//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==// // // This file implements the generic part of a Scheduler description for a // target. This functionality is defined in the llvm/Target/SchedInfo.h file. // //===----------------------------------------------------------------------===// #include "llvm/Target/MachineSchedInfo.h" // External object describing the machine instructions // Initialized only when the TargetMachine class is created // and reset when that class is destroyed. // const MachineInstrDescriptor* TargetInstrDescriptors = 0; resourceId_t MachineResource::nextId = 0; // Check if fromRVec and toRVec have *any* common entries. // Assume the vectors are sorted in increasing order. // Algorithm copied from function set_intersection() for sorted ranges // (stl_algo.h). // inline static bool RUConflict(const vector& fromRVec, const vector& toRVec) { unsigned fN = fromRVec.size(), tN = toRVec.size(); unsigned fi = 0, ti = 0; while (fi < fN && ti < tN) { if (fromRVec[fi] < toRVec[ti]) ++fi; else if (toRVec[ti] < fromRVec[fi]) ++ti; else return true; } return false; } static cycles_t ComputeMinGap(const InstrRUsage &fromRU, const InstrRUsage &toRU) { cycles_t minGap = 0; if (fromRU.numBubbles > 0) minGap = fromRU.numBubbles; if (minGap < fromRU.numCycles) { // only need to check from cycle `minGap' onwards for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) { // check if instr. #2 can start executing `gap' cycles after #1 // by checking for resource conflicts in each overlapping cycle cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles); for (cycles_t c = 0; c <= numOverlap-1; c++) if (RUConflict(fromRU.resourcesByCycle[gap + c], toRU.resourcesByCycle[c])) { // conflict found so minGap must be more than `gap' minGap = gap+1; break; } } } return minGap; } //--------------------------------------------------------------------------- // class MachineSchedInfo // Interface to machine description for instruction scheduling //--------------------------------------------------------------------------- MachineSchedInfo::MachineSchedInfo(int NumSchedClasses, const MachineInstrInfo* Mii, const InstrClassRUsage* ClassRUsages, const InstrRUsageDelta* UsageDeltas, const InstrIssueDelta* IssueDeltas, unsigned int NumUsageDeltas, unsigned int NumIssueDeltas) : numSchedClasses(NumSchedClasses), mii(Mii), classRUsages(ClassRUsages), usageDeltas(UsageDeltas), issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas), numIssueDeltas(NumIssueDeltas) {} void MachineSchedInfo::initializeResources() { assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal() && "Insufficient slots for static data! Increase MAX_NUM_SLOTS"); // First, compute common resource usage info for each class because // most instructions will probably behave the same as their class. // Cannot allocate a vector of InstrRUsage so new each one. // vector instrRUForClasses; instrRUForClasses.resize(numSchedClasses); for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) { // instrRUForClasses.push_back(new InstrRUsage); instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal()); instrRUForClasses[sc] = classRUsages[sc]; } computeInstrResources(instrRUForClasses); computeIssueGaps(instrRUForClasses); } void MachineSchedInfo::computeInstrResources(const vector& instrRUForClasses) { int numOpCodes = mii->getNumRealOpCodes(); instrRUsages.resize(numOpCodes); // First get the resource usage information from the class resource usages. for (MachineOpCode op = 0; op < numOpCodes; ++op) { InstrSchedClass sc = getSchedClass(op); assert(sc >= 0 && sc < numSchedClasses); instrRUsages[op] = instrRUForClasses[sc]; } // Now, modify the resource usages as specified in the deltas. for (unsigned i = 0; i < numUsageDeltas; ++i) { MachineOpCode op = usageDeltas[i].opCode; assert(op < numOpCodes); instrRUsages[op].addUsageDelta(usageDeltas[i]); } // Then modify the issue restrictions as specified in the deltas. for (unsigned i = 0; i < numIssueDeltas; ++i) { MachineOpCode op = issueDeltas[i].opCode; assert(op < numOpCodes); instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]); } } void MachineSchedInfo::computeIssueGaps(const vector& instrRUForClasses) { int numOpCodes = mii->getNumRealOpCodes(); instrRUsages.resize(numOpCodes); assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1 && "numOpCodes invalid for implementation of class OpCodePair!"); // First, compute issue gaps between pairs of classes based on common // resources usages for each class, because most instruction pairs will // usually behave the same as their class. // int classPairGaps[numSchedClasses][numSchedClasses]; for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++) for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) { int classPairGap = ComputeMinGap(instrRUForClasses[fromSC], instrRUForClasses[toSC]); classPairGaps[fromSC][toSC] = classPairGap; } // Now, for each pair of instructions, use the class pair gap if both // instructions have identical resource usage as their respective classes. // If not, recompute the gap for the pair from scratch. longestIssueConflict = 0; for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++) for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) { int instrPairGap = (instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass) ? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)] : ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]); if (instrPairGap > 0) { issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap; conflictLists[fromOp].push_back(toOp); longestIssueConflict = max(longestIssueConflict, instrPairGap); } } }