//===- ExtractFunction.cpp - Extract a function from Program --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements several methods that are used to extract functions, // loops, or portions of a module from the rest of the module. // //===----------------------------------------------------------------------===// #include "BugDriver.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Pass.h" #include "llvm/SymbolTable.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/FunctionUtils.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileUtilities.h" #include #include using namespace llvm; namespace llvm { bool DisableSimplifyCFG = false; } // End llvm namespace namespace { cl::opt NoDCE ("disable-dce", cl::desc("Do not use the -dce pass to reduce testcases")); cl::opt NoSCFG("disable-simplifycfg", cl::location(DisableSimplifyCFG), cl::desc("Do not use the -simplifycfg pass to reduce testcases")); } /// deleteInstructionFromProgram - This method clones the current Program and /// deletes the specified instruction from the cloned module. It then runs a /// series of cleanup passes (ADCE and SimplifyCFG) to eliminate any code which /// depends on the value. The modified module is then returned. /// Module *BugDriver::deleteInstructionFromProgram(const Instruction *I, unsigned Simplification) const { Module *Result = CloneModule(Program); const BasicBlock *PBB = I->getParent(); const Function *PF = PBB->getParent(); Module::iterator RFI = Result->begin(); // Get iterator to corresponding fn std::advance(RFI, std::distance(PF->getParent()->begin(), Module::const_iterator(PF))); Function::iterator RBI = RFI->begin(); // Get iterator to corresponding BB std::advance(RBI, std::distance(PF->begin(), Function::const_iterator(PBB))); BasicBlock::iterator RI = RBI->begin(); // Get iterator to corresponding inst std::advance(RI, std::distance(PBB->begin(), BasicBlock::const_iterator(I))); Instruction *TheInst = RI; // Got the corresponding instruction! // If this instruction produces a value, replace any users with null values if (TheInst->getType() != Type::VoidTy) TheInst->replaceAllUsesWith(Constant::getNullValue(TheInst->getType())); // Remove the instruction from the program. TheInst->getParent()->getInstList().erase(TheInst); //writeProgramToFile("current.bc", Result); // Spiff up the output a little bit. PassManager Passes; // Make sure that the appropriate target data is always used... Passes.add(new TargetData(Result)); /// FIXME: If this used runPasses() like the methods below, we could get rid /// of the -disable-* options! if (Simplification > 1 && !NoDCE) Passes.add(createDeadCodeEliminationPass()); if (Simplification && !DisableSimplifyCFG) Passes.add(createCFGSimplificationPass()); // Delete dead control flow Passes.add(createVerifierPass()); Passes.run(*Result); return Result; } static const PassInfo *getPI(Pass *P) { const PassInfo *PI = P->getPassInfo(); delete P; return PI; } /// performFinalCleanups - This method clones the current Program and performs /// a series of cleanups intended to get rid of extra cruft on the module /// before handing it to the user. /// Module *BugDriver::performFinalCleanups(Module *M, bool MayModifySemantics) { // Make all functions external, so GlobalDCE doesn't delete them... for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) I->setLinkage(GlobalValue::ExternalLinkage); std::vector CleanupPasses; CleanupPasses.push_back(getPI(createFunctionResolvingPass())); CleanupPasses.push_back(getPI(createGlobalDCEPass())); CleanupPasses.push_back(getPI(createDeadTypeEliminationPass())); if (MayModifySemantics) CleanupPasses.push_back(getPI(createDeadArgHackingPass())); else CleanupPasses.push_back(getPI(createDeadArgEliminationPass())); Module *New = runPassesOn(M, CleanupPasses); if (New == 0) { std::cerr << "Final cleanups failed. Sorry. :( Please report a bug!\n"; return M; } delete M; return New; } /// ExtractLoop - Given a module, extract up to one loop from it into a new /// function. This returns null if there are no extractable loops in the /// program or if the loop extractor crashes. Module *BugDriver::ExtractLoop(Module *M) { std::vector LoopExtractPasses; LoopExtractPasses.push_back(getPI(createSingleLoopExtractorPass())); Module *NewM = runPassesOn(M, LoopExtractPasses); if (NewM == 0) { Module *Old = swapProgramIn(M); std::cout << "*** Loop extraction failed: "; EmitProgressBytecode("loopextraction", true); std::cout << "*** Sorry. :( Please report a bug!\n"; swapProgramIn(Old); return 0; } // Check to see if we created any new functions. If not, no loops were // extracted and we should return null. Limit the number of loops we extract // to avoid taking forever. static unsigned NumExtracted = 32; if (M->size() == NewM->size() || --NumExtracted == 0) { delete NewM; return 0; } else { assert(M->size() < NewM->size() && "Loop extract removed functions?"); Module::iterator MI = NewM->begin(); for (unsigned i = 0, e = M->size(); i != e; ++i) ++MI; } return NewM; } // DeleteFunctionBody - "Remove" the function by deleting all of its basic // blocks, making it external. // void llvm::DeleteFunctionBody(Function *F) { // delete the body of the function... F->deleteBody(); assert(F->isExternal() && "This didn't make the function external!"); } /// GetTorInit - Given a list of entries for static ctors/dtors, return them /// as a constant array. static Constant *GetTorInit(std::vector > &TorList) { assert(!TorList.empty() && "Don't create empty tor list!"); std::vector ArrayElts; for (unsigned i = 0, e = TorList.size(); i != e; ++i) { std::vector Elts; Elts.push_back(ConstantInt::get(Type::IntTy, TorList[i].second)); Elts.push_back(TorList[i].first); ArrayElts.push_back(ConstantStruct::get(Elts)); } return ConstantArray::get(ArrayType::get(ArrayElts[0]->getType(), ArrayElts.size()), ArrayElts); } /// SplitStaticCtorDtor - A module was recently split into two parts, M1/M2, and /// M1 has all of the global variables. If M2 contains any functions that are /// static ctors/dtors, we need to add an llvm.global_[cd]tors global to M2, and /// prune appropriate entries out of M1s list. static void SplitStaticCtorDtor(const char *GlobalName, Module *M1, Module *M2){ GlobalVariable *GV = M1->getNamedGlobal(GlobalName); if (!GV || GV->isExternal() || GV->hasInternalLinkage() || !GV->use_empty()) return; std::vector > M1Tors, M2Tors; ConstantArray *InitList = dyn_cast(GV->getInitializer()); if (!InitList) return; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { if (ConstantStruct *CS = dyn_cast(InitList->getOperand(i))){ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. if (CS->getOperand(1)->isNullValue()) break; // Found a null terminator, stop here. ConstantInt *CI = dyn_cast(CS->getOperand(0)); int Priority = CI ? CI->getSExtValue() : 0; Constant *FP = CS->getOperand(1); if (ConstantExpr *CE = dyn_cast(FP)) if (CE->getOpcode() == Instruction::Cast) FP = CE->getOperand(0); if (Function *F = dyn_cast(FP)) { if (!F->isExternal()) M1Tors.push_back(std::make_pair(F, Priority)); else { // Map to M2's version of the function. F = M2->getFunction(F->getName(), F->getFunctionType()); M2Tors.push_back(std::make_pair(F, Priority)); } } } } GV->eraseFromParent(); if (!M1Tors.empty()) { Constant *M1Init = GetTorInit(M1Tors); new GlobalVariable(M1Init->getType(), false, GlobalValue::AppendingLinkage, M1Init, GlobalName, M1); } GV = M2->getNamedGlobal(GlobalName); assert(GV && "Not a clone of M1?"); assert(GV->use_empty() && "llvm.ctors shouldn't have uses!"); GV->eraseFromParent(); if (!M2Tors.empty()) { Constant *M2Init = GetTorInit(M2Tors); new GlobalVariable(M2Init->getType(), false, GlobalValue::AppendingLinkage, M2Init, GlobalName, M2); } } /// RewriteUsesInNewModule - Given a constant 'OrigVal' and a module 'OrigMod', /// find all uses of the constant. If they are not in the specified module, /// replace them with uses of another constant 'NewVal'. static void RewriteUsesInNewModule(Constant *OrigVal, Constant *NewVal, Module *OrigMod) { assert(OrigVal->getType() == NewVal->getType() && "Can't replace something with a different type"); for (Value::use_iterator UI = OrigVal->use_begin(), E = OrigVal->use_end(); UI != E; ) { Value::use_iterator TmpUI = UI++; User *U = *TmpUI; if (Instruction *Inst = dyn_cast(U)) { if (Inst->getParent()->getParent()->getParent() != OrigMod) TmpUI.getUse() = NewVal; } else if (GlobalVariable *GV = dyn_cast(U)) { if (GV->getParent() != OrigMod) TmpUI.getUse() = NewVal; } else if (ConstantExpr *CE = dyn_cast(U)) { // If nothing uses this, don't bother making a copy. if (CE->use_empty()) continue; Constant *NewCE = CE->getWithOperandReplaced(TmpUI.getOperandNo(), NewVal); RewriteUsesInNewModule(CE, NewCE, OrigMod); } else if (ConstantStruct *CS = dyn_cast(U)) { // If nothing uses this, don't bother making a copy. if (CS->use_empty()) continue; unsigned OpNo = TmpUI.getOperandNo(); std::vector Ops; for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) Ops.push_back(i == OpNo ? NewVal : CS->getOperand(i)); Constant *NewStruct = ConstantStruct::get(Ops); RewriteUsesInNewModule(CS, NewStruct, OrigMod); } else if (ConstantPacked *CP = dyn_cast(U)) { // If nothing uses this, don't bother making a copy. if (CP->use_empty()) continue; unsigned OpNo = TmpUI.getOperandNo(); std::vector Ops; for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) Ops.push_back(i == OpNo ? NewVal : CP->getOperand(i)); Constant *NewPacked = ConstantPacked::get(Ops); RewriteUsesInNewModule(CP, NewPacked, OrigMod); } else if (ConstantArray *CA = dyn_cast(U)) { // If nothing uses this, don't bother making a copy. if (CA->use_empty()) continue; unsigned OpNo = TmpUI.getOperandNo(); std::vector Ops; for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { Ops.push_back(i == OpNo ? NewVal : CA->getOperand(i)); } Constant *NewArray = ConstantArray::get(CA->getType(), Ops); RewriteUsesInNewModule(CA, NewArray, OrigMod); } else { assert(0 && "Unexpected user"); } } } /// SplitFunctionsOutOfModule - Given a module and a list of functions in the /// module, split the functions OUT of the specified module, and place them in /// the new module. Module *llvm::SplitFunctionsOutOfModule(Module *M, const std::vector &F) { // Make sure functions & globals are all external so that linkage // between the two modules will work. for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) I->setLinkage(GlobalValue::ExternalLinkage); for (Module::global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) I->setLinkage(GlobalValue::ExternalLinkage); // First off, we need to create the new module... Module *New = new Module(M->getModuleIdentifier()); New->setEndianness(M->getEndianness()); New->setPointerSize(M->getPointerSize()); New->setTargetTriple(M->getTargetTriple()); New->setModuleInlineAsm(M->getModuleInlineAsm()); // Copy all of the dependent libraries over. for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) New->addLibrary(*I); // build a set of the functions to search later... std::set > TestFunctions; for (unsigned i = 0, e = F.size(); i != e; ++i) { TestFunctions.insert(std::make_pair(F[i]->getName(), F[i]->getType())); } std::map GlobalToPrototypeMap; std::vector OrigGlobals; // Adding specified functions to new module... for (Module::iterator I = M->begin(), E = M->end(); I != E;) { OrigGlobals.push_back(I); if (TestFunctions.count(std::make_pair(I->getName(), I->getType()))) { Module::iterator tempI = I; I++; Function *Func = new Function(tempI->getFunctionType(), GlobalValue::ExternalLinkage); M->getFunctionList().insert(tempI, Func); New->getFunctionList().splice(New->end(), M->getFunctionList(), tempI); Func->setName(tempI->getName()); Func->setCallingConv(tempI->getCallingConv()); GlobalToPrototypeMap[tempI] = Func; } else { Function *Func = new Function(I->getFunctionType(), GlobalValue::ExternalLinkage, I->getName(), New); Func->setCallingConv(I->getCallingConv()); GlobalToPrototypeMap[I] = Func; I++; } } // Copy over global variable list. for (Module::global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) { OrigGlobals.push_back(I); GlobalVariable *G = new GlobalVariable(I->getType()->getElementType(), I->isConstant(), GlobalValue::ExternalLinkage, 0, I->getName(), New); GlobalToPrototypeMap[I] = G; } // Copy all of the type symbol table entries over. const SymbolTable &SymTab = M->getSymbolTable(); SymbolTable::type_const_iterator TypeI = SymTab.type_begin(); SymbolTable::type_const_iterator TypeE = SymTab.type_end(); for (; TypeI != TypeE; ++TypeI) New->addTypeName(TypeI->first, TypeI->second); // Loop over globals, rewriting uses in the module the prototype is in to use // the prototype. for (unsigned i = 0, e = OrigGlobals.size(); i != e; ++i) { assert(OrigGlobals[i]->getName() == GlobalToPrototypeMap[OrigGlobals[i]]->getName() && "Something got renamed?"); RewriteUsesInNewModule(OrigGlobals[i], GlobalToPrototypeMap[OrigGlobals[i]], OrigGlobals[i]->getParent()); } // Make sure that there is a global ctor/dtor array in both halves of the // module if they both have static ctor/dtor functions. SplitStaticCtorDtor("llvm.global_ctors", M, New); SplitStaticCtorDtor("llvm.global_dtors", M, New); return New; } //===----------------------------------------------------------------------===// // Basic Block Extraction Code //===----------------------------------------------------------------------===// namespace { std::vector BlocksToNotExtract; /// BlockExtractorPass - This pass is used by bugpoint to extract all blocks /// from the module into their own functions except for those specified by the /// BlocksToNotExtract list. class BlockExtractorPass : public ModulePass { bool runOnModule(Module &M); }; RegisterPass XX("extract-bbs", "Extract Basic Blocks From Module (for bugpoint use)"); } bool BlockExtractorPass::runOnModule(Module &M) { std::set TranslatedBlocksToNotExtract; for (unsigned i = 0, e = BlocksToNotExtract.size(); i != e; ++i) { BasicBlock *BB = BlocksToNotExtract[i]; Function *F = BB->getParent(); // Map the corresponding function in this module. Function *MF = M.getFunction(F->getName(), F->getFunctionType()); // Figure out which index the basic block is in its function. Function::iterator BBI = MF->begin(); std::advance(BBI, std::distance(F->begin(), Function::iterator(BB))); TranslatedBlocksToNotExtract.insert(BBI); } // Now that we know which blocks to not extract, figure out which ones we WANT // to extract. std::vector BlocksToExtract; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (!TranslatedBlocksToNotExtract.count(BB)) BlocksToExtract.push_back(BB); for (unsigned i = 0, e = BlocksToExtract.size(); i != e; ++i) ExtractBasicBlock(BlocksToExtract[i]); return !BlocksToExtract.empty(); } /// ExtractMappedBlocksFromModule - Extract all but the specified basic blocks /// into their own functions. The only detail is that M is actually a module /// cloned from the one the BBs are in, so some mapping needs to be performed. /// If this operation fails for some reason (ie the implementation is buggy), /// this function should return null, otherwise it returns a new Module. Module *BugDriver::ExtractMappedBlocksFromModule(const std::vector &BBs, Module *M) { // Set the global list so that pass will be able to access it. BlocksToNotExtract = BBs; std::vector PI; PI.push_back(getPI(new BlockExtractorPass())); Module *Ret = runPassesOn(M, PI); BlocksToNotExtract.clear(); if (Ret == 0) { std::cout << "*** Basic Block extraction failed, please report a bug!\n"; M = swapProgramIn(M); EmitProgressBytecode("basicblockextractfail", true); swapProgramIn(M); } return Ret; }