//===-- ParserInternals.h - Definitions internal to the parser --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header file defines the various variables that are shared among the // different components of the parser... // //===----------------------------------------------------------------------===// #ifndef PARSER_INTERNALS_H #define PARSER_INTERNALS_H #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/ADT/StringExtras.h" #include #include #include // Global variables exported from the lexer. extern int yydebug; extern void error(const std::string& msg, int line = -1); extern char* Upgradetext; extern int Upgradeleng; extern int Upgradelineno; namespace llvm { class Module; Module* UpgradeAssembly(const std::string &infile, std::istream& in, bool debug, bool addAttrs); extern std::istream* LexInput; // UnEscapeLexed - Run through the specified buffer and change \xx codes to the // appropriate character. If AllowNull is set to false, a \00 value will cause // an error. // // If AllowNull is set to true, the return value of the function points to the // last character of the string in memory. // char *UnEscapeLexed(char *Buffer, bool AllowNull = false); /// InlineAsmDescriptor - This is a simple class that holds info about inline /// asm blocks, for use by ValID. struct InlineAsmDescriptor { std::string AsmString, Constraints; bool HasSideEffects; InlineAsmDescriptor(const std::string &as, const std::string &c, bool HSE) : AsmString(as), Constraints(c), HasSideEffects(HSE) {} }; /// This class keeps track of the signedness of a type or value. It allows the /// signedness of a composite type to be captured in a relatively simple form. /// This is needed in order to retain the signedness of pre LLVM 2.0 types so /// they can be upgraded properly. Signedness of composite types must be /// captured in order to accurately get the signedness of a value through a /// GEP instruction. /// @brief Class to track signedness of types and values. struct Signedness { /// The basic kinds of signedness values. enum Kind { Signless, ///< The type doesn't have any sign. Unsigned, ///< The type is an unsigned integer. Signed, ///< The type is a signed integer. Named, ///< The type is a named type (probably forward ref or up ref). Composite ///< The type is composite (struct, array, pointer). }; private: /// @brief Keeps track of Signedness for composite types typedef std::vector SignVector; Kind kind; ///< The kind of signedness node union { SignVector *sv; ///< The vector of Signedness for composite types std::string *name; ///< The name of the type for named types. }; public: /// The Signedness class is used as a member of a union so it cannot have /// a constructor or assignment operator. This function suffices. /// @brief Copy one signedness value to another void copy(const Signedness &that); /// The Signedness class is used as a member of a union so it cannot have /// a destructor. /// @brief Release memory, if any allocated. void destroy(); /// @brief Make a Signless node. void makeSignless() { kind = Signless; sv = 0; } /// @brief Make a Signed node. void makeSigned() { kind = Signed; sv = 0; } /// @brief Make an Unsigned node. void makeUnsigned() { kind = Unsigned; sv = 0; } /// @brief Make a Named node. void makeNamed(const std::string& nm){ kind = Named; name = new std::string(nm); } /// @brief Make an empty Composite node. void makeComposite() { kind = Composite; sv = new SignVector(); } /// @brief Make an Composite node, with the first element given. void makeComposite(const Signedness &S) { kind = Composite; sv = new SignVector(); sv->push_back(S); } /// @brief Add an element to a Composite node. void add(const Signedness &S) { assert(isComposite() && "Must be composite to use add"); sv->push_back(S); } bool operator<(const Signedness &that) const; bool operator==(const Signedness &that) const; bool isSigned() const { return kind == Signed; } bool isUnsigned() const { return kind == Unsigned; } bool isSignless() const { return kind == Signless; } bool isNamed() const { return kind == Named; } bool isComposite() const { return kind == Composite; } /// This is used by GetElementPtr to extract the sign of an element. /// @brief Get a specific element from a Composite node. Signedness get(uint64_t idx) const { assert(isComposite() && "Invalid Signedness type for get()"); assert(sv && idx < sv->size() && "Invalid index"); return (*sv)[idx]; } /// @brief Get the name from a Named node. const std::string& getName() const { assert(isNamed() && "Can't get name from non-name Sign"); return *name; } #ifndef NDEBUG void dump() const; #endif }; // ValID - Represents a reference of a definition of some sort. This may either // be a numeric reference or a symbolic (%var) reference. This is just a // discriminated union. // // Note that I can't implement this class in a straight forward manner with // constructors and stuff because it goes in a union. // struct ValID { enum { NumberVal, NameVal, ConstSIntVal, ConstUIntVal, ConstFPVal, ConstNullVal, ConstUndefVal, ConstZeroVal, ConstantVal, InlineAsmVal } Type; union { int Num; // If it's a numeric reference char *Name; // If it's a named reference. Memory must be free'd. int64_t ConstPool64; // Constant pool reference. This is the value uint64_t UConstPool64;// Unsigned constant pool reference. APFloat *ConstPoolFP; // Floating point constant pool reference Constant *ConstantValue; // Fully resolved constant for ConstantVal case. InlineAsmDescriptor *IAD; }; Signedness S; static ValID create(int Num) { ValID D; D.Type = NumberVal; D.Num = Num; D.S.makeSignless(); return D; } static ValID create(char *Name) { ValID D; D.Type = NameVal; D.Name = Name; D.S.makeSignless(); return D; } static ValID create(int64_t Val) { ValID D; D.Type = ConstSIntVal; D.ConstPool64 = Val; D.S.makeSigned(); return D; } static ValID create(uint64_t Val) { ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val; D.S.makeUnsigned(); return D; } static ValID create(APFloat* Val) { ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val; D.S.makeSignless(); return D; } static ValID createNull() { ValID D; D.Type = ConstNullVal; D.S.makeSignless(); return D; } static ValID createUndef() { ValID D; D.Type = ConstUndefVal; D.S.makeSignless(); return D; } static ValID createZeroInit() { ValID D; D.Type = ConstZeroVal; D.S.makeSignless(); return D; } static ValID create(Constant *Val) { ValID D; D.Type = ConstantVal; D.ConstantValue = Val; D.S.makeSignless(); return D; } static ValID createInlineAsm(const std::string &AsmString, const std::string &Constraints, bool HasSideEffects) { ValID D; D.Type = InlineAsmVal; D.IAD = new InlineAsmDescriptor(AsmString, Constraints, HasSideEffects); D.S.makeSignless(); return D; } inline void destroy() const { if (Type == NameVal) free(Name); // Free this strdup'd memory. else if (Type == InlineAsmVal) delete IAD; } inline ValID copy() const { if (Type != NameVal) return *this; ValID Result = *this; Result.Name = strdup(Name); return Result; } inline std::string getName() const { switch (Type) { case NumberVal : return std::string("#") + itostr(Num); case NameVal : return Name; case ConstFPVal : return ftostr(*ConstPoolFP); case ConstNullVal : return "null"; case ConstUndefVal : return "undef"; case ConstZeroVal : return "zeroinitializer"; case ConstUIntVal : case ConstSIntVal : return std::string("%") + itostr(ConstPool64); case ConstantVal: if (ConstantValue == ConstantInt::get(Type::Int1Ty, true)) return "true"; if (ConstantValue == ConstantInt::get(Type::Int1Ty, false)) return "false"; return ""; default: assert(0 && "Unknown value!"); abort(); return ""; } } bool operator<(const ValID &V) const { if (Type != V.Type) return Type < V.Type; switch (Type) { case NumberVal: return Num < V.Num; case NameVal: return strcmp(Name, V.Name) < 0; case ConstSIntVal: return ConstPool64 < V.ConstPool64; case ConstUIntVal: return UConstPool64 < V.UConstPool64; case ConstFPVal: return ConstPoolFP->compare(*V.ConstPoolFP) == APFloat::cmpLessThan; case ConstNullVal: return false; case ConstUndefVal: return false; case ConstZeroVal: return false; case ConstantVal: return ConstantValue < V.ConstantValue; default: assert(0 && "Unknown value type!"); return false; } } }; /// The following enums are used to keep track of prior opcodes. The lexer will /// retain the ability to parse obsolete opcode mnemonics and generates semantic /// values containing one of these enumerators. enum TermOps { RetOp, BrOp, SwitchOp, InvokeOp, UnwindOp, UnreachableOp }; enum BinaryOps { AddOp, SubOp, MulOp, DivOp, UDivOp, SDivOp, FDivOp, RemOp, URemOp, SRemOp, FRemOp, AndOp, OrOp, XorOp, ShlOp, ShrOp, LShrOp, AShrOp, SetEQ, SetNE, SetLE, SetGE, SetLT, SetGT }; enum MemoryOps { MallocOp, FreeOp, AllocaOp, LoadOp, StoreOp, GetElementPtrOp }; enum OtherOps { PHIOp, CallOp, SelectOp, UserOp1, UserOp2, VAArg, ExtractElementOp, InsertElementOp, ShuffleVectorOp, ICmpOp, FCmpOp }; enum CastOps { CastOp, TruncOp, ZExtOp, SExtOp, FPTruncOp, FPExtOp, FPToUIOp, FPToSIOp, UIToFPOp, SIToFPOp, PtrToIntOp, IntToPtrOp, BitCastOp }; // An enumeration for the old calling conventions, ala LLVM 1.9 namespace OldCallingConv { enum ID { C = 0, CSRet = 1, Fast = 8, Cold = 9, X86_StdCall = 64, X86_FastCall = 65, None = 99999 }; } /// These structures are used as the semantic values returned from various /// productions in the grammar. They simply bundle an LLVM IR object with /// its Signedness value. These help track signedness through the various /// productions. struct TypeInfo { const llvm::Type *T; Signedness S; bool operator<(const TypeInfo& that) const { if (this == &that) return false; if (T < that.T) return true; if (T == that.T) { bool result = S < that.S; //#define TYPEINFO_DEBUG #ifdef TYPEINFO_DEBUG std::cerr << (result?"true ":"false ") << T->getDescription() << " ("; S.dump(); std::cerr << ") < " << that.T->getDescription() << " ("; that.S.dump(); std::cerr << ")\n"; #endif return result; } return false; } bool operator==(const TypeInfo& that) const { if (this == &that) return true; return T == that.T && S == that.S; } void destroy() { S.destroy(); } }; struct PATypeInfo { llvm::PATypeHolder* PAT; Signedness S; void destroy() { S.destroy(); delete PAT; } }; struct ConstInfo { llvm::Constant* C; Signedness S; void destroy() { S.destroy(); } }; struct ValueInfo { llvm::Value* V; Signedness S; void destroy() { S.destroy(); } }; struct InstrInfo { llvm::Instruction *I; Signedness S; void destroy() { S.destroy(); } }; struct TermInstInfo { llvm::TerminatorInst *TI; Signedness S; void destroy() { S.destroy(); } }; struct PHIListInfo { std::list > *P; Signedness S; void destroy() { S.destroy(); delete P; } }; } // End llvm namespace #endif