//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a DAG instruction selector. // //===----------------------------------------------------------------------===// #include "DAGISelEmitter.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // SDTypeConstraint implementation // SDTypeConstraint::SDTypeConstraint(Record *R) { OperandNo = R->getValueAsInt("OperandNum"); if (R->isSubClassOf("SDTCisVT")) { ConstraintType = SDTCisVT; x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); } else if (R->isSubClassOf("SDTCisInt")) { ConstraintType = SDTCisInt; } else if (R->isSubClassOf("SDTCisFP")) { ConstraintType = SDTCisFP; } else if (R->isSubClassOf("SDTCisSameAs")) { ConstraintType = SDTCisSameAs; x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { ConstraintType = SDTCisVTSmallerThanOp; x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else { std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; exit(1); } } /// getOperandNum - Return the node corresponding to operand #OpNo in tree /// N, which has NumResults results. TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, TreePatternNode *N, unsigned NumResults) const { assert(NumResults == 1 && "We only work with single result nodes so far!"); if (OpNo < NumResults) return N; // FIXME: need value # else return N->getChild(OpNo-NumResults); } /// ApplyTypeConstraint - Given a node in a pattern, apply this type /// constraint to the nodes operands. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, TreePattern &TP) const { unsigned NumResults = NodeInfo.getNumResults(); assert(NumResults == 1 && "We only work with single result nodes so far!"); // Check that the number of operands is sane. if (NodeInfo.getNumOperands() >= 0) { if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) TP.error(N->getOperator()->getName() + " node requires exactly " + itostr(NodeInfo.getNumOperands()) + " operands!"); } TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); switch (ConstraintType) { default: assert(0 && "Unknown constraint type!"); case SDTCisVT: // Operand must be a particular type. return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); case SDTCisInt: if (NodeToApply->hasTypeSet() && !MVT::isInteger(NodeToApply->getType())) NodeToApply->UpdateNodeType(MVT::i1, TP); // throw an error. // FIXME: can tell from the target if there is only one Int type supported. return false; case SDTCisFP: if (NodeToApply->hasTypeSet() && !MVT::isFloatingPoint(NodeToApply->getType())) NodeToApply->UpdateNodeType(MVT::f32, TP); // throw an error. // FIXME: can tell from the target if there is only one FP type supported. return false; case SDTCisSameAs: { TreePatternNode *OtherNode = getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); return NodeToApply->UpdateNodeType(OtherNode->getType(), TP) | OtherNode->UpdateNodeType(NodeToApply->getType(), TP); } case SDTCisVTSmallerThanOp: { // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must // have an integer type that is smaller than the VT. if (!NodeToApply->isLeaf() || !dynamic_cast(NodeToApply->getLeafValue()) || !static_cast(NodeToApply->getLeafValue())->getDef() ->isSubClassOf("ValueType")) TP.error(N->getOperator()->getName() + " expects a VT operand!"); MVT::ValueType VT = getValueType(static_cast(NodeToApply->getLeafValue())->getDef()); if (!MVT::isInteger(VT)) TP.error(N->getOperator()->getName() + " VT operand must be integer!"); TreePatternNode *OtherNode = getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); if (OtherNode->hasTypeSet() && (!MVT::isInteger(OtherNode->getType()) || OtherNode->getType() <= VT)) OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. return false; } } return false; } //===----------------------------------------------------------------------===// // SDNodeInfo implementation // SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { EnumName = R->getValueAsString("Opcode"); SDClassName = R->getValueAsString("SDClass"); Record *TypeProfile = R->getValueAsDef("TypeProfile"); NumResults = TypeProfile->getValueAsInt("NumResults"); NumOperands = TypeProfile->getValueAsInt("NumOperands"); // Parse the type constraints. ListInit *Constraints = TypeProfile->getValueAsListInit("Constraints"); for (unsigned i = 0, e = Constraints->getSize(); i != e; ++i) { assert(dynamic_cast(Constraints->getElement(i)) && "Constraints list should contain constraint definitions!"); Record *Constraint = static_cast(Constraints->getElement(i))->getDef(); TypeConstraints.push_back(Constraint); } } //===----------------------------------------------------------------------===// // TreePatternNode implementation // TreePatternNode::~TreePatternNode() { #if 0 // FIXME: implement refcounted tree nodes! for (unsigned i = 0, e = getNumChildren(); i != e; ++i) delete getChild(i); #endif } /// UpdateNodeType - Set the node type of N to VT if VT contains /// information. If N already contains a conflicting type, then throw an /// exception. This returns true if any information was updated. /// bool TreePatternNode::UpdateNodeType(MVT::ValueType VT, TreePattern &TP) { if (VT == MVT::LAST_VALUETYPE || getType() == VT) return false; if (getType() == MVT::LAST_VALUETYPE) { setType(VT); return true; } TP.error("Type inference contradiction found in node " + getOperator()->getName() + "!"); return true; // unreachable } void TreePatternNode::print(std::ostream &OS) const { if (isLeaf()) { OS << *getLeafValue(); } else { OS << "(" << getOperator()->getName(); } if (getType() == MVT::Other) OS << ":Other"; else if (getType() == MVT::LAST_VALUETYPE) ;//OS << ":?"; else OS << ":" << getType(); if (!isLeaf()) { if (getNumChildren() != 0) { OS << " "; getChild(0)->print(OS); for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { OS << ", "; getChild(i)->print(OS); } } OS << ")"; } if (!PredicateFn.empty()) OS << "<>"; if (TransformFn) OS << "<getName() << ">>"; if (!getName().empty()) OS << ":$" << getName(); } void TreePatternNode::dump() const { print(std::cerr); } /// clone - Make a copy of this tree and all of its children. /// TreePatternNode *TreePatternNode::clone() const { TreePatternNode *New; if (isLeaf()) { New = new TreePatternNode(getLeafValue()); } else { std::vector CChildren; CChildren.reserve(Children.size()); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) CChildren.push_back(getChild(i)->clone()); New = new TreePatternNode(getOperator(), CChildren); } New->setName(getName()); New->setType(getType()); New->setPredicateFn(getPredicateFn()); New->setTransformFn(getTransformFn()); return New; } /// SubstituteFormalArguments - Replace the formal arguments in this tree /// with actual values specified by ArgMap. void TreePatternNode:: SubstituteFormalArguments(std::map &ArgMap) { if (isLeaf()) return; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); if (Child->isLeaf()) { Init *Val = Child->getLeafValue(); if (dynamic_cast(Val) && static_cast(Val)->getDef()->getName() == "node") { // We found a use of a formal argument, replace it with its value. Child = ArgMap[Child->getName()]; assert(Child && "Couldn't find formal argument!"); setChild(i, Child); } } else { getChild(i)->SubstituteFormalArguments(ArgMap); } } } /// InlinePatternFragments - If this pattern refers to any pattern /// fragments, inline them into place, giving us a pattern without any /// PatFrag references. TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { if (isLeaf()) return this; // nothing to do. Record *Op = getOperator(); if (!Op->isSubClassOf("PatFrag")) { // Just recursively inline children nodes. for (unsigned i = 0, e = getNumChildren(); i != e; ++i) setChild(i, getChild(i)->InlinePatternFragments(TP)); return this; } // Otherwise, we found a reference to a fragment. First, look up its // TreePattern record. TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); // Verify that we are passing the right number of operands. if (Frag->getNumArgs() != Children.size()) TP.error("'" + Op->getName() + "' fragment requires " + utostr(Frag->getNumArgs()) + " operands!"); TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); // Resolve formal arguments to their actual value. if (Frag->getNumArgs()) { // Compute the map of formal to actual arguments. std::map ArgMap; for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); FragTree->SubstituteFormalArguments(ArgMap); } FragTree->setName(getName()); // Get a new copy of this fragment to stitch into here. //delete this; // FIXME: implement refcounting! return FragTree; } /// ApplyTypeConstraints - Apply all of the type constraints relevent to /// this node and its children in the tree. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP) { if (isLeaf()) return false; // special handling for set, which isn't really an SDNode. if (getOperator()->getName() == "set") { assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); bool MadeChange = getChild(0)->ApplyTypeConstraints(TP); MadeChange |= getChild(1)->ApplyTypeConstraints(TP); // Types of operands must match. MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getType(), TP); MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getType(), TP); MadeChange |= UpdateNodeType(MVT::isVoid, TP); return MadeChange; } else if (getOperator()->isSubClassOf("SDNode")) { const SDNodeInfo &NI = TP.getDAGISelEmitter().getSDNodeInfo(getOperator()); bool MadeChange = NI.ApplyTypeConstraints(this, TP); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP); return MadeChange; } else if (getOperator()->isSubClassOf("Instruction")) { const DAGInstruction &Inst = TP.getDAGISelEmitter().getInstruction(getOperator()); assert(Inst.getNumResults() == 1 && "Only supports one result instrs!"); // Apply the result type to the node bool MadeChange = UpdateNodeType(Inst.getResultType(0), TP); if (getNumChildren() != Inst.getNumOperands()) TP.error("Instruction '" + getOperator()->getName() + " expects " + utostr(Inst.getNumOperands()) + " operands, not " + utostr(getNumChildren()) + " operands!"); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { MadeChange |= getChild(i)->UpdateNodeType(Inst.getOperandType(i), TP); MadeChange |= getChild(i)->ApplyTypeConstraints(TP); } return MadeChange; } else { assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); // Node transforms always take one operand, and take and return the same // type. if (getNumChildren() != 1) TP.error("Node transform '" + getOperator()->getName() + "' requires one operand!"); bool MadeChange = UpdateNodeType(getChild(0)->getType(), TP); MadeChange |= getChild(0)->UpdateNodeType(getType(), TP); return MadeChange; } } //===----------------------------------------------------------------------===// // TreePattern implementation // TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); } TreePattern::TreePattern(Record *TheRec, DagInit *Pat, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { Trees.push_back(ParseTreePattern(Pat)); } TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { Trees.push_back(Pat); } void TreePattern::error(const std::string &Msg) const { dump(); throw "In " + TheRecord->getName() + ": " + Msg; } /// getIntrinsicType - Check to see if the specified record has an intrinsic /// type which should be applied to it. This infer the type of register /// references from the register file information, for example. /// MVT::ValueType TreePattern::getIntrinsicType(Record *R) const { // Check to see if this is a register or a register class... if (R->isSubClassOf("RegisterClass")) return getValueType(R->getValueAsDef("RegType")); else if (R->isSubClassOf("PatFrag")) { // Pattern fragment types will be resolved when they are inlined. return MVT::LAST_VALUETYPE; } else if (R->isSubClassOf("Register")) { assert(0 && "Explicit registers not handled here yet!\n"); return MVT::LAST_VALUETYPE; } else if (R->isSubClassOf("ValueType")) { // Using a VTSDNode. return MVT::Other; } else if (R->getName() == "node") { // Placeholder. return MVT::LAST_VALUETYPE; } error("Unknown value used: " + R->getName()); return MVT::Other; } TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { Record *Operator = Dag->getNodeType(); if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only valid for a leaf node!"); Init *Arg = Dag->getArg(0); TreePatternNode *New; if (DefInit *DI = dynamic_cast(Arg)) { New = new TreePatternNode(DI); // If it's a regclass or something else known, set the type. New->setType(getIntrinsicType(DI->getDef())); } else if (DagInit *DI = dynamic_cast(Arg)) { New = ParseTreePattern(DI); } else { Arg->dump(); error("Unknown leaf value for tree pattern!"); return 0; } // Apply the type cast. New->UpdateNodeType(getValueType(Operator), *this); return New; } // Verify that this is something that makes sense for an operator. if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && !Operator->isSubClassOf("Instruction") && !Operator->isSubClassOf("SDNodeXForm") && Operator->getName() != "set") error("Unrecognized node '" + Operator->getName() + "'!"); std::vector Children; for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { Init *Arg = Dag->getArg(i); if (DagInit *DI = dynamic_cast(Arg)) { Children.push_back(ParseTreePattern(DI)); Children.back()->setName(Dag->getArgName(i)); } else if (DefInit *DefI = dynamic_cast(Arg)) { Record *R = DefI->getDef(); // Direct reference to a leaf DagNode or PatFrag? Turn it into a // TreePatternNode if its own. if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { Dag->setArg(i, new DagInit(R, std::vector >())); --i; // Revisit this node... } else { TreePatternNode *Node = new TreePatternNode(DefI); Node->setName(Dag->getArgName(i)); Children.push_back(Node); // If it's a regclass or something else known, set the type. Node->setType(getIntrinsicType(R)); // Input argument? if (R->getName() == "node") { if (Dag->getArgName(i).empty()) error("'node' argument requires a name to match with operand list"); Args.push_back(Dag->getArgName(i)); } } } else { Arg->dump(); error("Unknown leaf value for tree pattern!"); } } return new TreePatternNode(Operator, Children); } /// InferAllTypes - Infer/propagate as many types throughout the expression /// patterns as possible. Return true if all types are infered, false /// otherwise. Throw an exception if a type contradiction is found. bool TreePattern::InferAllTypes() { bool MadeChange = true; while (MadeChange) { MadeChange = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) MadeChange |= Trees[i]->ApplyTypeConstraints(*this); } bool HasUnresolvedTypes = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); return !HasUnresolvedTypes; } void TreePattern::print(std::ostream &OS) const { OS << getRecord()->getName(); if (!Args.empty()) { OS << "(" << Args[0]; for (unsigned i = 1, e = Args.size(); i != e; ++i) OS << ", " << Args[i]; OS << ")"; } OS << ": "; if (Trees.size() > 1) OS << "[\n"; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { OS << "\t"; Trees[i]->print(OS); OS << "\n"; } if (Trees.size() > 1) OS << "]\n"; } void TreePattern::dump() const { print(std::cerr); } //===----------------------------------------------------------------------===// // DAGISelEmitter implementation // // Parse all of the SDNode definitions for the target, populating SDNodes. void DAGISelEmitter::ParseNodeInfo() { std::vector Nodes = Records.getAllDerivedDefinitions("SDNode"); while (!Nodes.empty()) { SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); Nodes.pop_back(); } } /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms /// map, and emit them to the file as functions. void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { OS << "\n// Node transformations.\n"; std::vector Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); while (!Xforms.empty()) { Record *XFormNode = Xforms.back(); Record *SDNode = XFormNode->getValueAsDef("Opcode"); std::string Code = XFormNode->getValueAsCode("XFormFunction"); SDNodeXForms.insert(std::make_pair(XFormNode, std::make_pair(SDNode, Code))); if (!Code.empty()) { std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); const char *C2 = ClassName == "SDNode" ? "N" : "inN"; OS << "inline SDOperand Transform_" << XFormNode->getName() << "(SDNode *" << C2 << ") {\n"; if (ClassName != "SDNode") OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; OS << Code << "\n}\n"; } Xforms.pop_back(); } } /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td /// file, building up the PatternFragments map. After we've collected them all, /// inline fragments together as necessary, so that there are no references left /// inside a pattern fragment to a pattern fragment. /// /// This also emits all of the predicate functions to the output file. /// void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { std::vector Fragments = Records.getAllDerivedDefinitions("PatFrag"); // First step, parse all of the fragments and emit predicate functions. OS << "\n// Predicate functions.\n"; for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); TreePattern *P = new TreePattern(Fragments[i], Tree, *this); PatternFragments[Fragments[i]] = P; // Validate the argument list, converting it to map, to discard duplicates. std::vector &Args = P->getArgList(); std::set OperandsMap(Args.begin(), Args.end()); if (OperandsMap.count("")) P->error("Cannot have unnamed 'node' values in pattern fragment!"); // Parse the operands list. DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); if (OpsList->getNodeType()->getName() != "ops") P->error("Operands list should start with '(ops ... '!"); // Copy over the arguments. Args.clear(); for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { if (!dynamic_cast(OpsList->getArg(j)) || static_cast(OpsList->getArg(j))-> getDef()->getName() != "node") P->error("Operands list should all be 'node' values."); if (OpsList->getArgName(j).empty()) P->error("Operands list should have names for each operand!"); if (!OperandsMap.count(OpsList->getArgName(j))) P->error("'" + OpsList->getArgName(j) + "' does not occur in pattern or was multiply specified!"); OperandsMap.erase(OpsList->getArgName(j)); Args.push_back(OpsList->getArgName(j)); } if (!OperandsMap.empty()) P->error("Operands list does not contain an entry for operand '" + *OperandsMap.begin() + "'!"); // If there is a code init for this fragment, emit the predicate code and // keep track of the fact that this fragment uses it. std::string Code = Fragments[i]->getValueAsCode("Predicate"); if (!Code.empty()) { assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!"); std::string ClassName = getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); const char *C2 = ClassName == "SDNode" ? "N" : "inN"; OS << "inline bool Predicate_" << Fragments[i]->getName() << "(SDNode *" << C2 << ") {\n"; if (ClassName != "SDNode") OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; OS << Code << "\n}\n"; P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); } // If there is a node transformation corresponding to this, keep track of // it. Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? P->getOnlyTree()->setTransformFn(Transform); } OS << "\n\n"; // Now that we've parsed all of the tree fragments, do a closure on them so // that there are not references to PatFrags left inside of them. for (std::map::iterator I = PatternFragments.begin(), E = PatternFragments.end(); I != E; ++I) { TreePattern *ThePat = I->second; ThePat->InlinePatternFragments(); // Infer as many types as possible. Don't worry about it if we don't infer // all of them, some may depend on the inputs of the pattern. try { ThePat->InferAllTypes(); } catch (...) { // If this pattern fragment is not supported by this target (no types can // satisfy its constraints), just ignore it. If the bogus pattern is // actually used by instructions, the type consistency error will be // reported there. } // If debugging, print out the pattern fragment result. DEBUG(ThePat->dump()); } } /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an /// instruction input. Return true if this is a real use. static bool HandleUse(TreePattern *I, TreePatternNode *Pat, std::map &InstInputs) { // No name -> not interesting. if (Pat->getName().empty()) { if (Pat->isLeaf()) { DefInit *DI = dynamic_cast(Pat->getLeafValue()); if (DI && DI->getDef()->isSubClassOf("RegisterClass")) I->error("Input " + DI->getDef()->getName() + " must be named!"); } return false; } Record *Rec; if (Pat->isLeaf()) { DefInit *DI = dynamic_cast(Pat->getLeafValue()); if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); Rec = DI->getDef(); } else { assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); Rec = Pat->getOperator(); } TreePatternNode *&Slot = InstInputs[Pat->getName()]; if (!Slot) { Slot = Pat; } else { Record *SlotRec; if (Slot->isLeaf()) { SlotRec = dynamic_cast(Slot->getLeafValue())->getDef(); } else { assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); SlotRec = Slot->getOperator(); } // Ensure that the inputs agree if we've already seen this input. if (Rec != SlotRec) I->error("All $" + Pat->getName() + " inputs must agree with each other"); if (Slot->getType() != Pat->getType()) I->error("All $" + Pat->getName() + " inputs must agree with each other"); } return true; } /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is /// part of "I", the instruction), computing the set of inputs and outputs of /// the pattern. Report errors if we see anything naughty. void DAGISelEmitter:: FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, std::map &InstInputs, std::map &InstResults) { if (Pat->isLeaf()) { bool isUse = HandleUse(I, Pat, InstInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } else if (Pat->getOperator()->getName() != "set") { // If this is not a set, verify that the children nodes are not void typed, // and recurse. for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { if (Pat->getChild(i)->getType() == MVT::isVoid) I->error("Cannot have void nodes inside of patterns!"); FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults); } // If this is a non-leaf node with no children, treat it basically as if // it were a leaf. This handles nodes like (imm). bool isUse = false; if (Pat->getNumChildren() == 0) isUse = HandleUse(I, Pat, InstInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } // Otherwise, this is a set, validate and collect instruction results. if (Pat->getNumChildren() == 0) I->error("set requires operands!"); else if (Pat->getNumChildren() & 1) I->error("set requires an even number of operands"); if (Pat->getTransformFn()) I->error("Cannot specify a transform function on a set node!"); // Check the set destinations. unsigned NumValues = Pat->getNumChildren()/2; for (unsigned i = 0; i != NumValues; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("set destination should be a virtual register!"); DefInit *Val = dynamic_cast(Dest->getLeafValue()); if (!Val) I->error("set destination should be a virtual register!"); if (!Val->getDef()->isSubClassOf("RegisterClass")) I->error("set destination should be a virtual register!"); if (Dest->getName().empty()) I->error("set destination must have a name!"); if (InstResults.count(Dest->getName())) I->error("cannot set '" + Dest->getName() +"' multiple times"); InstResults[Dest->getName()] = Val->getDef(); // Verify and collect info from the computation. FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), InstInputs, InstResults); } } /// ParseInstructions - Parse all of the instructions, inlining and resolving /// any fragments involved. This populates the Instructions list with fully /// resolved instructions. void DAGISelEmitter::ParseInstructions() { std::vector Instrs = Records.getAllDerivedDefinitions("Instruction"); for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { if (!dynamic_cast(Instrs[i]->getValueInit("Pattern"))) continue; // no pattern yet, ignore it. ListInit *LI = Instrs[i]->getValueAsListInit("Pattern"); if (LI->getSize() == 0) continue; // no pattern. // Parse the instruction. TreePattern *I = new TreePattern(Instrs[i], LI, *this); // Inline pattern fragments into it. I->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this instruction pattern: report it to the user. if (!I->InferAllTypes()) I->error("Could not infer all types in pattern!"); // InstInputs - Keep track of all of the inputs of the instruction, along // with the record they are declared as. std::map InstInputs; // InstResults - Keep track of all the virtual registers that are 'set' // in the instruction, including what reg class they are. std::map InstResults; // Verify that the top-level forms in the instruction are of void type, and // fill in the InstResults map. for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { TreePatternNode *Pat = I->getTree(j); if (Pat->getType() != MVT::isVoid) { I->dump(); I->error("Top-level forms in instruction pattern should have" " void types"); } // Find inputs and outputs, and verify the structure of the uses/defs. FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults); } // Now that we have inputs and outputs of the pattern, inspect the operands // list for the instruction. This determines the order that operands are // added to the machine instruction the node corresponds to. unsigned NumResults = InstResults.size(); // Parse the operands list from the (ops) list, validating it. std::vector &Args = I->getArgList(); assert(Args.empty() && "Args list should still be empty here!"); CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); // Check that all of the results occur first in the list. std::vector ResultTypes; for (unsigned i = 0; i != NumResults; ++i) { if (i == CGI.OperandList.size()) I->error("'" + InstResults.begin()->first + "' set but does not appear in operand list!"); const std::string &OpName = CGI.OperandList[i].Name; // Check that it exists in InstResults. Record *R = InstResults[OpName]; if (R == 0) I->error("Operand $" + OpName + " should be a set destination: all " "outputs must occur before inputs in operand list!"); if (CGI.OperandList[i].Rec != R) I->error("Operand $" + OpName + " class mismatch!"); // Remember the return type. ResultTypes.push_back(CGI.OperandList[i].Ty); // Okay, this one checks out. InstResults.erase(OpName); } // Loop over the inputs next. Make a copy of InstInputs so we can destroy // the copy while we're checking the inputs. std::map InstInputsCheck(InstInputs); std::vector ResultNodeOperands; std::vector OperandTypes; for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { const std::string &OpName = CGI.OperandList[i].Name; if (OpName.empty()) I->error("Operand #" + utostr(i) + " in operands list has no name!"); if (!InstInputsCheck.count(OpName)) I->error("Operand $" + OpName + " does not appear in the instruction pattern"); TreePatternNode *InVal = InstInputsCheck[OpName]; InstInputsCheck.erase(OpName); // It occurred, remove from map. if (CGI.OperandList[i].Ty != InVal->getType()) I->error("Operand $" + OpName + "'s type disagrees between the operand and pattern"); OperandTypes.push_back(InVal->getType()); // Construct the result for the dest-pattern operand list. TreePatternNode *OpNode = InVal->clone(); // No predicate is useful on the result. OpNode->setPredicateFn(""); // Promote the xform function to be an explicit node if set. if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); std::vector Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children); } ResultNodeOperands.push_back(OpNode); } if (!InstInputsCheck.empty()) I->error("Input operand $" + InstInputsCheck.begin()->first + " occurs in pattern but not in operands list!"); TreePatternNode *ResultPattern = new TreePatternNode(I->getRecord(), ResultNodeOperands); // Create and insert the instruction. DAGInstruction TheInst(I, ResultTypes, OperandTypes); Instructions.insert(std::make_pair(I->getRecord(), TheInst)); // Use a temporary tree pattern to infer all types and make sure that the // constructed result is correct. This depends on the instruction already // being inserted into the Instructions map. TreePattern Temp(I->getRecord(), ResultPattern, *this); Temp.InferAllTypes(); DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; TheInsertedInst.setResultPattern(Temp.getOnlyTree()); DEBUG(I->dump()); } // If we can, convert the instructions to be patterns that are matched! for (std::map::iterator II = Instructions.begin(), E = Instructions.end(); II != E; ++II) { TreePattern *I = II->second.getPattern(); if (I->getNumTrees() != 1) { std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; continue; } TreePatternNode *Pattern = I->getTree(0); if (Pattern->getOperator()->getName() != "set") continue; // Not a set (store or something?) if (Pattern->getNumChildren() != 2) continue; // Not a set of a single value (not handled so far) TreePatternNode *SrcPattern = Pattern->getChild(1)->clone(); TreePatternNode *DstPattern = II->second.getResultPattern(); PatternsToMatch.push_back(std::make_pair(SrcPattern, DstPattern)); } } void DAGISelEmitter::ParsePatterns() { std::vector Patterns = Records.getAllDerivedDefinitions("Pattern"); for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); TreePattern *Pattern = new TreePattern(Patterns[i], Tree, *this); // Inline pattern fragments into it. Pattern->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this pattern: report it to the user. if (!Pattern->InferAllTypes()) Pattern->error("Could not infer all types in pattern!"); ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); if (LI->getSize() == 0) continue; // no pattern. // Parse the instruction. TreePattern *Result = new TreePattern(Patterns[i], LI, *this); // Inline pattern fragments into it. Result->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this pattern: report it to the user. if (!Result->InferAllTypes()) Result->error("Could not infer all types in pattern result!"); if (Result->getNumTrees() != 1) Result->error("Cannot handle instructions producing instructions " "with temporaries yet!"); PatternsToMatch.push_back(std::make_pair(Pattern->getOnlyTree(), Result->getOnlyTree())); } DEBUG(std::cerr << "\n\nPARSED PATTERNS TO MATCH:\n\n"; for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { std::cerr << "PATTERN: "; PatternsToMatch[i].first->dump(); std::cerr << "\nRESULT: ";PatternsToMatch[i].second->dump(); std::cerr << "\n"; }); } /// EmitMatchForPattern - Emit a matcher for N, going to the label for PatternNo /// if the match fails. At this point, we already know that the opcode for N /// matches, and the SDNode for the result has the RootName specified name. void DAGISelEmitter::EmitMatchForPattern(TreePatternNode *N, const std::string &RootName, unsigned PatternNo, std::ostream &OS) { assert(!N->isLeaf() && "Cannot match against a leaf!"); // Emit code to load the child nodes and match their contents recursively. for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { OS << " SDNode *" << RootName << i <<" = " << RootName << "->getOperand(" << i << ").Val;\n"; TreePatternNode *Child = N->getChild(i); if (!Child->isLeaf()) { // If it's not a leaf, recursively match. const SDNodeInfo &CInfo = getSDNodeInfo(Child->getOperator()); OS << " if (" << RootName << i << "->getOpcode() != " << CInfo.getEnumName() << ") goto P" << PatternNo << "Fail;\n"; EmitMatchForPattern(Child, RootName + utostr(i), PatternNo, OS); } else { // Handle leaves of various types. Init *LeafVal = Child->getLeafValue(); Record *LeafRec = dynamic_cast(LeafVal)->getDef(); if (LeafRec->isSubClassOf("RegisterClass")) { // Handle register references. Nothing to do here. } else if (LeafRec->isSubClassOf("ValueType")) { // Make sure this is the specified value type. OS << " if (cast(" << RootName << i << ")->getVT() != " << "MVT::" << LeafRec->getName() << ") goto P" << PatternNo << "Fail;\n"; } else { Child->dump(); assert(0 && "Unknown leaf type!"); } } // If this child has a name associated with it, capture it as a variable. if (!Child->getName().empty()) OS << " SDOperand op" << Child->getName() << "(" << RootName << i << ", 0 /*FIXME*/);\n"; } // If there is a node predicate for this, emit the call. if (!N->getPredicateFn().empty()) OS << " if (!" << N->getPredicateFn() << "(" << RootName << ")) goto P" << PatternNo << "Fail;\n"; } /// EmitCodeForPattern - Given a pattern to match, emit code to the specified /// stream to match the pattern, and generate the code for the match if it /// succeeds. void DAGISelEmitter::EmitCodeForPattern(PatternToMatch &Pattern, std::ostream &OS) { static unsigned PatternCount = 0; unsigned PatternNo = PatternCount++; OS << " { // Pattern #" << PatternNo << ": "; Pattern.first->print(OS); OS << "\n"; EmitMatchForPattern(Pattern.first, "N", PatternNo, OS); OS << " // Emit: "; Pattern.second->print(OS); OS << "\n"; OS << " }\n P" << PatternNo << "Fail:\n"; } /// getPatternSize - Return the 'size' of this pattern. We want to match large /// patterns before small ones. This is used to determine the size of a /// pattern. static unsigned getPatternSize(TreePatternNode *P) { assert(MVT::isInteger(P->getType()) || MVT::isFloatingPoint(P->getType()) && "Not a valid pattern node to size!"); unsigned Size = 1; // The node itself. // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); if (!Child->isLeaf() && Child->getType() != MVT::Other) Size += getPatternSize(Child); } return Size; } // PatternSortingPredicate - return true if we prefer to match LHS before RHS. // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. struct PatternSortingPredicate { bool operator()(DAGISelEmitter::PatternToMatch *LHS, DAGISelEmitter::PatternToMatch *RHS) { unsigned LHSSize = getPatternSize(LHS->first); unsigned RHSSize = getPatternSize(RHS->first); if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost if (LHSSize < RHSSize) return false; // If they are equal, compare cost. // FIXME: Compute cost! return false; } }; void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { // Emit boilerplate. OS << "// The main instruction selector code.\n" << "SDOperand SelectCode(SDOperand Op) {\n" << " SDNode *N = Op.Val;\n" << " if (N->getOpcode() >= ISD::BUILTIN_OP_END &&\n" << " N->getOpcode() < PPCISD::FIRST_NUMBER)\n" << " return Op; // Already selected.\n\n" << " switch (N->getOpcode()) {\n" << " default: break;\n" << " case ISD::EntryToken: // These leaves remain the same.\n" << " return Op;\n" << " case ISD::AssertSext:\n" << " case ISD::AssertZext:\n" << " return Select(N->getOperand(0));\n"; // Group the patterns by their top-level opcodes. std::map > PatternsByOpcode; for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) PatternsByOpcode[PatternsToMatch[i].first->getOperator()] .push_back(&PatternsToMatch[i]); // Loop over all of the case statements. for (std::map >::iterator PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); std::vector &Patterns = PBOI->second; OS << " case " << OpcodeInfo.getEnumName() << ":\n"; // We want to emit all of the matching code now. However, we want to emit // the matches in order of minimal cost. Sort the patterns so the least // cost one is at the start. std::stable_sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate()); for (unsigned i = 0, e = Patterns.size(); i != e; ++i) EmitCodeForPattern(*Patterns[i], OS); OS << " break;\n\n"; } OS << " } // end of big switch.\n\n" << " std::cerr << \"Cannot yet select: \";\n" << " N->dump();\n" << " std::cerr << '\\n';\n" << " abort();\n" << "}\n"; } void DAGISelEmitter::run(std::ostream &OS) { EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + " target", OS); OS << "// *** NOTE: This file is #included into the middle of the target\n" << "// *** instruction selector class. These functions are really " << "methods.\n\n"; ParseNodeInfo(); ParseNodeTransforms(OS); ParsePatternFragments(OS); ParseInstructions(); ParsePatterns(); // FIXME: Generate variants. For example, commutative patterns can match // multiple ways. Add them to PatternsToMatch as well. // At this point, we have full information about the 'Patterns' we need to // parse, both implicitly from instructions as well as from explicit pattern // definitions. EmitInstructionSelector(OS); for (std::map::iterator I = PatternFragments.begin(), E = PatternFragments.end(); I != E; ++I) delete I->second; PatternFragments.clear(); Instructions.clear(); }