//===- Pass.cpp - LLVM Pass Infrastructure Impementation ------------------===// // // This file implements the LLVM Pass infrastructure. It is primarily // responsible with ensuring that passes are executed and batched together // optimally. // //===----------------------------------------------------------------------===// #include "llvm/PassManager.h" #include "PassManagerT.h" // PassManagerT implementation #include "llvm/Module.h" #include "Support/STLExtras.h" #include "Support/TypeInfo.h" #include "Config/stdio.h" #include "Config/sys/resource.h" #include "Config/sys/time.h" #include "Config/unistd.h" #include // IncludeFile - Stub function used to help linking out. IncludeFile::IncludeFile(void*) {} //===----------------------------------------------------------------------===// // AnalysisID Class Implementation // static std::vector CFGOnlyAnalyses; void RegisterPassBase::setPreservesCFG() { CFGOnlyAnalyses.push_back(PIObj); } //===----------------------------------------------------------------------===// // AnalysisResolver Class Implementation // void AnalysisResolver::setAnalysisResolver(Pass *P, AnalysisResolver *AR) { assert(P->Resolver == 0 && "Pass already in a PassManager!"); P->Resolver = AR; } //===----------------------------------------------------------------------===// // AnalysisUsage Class Implementation // // setPreservesCFG - This function should be called to by the pass, iff they do // not: // // 1. Add or remove basic blocks from the function // 2. Modify terminator instructions in any way. // // This function annotates the AnalysisUsage info object to say that analyses // that only depend on the CFG are preserved by this pass. // void AnalysisUsage::setPreservesCFG() { // Since this transformation doesn't modify the CFG, it preserves all analyses // that only depend on the CFG (like dominators, loop info, etc...) // Preserved.insert(Preserved.end(), CFGOnlyAnalyses.begin(), CFGOnlyAnalyses.end()); } //===----------------------------------------------------------------------===// // PassManager implementation - The PassManager class is a simple Pimpl class // that wraps the PassManagerT template. // PassManager::PassManager() : PM(new PassManagerT()) {} PassManager::~PassManager() { delete PM; } void PassManager::add(Pass *P) { PM->add(P); } bool PassManager::run(Module &M) { return PM->run(M); } //===----------------------------------------------------------------------===// // FunctionPassManager implementation - The FunctionPassManager class // is a simple Pimpl class that wraps the PassManagerT template. It // is like PassManager, but only deals in FunctionPasses. // FunctionPassManager::FunctionPassManager() : PM(new PassManagerT()) {} FunctionPassManager::~FunctionPassManager() { delete PM; } void FunctionPassManager::add(FunctionPass *P) { PM->add(P); } void FunctionPassManager::add(ImmutablePass *IP) { PM->add(IP); } bool FunctionPassManager::run(Function &F) { return PM->run(F); } //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens with // -time-passes is enabled on the command line. // static cl::opt EnableTiming("time-passes", cl::desc("Time each pass, printing elapsed time for each on exit")); // createTheTimeInfo - This method either initializes the TheTimeInfo pointer to // a non null value (if the -time-passes option is enabled) or it leaves it // null. It may be called multiple times. void TimingInfo::createTheTimeInfo() { if (!EnableTiming || TheTimeInfo) return; // Constructed the first time this is called, iff -time-passes is enabled. // This guarantees that the object will be constructed before static globals, // thus it will be destroyed before them. static TimingInfo TTI; TheTimeInfo = &TTI; } void PMDebug::PrintArgumentInformation(const Pass *P) { // Print out passes in pass manager... if (const AnalysisResolver *PM = dynamic_cast(P)) { for (unsigned i = 0, e = PM->getNumContainedPasses(); i != e; ++i) PrintArgumentInformation(PM->getContainedPass(i)); } else { // Normal pass. Print argument information... // Print out arguments for registered passes that are _optimizations_ if (const PassInfo *PI = P->getPassInfo()) if (PI->getPassType() & PassInfo::Optimization) std::cerr << " -" << PI->getPassArgument(); } } void PMDebug::PrintPassInformation(unsigned Depth, const char *Action, Pass *P, Annotable *V) { if (PassDebugging >= Executions) { std::cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '" << P->getPassName(); if (V) { std::cerr << "' on "; if (dynamic_cast(V)) { std::cerr << "Module\n"; return; } else if (Function *F = dynamic_cast(V)) std::cerr << "Function '" << F->getName(); else if (BasicBlock *BB = dynamic_cast(V)) std::cerr << "BasicBlock '" << BB->getName(); else if (Value *Val = dynamic_cast(V)) std::cerr << typeid(*Val).name() << " '" << Val->getName(); } std::cerr << "'...\n"; } } void PMDebug::PrintAnalysisSetInfo(unsigned Depth, const char *Msg, Pass *P, const std::vector &Set){ if (PassDebugging >= Details && !Set.empty()) { std::cerr << (void*)P << std::string(Depth*2+3, ' ') << Msg << " Analyses:"; for (unsigned i = 0; i != Set.size(); ++i) { if (i) std::cerr << ","; std::cerr << " " << Set[i]->getPassName(); } std::cerr << "\n"; } } //===----------------------------------------------------------------------===// // Pass Implementation // void Pass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } bool Pass::mustPreserveAnalysisID(const PassInfo *AnalysisID) const { return Resolver->getAnalysisToUpdate(AnalysisID) != 0; } // dumpPassStructure - Implement the -debug-passes=Structure option void Pass::dumpPassStructure(unsigned Offset) { std::cerr << std::string(Offset*2, ' ') << getPassName() << "\n"; } // getPassName - Use C++ RTTI to get a SOMEWHAT intelligable name for the pass. // const char *Pass::getPassName() const { if (const PassInfo *PI = getPassInfo()) return PI->getPassName(); return typeid(*this).name(); } // print - Print out the internal state of the pass. This is called by Analyse // to print out the contents of an analysis. Otherwise it is not neccesary to // implement this method. // void Pass::print(std::ostream &O) const { O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n"; } // dump - call print(std::cerr); void Pass::dump() const { print(std::cerr, 0); } //===----------------------------------------------------------------------===// // ImmutablePass Implementation // void ImmutablePass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // FunctionPass Implementation // // run - On a module, we run this pass by initializing, runOnFunction'ing once // for every function in the module, then by finalizing. // bool FunctionPass::run(Module &M) { bool Changed = doInitialization(M); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) // Passes are not run on external functions! Changed |= runOnFunction(*I); return Changed | doFinalization(M); } // run - On a function, we simply initialize, run the function, then finalize. // bool FunctionPass::run(Function &F) { if (F.isExternal()) return false;// Passes are not run on external functions! return doInitialization(*F.getParent()) | runOnFunction(F) | doFinalization(*F.getParent()); } void FunctionPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void FunctionPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // BasicBlockPass Implementation // // To run this pass on a function, we simply call runOnBasicBlock once for each // function. // bool BasicBlockPass::runOnFunction(Function &F) { bool Changed = doInitialization(F); for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) Changed |= runOnBasicBlock(*I); return Changed | doFinalization(F); } // To run directly on the basic block, we initialize, runOnBasicBlock, then // finalize. // bool BasicBlockPass::run(BasicBlock &BB) { Function &F = *BB.getParent(); Module &M = *F.getParent(); return doInitialization(M) | doInitialization(F) | runOnBasicBlock(BB) | doFinalization(F) | doFinalization(M); } void BasicBlockPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void BasicBlockPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // Pass Registration mechanism // static std::map *PassInfoMap = 0; static std::vector *Listeners = 0; // getPassInfo - Return the PassInfo data structure that corresponds to this // pass... const PassInfo *Pass::getPassInfo() const { if (PassInfoCache) return PassInfoCache; return lookupPassInfo(typeid(*this)); } const PassInfo *Pass::lookupPassInfo(const std::type_info &TI) { if (PassInfoMap == 0) return 0; std::map::iterator I = PassInfoMap->find(TI); return (I != PassInfoMap->end()) ? I->second : 0; } void RegisterPassBase::registerPass(PassInfo *PI) { if (PassInfoMap == 0) PassInfoMap = new std::map(); assert(PassInfoMap->find(PI->getTypeInfo()) == PassInfoMap->end() && "Pass already registered!"); PIObj = PI; PassInfoMap->insert(std::make_pair(TypeInfo(PI->getTypeInfo()), PI)); // Notify any listeners... if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passRegistered(PI); } void RegisterPassBase::unregisterPass(PassInfo *PI) { assert(PassInfoMap && "Pass registered but not in map!"); std::map::iterator I = PassInfoMap->find(PI->getTypeInfo()); assert(I != PassInfoMap->end() && "Pass registered but not in map!"); // Remove pass from the map... PassInfoMap->erase(I); if (PassInfoMap->empty()) { delete PassInfoMap; PassInfoMap = 0; } // Notify any listeners... if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passUnregistered(PI); // Delete the PassInfo object itself... delete PI; } //===----------------------------------------------------------------------===// // Analysis Group Implementation Code //===----------------------------------------------------------------------===// struct AnalysisGroupInfo { const PassInfo *DefaultImpl; std::set Implementations; AnalysisGroupInfo() : DefaultImpl(0) {} }; static std::map *AnalysisGroupInfoMap = 0; // RegisterAGBase implementation // RegisterAGBase::RegisterAGBase(const std::type_info &Interface, const std::type_info *Pass, bool isDefault) : ImplementationInfo(0), isDefaultImplementation(isDefault) { InterfaceInfo = const_cast(Pass::lookupPassInfo(Interface)); if (InterfaceInfo == 0) { // First reference to Interface, add it now. InterfaceInfo = // Create the new PassInfo for the interface... new PassInfo("", "", Interface, PassInfo::AnalysisGroup, 0, 0); registerPass(InterfaceInfo); PIObj = 0; } assert(InterfaceInfo->getPassType() == PassInfo::AnalysisGroup && "Trying to join an analysis group that is a normal pass!"); if (Pass) { ImplementationInfo = Pass::lookupPassInfo(*Pass); assert(ImplementationInfo && "Must register pass before adding to AnalysisGroup!"); // Make sure we keep track of the fact that the implementation implements // the interface. PassInfo *IIPI = const_cast(ImplementationInfo); IIPI->addInterfaceImplemented(InterfaceInfo); // Lazily allocate to avoid nasty initialization order dependencies if (AnalysisGroupInfoMap == 0) AnalysisGroupInfoMap = new std::map(); AnalysisGroupInfo &AGI = (*AnalysisGroupInfoMap)[InterfaceInfo]; assert(AGI.Implementations.count(ImplementationInfo) == 0 && "Cannot add a pass to the same analysis group more than once!"); AGI.Implementations.insert(ImplementationInfo); if (isDefault) { assert(AGI.DefaultImpl == 0 && InterfaceInfo->getNormalCtor() == 0 && "Default implementation for analysis group already specified!"); assert(ImplementationInfo->getNormalCtor() && "Cannot specify pass as default if it does not have a default ctor"); AGI.DefaultImpl = ImplementationInfo; InterfaceInfo->setNormalCtor(ImplementationInfo->getNormalCtor()); } } } void RegisterAGBase::setGroupName(const char *Name) { assert(InterfaceInfo->getPassName()[0] == 0 && "Interface Name already set!"); InterfaceInfo->setPassName(Name); } RegisterAGBase::~RegisterAGBase() { if (ImplementationInfo) { assert(AnalysisGroupInfoMap && "Inserted into map, but map doesn't exist?"); AnalysisGroupInfo &AGI = (*AnalysisGroupInfoMap)[InterfaceInfo]; assert(AGI.Implementations.count(ImplementationInfo) && "Pass not a member of analysis group?"); if (AGI.DefaultImpl == ImplementationInfo) AGI.DefaultImpl = 0; AGI.Implementations.erase(ImplementationInfo); // Last member of this analysis group? Unregister PassInfo, delete map entry if (AGI.Implementations.empty()) { assert(AGI.DefaultImpl == 0 && "Default implementation didn't unregister?"); AnalysisGroupInfoMap->erase(InterfaceInfo); if (AnalysisGroupInfoMap->empty()) { // Delete map if empty delete AnalysisGroupInfoMap; AnalysisGroupInfoMap = 0; } unregisterPass(InterfaceInfo); } } } //===----------------------------------------------------------------------===// // PassRegistrationListener implementation // // PassRegistrationListener ctor - Add the current object to the list of // PassRegistrationListeners... PassRegistrationListener::PassRegistrationListener() { if (!Listeners) Listeners = new std::vector(); Listeners->push_back(this); } // dtor - Remove object from list of listeners... PassRegistrationListener::~PassRegistrationListener() { std::vector::iterator I = std::find(Listeners->begin(), Listeners->end(), this); assert(Listeners && I != Listeners->end() && "PassRegistrationListener not registered!"); Listeners->erase(I); if (Listeners->empty()) { delete Listeners; Listeners = 0; } } // enumeratePasses - Iterate over the registered passes, calling the // passEnumerate callback on each PassInfo object. // void PassRegistrationListener::enumeratePasses() { if (PassInfoMap) for (std::map::iterator I = PassInfoMap->begin(), E = PassInfoMap->end(); I != E; ++I) passEnumerate(I->second); }