << ")" << endl; cout << *ECStack[i].CurInst; } }