//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Methods common to all machine instructions. // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Value.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetInstrDesc.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Streams.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // MachineOperand Implementation //===----------------------------------------------------------------------===// /// AddRegOperandToRegInfo - Add this register operand to the specified /// MachineRegisterInfo. If it is null, then the next/prev fields should be /// explicitly nulled out. void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { assert(isReg() && "Can only add reg operand to use lists"); // If the reginfo pointer is null, just explicitly null out or next/prev // pointers, to ensure they are not garbage. if (RegInfo == 0) { Contents.Reg.Prev = 0; Contents.Reg.Next = 0; return; } // Otherwise, add this operand to the head of the registers use/def list. MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); // For SSA values, we prefer to keep the definition at the start of the list. // we do this by skipping over the definition if it is at the head of the // list. if (*Head && (*Head)->isDef()) Head = &(*Head)->Contents.Reg.Next; Contents.Reg.Next = *Head; if (Contents.Reg.Next) { assert(getReg() == Contents.Reg.Next->getReg() && "Different regs on the same list!"); Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; } Contents.Reg.Prev = Head; *Head = this; } void MachineOperand::setReg(unsigned Reg) { if (getReg() == Reg) return; // No change. // Otherwise, we have to change the register. If this operand is embedded // into a machine function, we need to update the old and new register's // use/def lists. if (MachineInstr *MI = getParent()) if (MachineBasicBlock *MBB = MI->getParent()) if (MachineFunction *MF = MBB->getParent()) { RemoveRegOperandFromRegInfo(); Contents.Reg.RegNo = Reg; AddRegOperandToRegInfo(&MF->getRegInfo()); return; } // Otherwise, just change the register, no problem. :) Contents.Reg.RegNo = Reg; } /// ChangeToImmediate - Replace this operand with a new immediate operand of /// the specified value. If an operand is known to be an immediate already, /// the setImm method should be used. void MachineOperand::ChangeToImmediate(int64_t ImmVal) { // If this operand is currently a register operand, and if this is in a // function, deregister the operand from the register's use/def list. if (isReg() && getParent() && getParent()->getParent() && getParent()->getParent()->getParent()) RemoveRegOperandFromRegInfo(); OpKind = MO_Immediate; Contents.ImmVal = ImmVal; } /// ChangeToRegister - Replace this operand with a new register operand of /// the specified value. If an operand is known to be an register already, /// the setReg method should be used. void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, bool isKill, bool isDead) { // If this operand is already a register operand, use setReg to update the // register's use/def lists. if (isReg()) { setReg(Reg); } else { // Otherwise, change this to a register and set the reg#. OpKind = MO_Register; Contents.Reg.RegNo = Reg; // If this operand is embedded in a function, add the operand to the // register's use/def list. if (MachineInstr *MI = getParent()) if (MachineBasicBlock *MBB = MI->getParent()) if (MachineFunction *MF = MBB->getParent()) AddRegOperandToRegInfo(&MF->getRegInfo()); } IsDef = isDef; IsImp = isImp; IsKill = isKill; IsDead = isDead; SubReg = 0; } /// isIdenticalTo - Return true if this operand is identical to the specified /// operand. bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { if (getType() != Other.getType()) return false; switch (getType()) { default: assert(0 && "Unrecognized operand type"); case MachineOperand::MO_Register: return getReg() == Other.getReg() && isDef() == Other.isDef() && getSubReg() == Other.getSubReg(); case MachineOperand::MO_Immediate: return getImm() == Other.getImm(); case MachineOperand::MO_FPImmediate: return getFPImm() == Other.getFPImm(); case MachineOperand::MO_MachineBasicBlock: return getMBB() == Other.getMBB(); case MachineOperand::MO_FrameIndex: return getIndex() == Other.getIndex(); case MachineOperand::MO_ConstantPoolIndex: return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); case MachineOperand::MO_JumpTableIndex: return getIndex() == Other.getIndex(); case MachineOperand::MO_GlobalAddress: return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); case MachineOperand::MO_ExternalSymbol: return !strcmp(getSymbolName(), Other.getSymbolName()) && getOffset() == Other.getOffset(); } } /// print - Print the specified machine operand. /// void MachineOperand::print(std::ostream &OS, const TargetMachine *TM) const { switch (getType()) { case MachineOperand::MO_Register: if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) { OS << "%reg" << getReg(); } else { // If the instruction is embedded into a basic block, we can find the // target info for the instruction. if (TM == 0) if (const MachineInstr *MI = getParent()) if (const MachineBasicBlock *MBB = MI->getParent()) if (const MachineFunction *MF = MBB->getParent()) TM = &MF->getTarget(); if (TM) OS << "%" << TM->getRegisterInfo()->get(getReg()).Name; else OS << "%mreg" << getReg(); } if (isDef() || isKill() || isDead() || isImplicit()) { OS << "<"; bool NeedComma = false; if (isImplicit()) { OS << (isDef() ? "imp-def" : "imp-use"); NeedComma = true; } else if (isDef()) { OS << "def"; NeedComma = true; } if (isKill() || isDead()) { if (NeedComma) OS << ","; if (isKill()) OS << "kill"; if (isDead()) OS << "dead"; } OS << ">"; } break; case MachineOperand::MO_Immediate: OS << getImm(); break; case MachineOperand::MO_FPImmediate: if (getFPImm()->getType() == Type::FloatTy) { OS << getFPImm()->getValueAPF().convertToFloat(); } else { OS << getFPImm()->getValueAPF().convertToDouble(); } break; case MachineOperand::MO_MachineBasicBlock: OS << "mbb<" << ((Value*)getMBB()->getBasicBlock())->getName() << "," << (void*)getMBB() << ">"; break; case MachineOperand::MO_FrameIndex: OS << ""; break; case MachineOperand::MO_ConstantPoolIndex: OS << ""; break; case MachineOperand::MO_JumpTableIndex: OS << ""; break; case MachineOperand::MO_GlobalAddress: OS << "getName(); if (getOffset()) OS << "+" << getOffset(); OS << ">"; break; case MachineOperand::MO_ExternalSymbol: OS << ""; break; default: assert(0 && "Unrecognized operand type"); } } //===----------------------------------------------------------------------===// // MachineMemOperand Implementation //===----------------------------------------------------------------------===// MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f, int64_t o, uint64_t s, unsigned int a) : Offset(o), Size(s), V(v), Flags((f & 7) | ((Log2_32(a) + 1) << 3)) { assert(isPowerOf2_32(a) && "Alignment is not a power of 2!"); assert((isLoad() || isStore()) && "Not a load/store!"); } //===----------------------------------------------------------------------===// // MachineInstr Implementation //===----------------------------------------------------------------------===// /// MachineInstr ctor - This constructor creates a dummy MachineInstr with /// TID NULL and no operands. MachineInstr::MachineInstr() : TID(0), NumImplicitOps(0), Parent(0) { // Make sure that we get added to a machine basicblock LeakDetector::addGarbageObject(this); } void MachineInstr::addImplicitDefUseOperands() { if (TID->ImplicitDefs) for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs) addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); if (TID->ImplicitUses) for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses) addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); } /// MachineInstr ctor - This constructor create a MachineInstr and add the /// implicit operands. It reserves space for number of operands specified by /// TargetInstrDesc or the numOperands if it is not zero. (for /// instructions with variable number of operands). MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp) : TID(&tid), NumImplicitOps(0), Parent(0) { if (!NoImp && TID->getImplicitDefs()) for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) NumImplicitOps++; if (!NoImp && TID->getImplicitUses()) for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) NumImplicitOps++; Operands.reserve(NumImplicitOps + TID->getNumOperands()); if (!NoImp) addImplicitDefUseOperands(); // Make sure that we get added to a machine basicblock LeakDetector::addGarbageObject(this); } /// MachineInstr ctor - Work exactly the same as the ctor above, except that the /// MachineInstr is created and added to the end of the specified basic block. /// MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid) : TID(&tid), NumImplicitOps(0), Parent(0) { assert(MBB && "Cannot use inserting ctor with null basic block!"); if (TID->ImplicitDefs) for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs) NumImplicitOps++; if (TID->ImplicitUses) for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses) NumImplicitOps++; Operands.reserve(NumImplicitOps + TID->getNumOperands()); addImplicitDefUseOperands(); // Make sure that we get added to a machine basicblock LeakDetector::addGarbageObject(this); MBB->push_back(this); // Add instruction to end of basic block! } /// MachineInstr ctor - Copies MachineInstr arg exactly /// MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) : TID(&MI.getDesc()), NumImplicitOps(0), Parent(0) { Operands.reserve(MI.getNumOperands()); // Add operands for (unsigned i = 0; i != MI.getNumOperands(); ++i) addOperand(MI.getOperand(i)); NumImplicitOps = MI.NumImplicitOps; // Add memory operands. for (alist::const_iterator i = MI.memoperands_begin(), j = MI.memoperands_end(); i != j; ++i) addMemOperand(MF, *i); // Set parent to null. Parent = 0; } MachineInstr::~MachineInstr() { LeakDetector::removeGarbageObject(this); assert(MemOperands.empty() && "MachineInstr being deleted with live memoperands!"); #ifndef NDEBUG for (unsigned i = 0, e = Operands.size(); i != e; ++i) { assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && "Reg operand def/use list corrupted"); } #endif } /// getOpcode - Returns the opcode of this MachineInstr. /// int MachineInstr::getOpcode() const { return TID->Opcode; } /// getRegInfo - If this instruction is embedded into a MachineFunction, /// return the MachineRegisterInfo object for the current function, otherwise /// return null. MachineRegisterInfo *MachineInstr::getRegInfo() { if (MachineBasicBlock *MBB = getParent()) return &MBB->getParent()->getRegInfo(); return 0; } /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in /// this instruction from their respective use lists. This requires that the /// operands already be on their use lists. void MachineInstr::RemoveRegOperandsFromUseLists() { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i].isReg()) Operands[i].RemoveRegOperandFromRegInfo(); } } /// AddRegOperandsToUseLists - Add all of the register operands in /// this instruction from their respective use lists. This requires that the /// operands not be on their use lists yet. void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i].isReg()) Operands[i].AddRegOperandToRegInfo(&RegInfo); } } /// addOperand - Add the specified operand to the instruction. If it is an /// implicit operand, it is added to the end of the operand list. If it is /// an explicit operand it is added at the end of the explicit operand list /// (before the first implicit operand). void MachineInstr::addOperand(const MachineOperand &Op) { bool isImpReg = Op.isReg() && Op.isImplicit(); assert((isImpReg || !OperandsComplete()) && "Trying to add an operand to a machine instr that is already done!"); // If we are adding the operand to the end of the list, our job is simpler. // This is true most of the time, so this is a reasonable optimization. if (isImpReg || NumImplicitOps == 0) { // We can only do this optimization if we know that the operand list won't // reallocate. if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) { Operands.push_back(Op); // Set the parent of the operand. Operands.back().ParentMI = this; // If the operand is a register, update the operand's use list. if (Op.isReg()) Operands.back().AddRegOperandToRegInfo(getRegInfo()); return; } } // Otherwise, we have to insert a real operand before any implicit ones. unsigned OpNo = Operands.size()-NumImplicitOps; MachineRegisterInfo *RegInfo = getRegInfo(); // If this instruction isn't embedded into a function, then we don't need to // update any operand lists. if (RegInfo == 0) { // Simple insertion, no reginfo update needed for other register operands. Operands.insert(Operands.begin()+OpNo, Op); Operands[OpNo].ParentMI = this; // Do explicitly set the reginfo for this operand though, to ensure the // next/prev fields are properly nulled out. if (Operands[OpNo].isReg()) Operands[OpNo].AddRegOperandToRegInfo(0); } else if (Operands.size()+1 <= Operands.capacity()) { // Otherwise, we have to remove register operands from their register use // list, add the operand, then add the register operands back to their use // list. This also must handle the case when the operand list reallocates // to somewhere else. // If insertion of this operand won't cause reallocation of the operand // list, just remove the implicit operands, add the operand, then re-add all // the rest of the operands. for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { assert(Operands[i].isReg() && "Should only be an implicit reg!"); Operands[i].RemoveRegOperandFromRegInfo(); } // Add the operand. If it is a register, add it to the reg list. Operands.insert(Operands.begin()+OpNo, Op); Operands[OpNo].ParentMI = this; if (Operands[OpNo].isReg()) Operands[OpNo].AddRegOperandToRegInfo(RegInfo); // Re-add all the implicit ops. for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) { assert(Operands[i].isReg() && "Should only be an implicit reg!"); Operands[i].AddRegOperandToRegInfo(RegInfo); } } else { // Otherwise, we will be reallocating the operand list. Remove all reg // operands from their list, then readd them after the operand list is // reallocated. RemoveRegOperandsFromUseLists(); Operands.insert(Operands.begin()+OpNo, Op); Operands[OpNo].ParentMI = this; // Re-add all the operands. AddRegOperandsToUseLists(*RegInfo); } } /// RemoveOperand - Erase an operand from an instruction, leaving it with one /// fewer operand than it started with. /// void MachineInstr::RemoveOperand(unsigned OpNo) { assert(OpNo < Operands.size() && "Invalid operand number"); // Special case removing the last one. if (OpNo == Operands.size()-1) { // If needed, remove from the reg def/use list. if (Operands.back().isReg() && Operands.back().isOnRegUseList()) Operands.back().RemoveRegOperandFromRegInfo(); Operands.pop_back(); return; } // Otherwise, we are removing an interior operand. If we have reginfo to // update, remove all operands that will be shifted down from their reg lists, // move everything down, then re-add them. MachineRegisterInfo *RegInfo = getRegInfo(); if (RegInfo) { for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { if (Operands[i].isReg()) Operands[i].RemoveRegOperandFromRegInfo(); } } Operands.erase(Operands.begin()+OpNo); if (RegInfo) { for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { if (Operands[i].isReg()) Operands[i].AddRegOperandToRegInfo(RegInfo); } } } /// addMemOperand - Add a MachineMemOperand to the machine instruction, /// referencing arbitrary storage. void MachineInstr::addMemOperand(MachineFunction &MF, const MachineMemOperand &MO) { MemOperands.push_back(MF.CreateMachineMemOperand(MO)); } /// clearMemOperands - Erase all of this MachineInstr's MachineMemOperands. void MachineInstr::clearMemOperands(MachineFunction &MF) { while (!MemOperands.empty()) MF.DeleteMachineMemOperand(MemOperands.remove(MemOperands.begin())); } /// removeFromParent - This method unlinks 'this' from the containing basic /// block, and returns it, but does not delete it. MachineInstr *MachineInstr::removeFromParent() { assert(getParent() && "Not embedded in a basic block!"); getParent()->remove(this); return this; } /// eraseFromParent - This method unlinks 'this' from the containing basic /// block, and deletes it. void MachineInstr::eraseFromParent() { assert(getParent() && "Not embedded in a basic block!"); getParent()->erase(this); } /// OperandComplete - Return true if it's illegal to add a new operand /// bool MachineInstr::OperandsComplete() const { unsigned short NumOperands = TID->getNumOperands(); if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands) return true; // Broken: we have all the operands of this instruction! return false; } /// getNumExplicitOperands - Returns the number of non-implicit operands. /// unsigned MachineInstr::getNumExplicitOperands() const { unsigned NumOperands = TID->getNumOperands(); if (!TID->isVariadic()) return NumOperands; for (unsigned e = getNumOperands(); NumOperands != e; ++NumOperands) { const MachineOperand &MO = getOperand(NumOperands); if (!MO.isRegister() || !MO.isImplicit()) NumOperands++; } return NumOperands; } /// isLabel - Returns true if the MachineInstr represents a label. /// bool MachineInstr::isLabel() const { return getOpcode() == TargetInstrInfo::DBG_LABEL || getOpcode() == TargetInstrInfo::EH_LABEL || getOpcode() == TargetInstrInfo::GC_LABEL; } /// isDebugLabel - Returns true if the MachineInstr represents a debug label. /// bool MachineInstr::isDebugLabel() const { return getOpcode() == TargetInstrInfo::DBG_LABEL; } /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of /// the specific register or -1 if it is not found. It further tightening /// the search criteria to a use that kills the register if isKill is true. int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isRegister() || !MO.isUse()) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && TargetRegisterInfo::isPhysicalRegister(Reg) && TRI->isSubRegister(MOReg, Reg))) if (!isKill || MO.isKill()) return i; } return -1; } /// findRegisterDefOperandIdx() - Returns the operand index that is a def of /// the specified register or -1 if it is not found. If isDead is true, defs /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it /// also checks if there is a def of a super-register. int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, const TargetRegisterInfo *TRI) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isRegister() || !MO.isDef()) continue; unsigned MOReg = MO.getReg(); if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && TargetRegisterInfo::isPhysicalRegister(Reg) && TRI->isSubRegister(MOReg, Reg))) if (!isDead || MO.isDead()) return i; } return -1; } /// findFirstPredOperandIdx() - Find the index of the first operand in the /// operand list that is used to represent the predicate. It returns -1 if /// none is found. int MachineInstr::findFirstPredOperandIdx() const { const TargetInstrDesc &TID = getDesc(); if (TID.isPredicable()) { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (TID.OpInfo[i].isPredicate()) return i; } return -1; } /// isRegReDefinedByTwoAddr - Given the defined register and the operand index, /// check if the register def is a re-definition due to two addr elimination. bool MachineInstr::isRegReDefinedByTwoAddr(unsigned Reg, unsigned DefIdx) const{ const TargetInstrDesc &TID = getDesc(); for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (MO.isRegister() && MO.isUse() && MO.getReg() == Reg && TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefIdx) return true; } return false; } /// copyKillDeadInfo - Copies kill / dead operand properties from MI. /// void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isRegister() || (!MO.isKill() && !MO.isDead())) continue; for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { MachineOperand &MOp = getOperand(j); if (!MOp.isIdenticalTo(MO)) continue; if (MO.isKill()) MOp.setIsKill(); else MOp.setIsDead(); break; } } } /// copyPredicates - Copies predicate operand(s) from MI. void MachineInstr::copyPredicates(const MachineInstr *MI) { const TargetInstrDesc &TID = MI->getDesc(); if (!TID.isPredicable()) return; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { if (TID.OpInfo[i].isPredicate()) { // Predicated operands must be last operands. addOperand(MI->getOperand(i)); } } } /// isSafeToMove - Return true if it is safe to move this instruction. If /// SawStore is set to true, it means that there is a store (or call) between /// the instruction's location and its intended destination. bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, bool &SawStore) { // Ignore stuff that we obviously can't move. if (TID->mayStore() || TID->isCall()) { SawStore = true; return false; } if (TID->isReturn() || TID->isBranch() || TID->hasUnmodeledSideEffects()) return false; // See if this instruction does a load. If so, we have to guarantee that the // loaded value doesn't change between the load and the its intended // destination. The check for isInvariantLoad gives the targe the chance to // classify the load as always returning a constant, e.g. a constant pool // load. if (TID->mayLoad() && !TII->isInvariantLoad(this)) { // Otherwise, this is a real load. If there is a store between the load and // end of block, we can't sink the load. // // FIXME: we can't do this transformation until we know that the load is // not volatile, and machineinstrs don't keep this info. :( // //if (SawStore) return false; } return true; } void MachineInstr::dump() const { cerr << " " << *this; } void MachineInstr::print(std::ostream &OS, const TargetMachine *TM) const { // Specialize printing if op#0 is definition unsigned StartOp = 0; if (getNumOperands() && getOperand(0).isRegister() && getOperand(0).isDef()) { getOperand(0).print(OS, TM); OS << " = "; ++StartOp; // Don't print this operand again! } OS << getDesc().getName(); for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { if (i != StartOp) OS << ","; OS << " "; getOperand(i).print(OS, TM); } if (!memoperands_empty()) { OS << ", Mem:"; for (alist::const_iterator i = memoperands_begin(), e = memoperands_end(); i != e; ++i) { const MachineMemOperand &MRO = *i; const Value *V = MRO.getValue(); assert((MRO.isLoad() || MRO.isStore()) && "SV has to be a load, store or both."); if (MRO.isVolatile()) OS << "Volatile "; if (MRO.isLoad()) OS << "LD"; if (MRO.isStore()) OS << "ST"; OS << "(" << MRO.getSize() << "," << MRO.getAlignment() << ") ["; if (!V) OS << ""; else if (!V->getName().empty()) OS << V->getName(); else if (isa(V)) OS << *V; else OS << V; OS << " + " << MRO.getOffset() << "]"; } } OS << "\n"; } bool MachineInstr::addRegisterKilled(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound) { bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); SmallVector DeadOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isRegister() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (Reg == IncomingReg) { MO.setIsKill(); return true; } if (hasAliases && MO.isKill() && TargetRegisterInfo::isPhysicalRegister(Reg)) { // A super-register kill already exists. if (RegInfo->isSuperRegister(IncomingReg, Reg)) return true; if (RegInfo->isSubRegister(IncomingReg, Reg)) DeadOps.push_back(i); } } // Trim unneeded kill operands. while (!DeadOps.empty()) { unsigned OpIdx = DeadOps.back(); if (getOperand(OpIdx).isImplicit()) RemoveOperand(OpIdx); else getOperand(OpIdx).setIsKill(false); DeadOps.pop_back(); } // If not found, this means an alias of one of the operands is killed. Add a // new implicit operand if required. if (AddIfNotFound) { addOperand(MachineOperand::CreateReg(IncomingReg, false /*IsDef*/, true /*IsImp*/, true /*IsKill*/)); return true; } return false; } bool MachineInstr::addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound) { bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); SmallVector DeadOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isRegister() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == IncomingReg) { MO.setIsDead(); return true; } if (hasAliases && MO.isDead() && TargetRegisterInfo::isPhysicalRegister(Reg)) { // There exists a super-register that's marked dead. if (RegInfo->isSuperRegister(IncomingReg, Reg)) return true; if (RegInfo->isSubRegister(IncomingReg, Reg)) DeadOps.push_back(i); } } // Trim unneeded dead operands. while (!DeadOps.empty()) { unsigned OpIdx = DeadOps.back(); if (getOperand(OpIdx).isImplicit()) RemoveOperand(OpIdx); else getOperand(OpIdx).setIsDead(false); DeadOps.pop_back(); } // If not found, this means an alias of one of the operand is dead. Add a // new implicit operand. if (AddIfNotFound) { addOperand(MachineOperand::CreateReg(IncomingReg, true/*IsDef*/, true/*IsImp*/,false/*IsKill*/, true/*IsDead*/)); return true; } return false; }