//===- InstCombineVectorOps.cpp -------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements instcombine for ExtractElement, InsertElement and // ShuffleVector. // //===----------------------------------------------------------------------===// #include "InstCombine.h" using namespace llvm; /// CheapToScalarize - Return true if the value is cheaper to scalarize than it /// is to leave as a vector operation. static bool CheapToScalarize(Value *V, bool isConstant) { if (isa(V)) return true; if (ConstantVector *C = dyn_cast(V)) { if (isConstant) return true; // If all elts are the same, we can extract. Constant *Op0 = C->getOperand(0); for (unsigned i = 1; i < C->getNumOperands(); ++i) if (C->getOperand(i) != Op0) return false; return true; } Instruction *I = dyn_cast(V); if (!I) return false; // Insert element gets simplified to the inserted element or is deleted if // this is constant idx extract element and its a constant idx insertelt. if (I->getOpcode() == Instruction::InsertElement && isConstant && isa(I->getOperand(2))) return true; if (I->getOpcode() == Instruction::Load && I->hasOneUse()) return true; if (BinaryOperator *BO = dyn_cast(I)) if (BO->hasOneUse() && (CheapToScalarize(BO->getOperand(0), isConstant) || CheapToScalarize(BO->getOperand(1), isConstant))) return true; if (CmpInst *CI = dyn_cast(I)) if (CI->hasOneUse() && (CheapToScalarize(CI->getOperand(0), isConstant) || CheapToScalarize(CI->getOperand(1), isConstant))) return true; return false; } /// getShuffleMask - Read and decode a shufflevector mask. /// Turn undef elements into negative values. static SmallVector getShuffleMask(const ShuffleVectorInst *SVI) { unsigned NElts = SVI->getType()->getNumElements(); if (isa(SVI->getOperand(2))) return SmallVector(NElts, 0); if (isa(SVI->getOperand(2))) return SmallVector(NElts, -1); SmallVector Result; const ConstantVector *CP = cast(SVI->getOperand(2)); for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i) if (isa(*i)) Result.push_back(-1); // undef else Result.push_back(cast(*i)->getZExtValue()); return Result; } /// FindScalarElement - Given a vector and an element number, see if the scalar /// value is already around as a register, for example if it were inserted then /// extracted from the vector. static Value *FindScalarElement(Value *V, unsigned EltNo) { assert(V->getType()->isVectorTy() && "Not looking at a vector?"); VectorType *PTy = cast(V->getType()); unsigned Width = PTy->getNumElements(); if (EltNo >= Width) // Out of range access. return UndefValue::get(PTy->getElementType()); if (isa(V)) return UndefValue::get(PTy->getElementType()); if (isa(V)) return Constant::getNullValue(PTy->getElementType()); if (ConstantVector *CP = dyn_cast(V)) return CP->getOperand(EltNo); if (InsertElementInst *III = dyn_cast(V)) { // If this is an insert to a variable element, we don't know what it is. if (!isa(III->getOperand(2))) return 0; unsigned IIElt = cast(III->getOperand(2))->getZExtValue(); // If this is an insert to the element we are looking for, return the // inserted value. if (EltNo == IIElt) return III->getOperand(1); // Otherwise, the insertelement doesn't modify the value, recurse on its // vector input. return FindScalarElement(III->getOperand(0), EltNo); } if (ShuffleVectorInst *SVI = dyn_cast(V)) { unsigned LHSWidth = cast(SVI->getOperand(0)->getType())->getNumElements(); int InEl = getShuffleMask(SVI)[EltNo]; if (InEl < 0) return UndefValue::get(PTy->getElementType()); if (InEl < (int)LHSWidth) return FindScalarElement(SVI->getOperand(0), InEl); return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth); } // Otherwise, we don't know. return 0; } Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { // If vector val is undef, replace extract with scalar undef. if (isa(EI.getOperand(0))) return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); // If vector val is constant 0, replace extract with scalar 0. if (isa(EI.getOperand(0))) return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType())); if (ConstantVector *C = dyn_cast(EI.getOperand(0))) { // If vector val is constant with all elements the same, replace EI with // that element. When the elements are not identical, we cannot replace yet // (we do that below, but only when the index is constant). Constant *op0 = C->getOperand(0); for (unsigned i = 1; i != C->getNumOperands(); ++i) if (C->getOperand(i) != op0) { op0 = 0; break; } if (op0) return ReplaceInstUsesWith(EI, op0); } // If extracting a specified index from the vector, see if we can recursively // find a previously computed scalar that was inserted into the vector. if (ConstantInt *IdxC = dyn_cast(EI.getOperand(1))) { unsigned IndexVal = IdxC->getZExtValue(); unsigned VectorWidth = EI.getVectorOperandType()->getNumElements(); // If this is extracting an invalid index, turn this into undef, to avoid // crashing the code below. if (IndexVal >= VectorWidth) return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); // This instruction only demands the single element from the input vector. // If the input vector has a single use, simplify it based on this use // property. if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { APInt UndefElts(VectorWidth, 0); APInt DemandedMask(VectorWidth, 0); DemandedMask.setBit(IndexVal); if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask, UndefElts)) { EI.setOperand(0, V); return &EI; } } if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal)) return ReplaceInstUsesWith(EI, Elt); // If the this extractelement is directly using a bitcast from a vector of // the same number of elements, see if we can find the source element from // it. In this case, we will end up needing to bitcast the scalars. if (BitCastInst *BCI = dyn_cast(EI.getOperand(0))) { if (VectorType *VT = dyn_cast(BCI->getOperand(0)->getType())) if (VT->getNumElements() == VectorWidth) if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal)) return new BitCastInst(Elt, EI.getType()); } } if (Instruction *I = dyn_cast(EI.getOperand(0))) { // Push extractelement into predecessor operation if legal and // profitable to do so if (BinaryOperator *BO = dyn_cast(I)) { if (I->hasOneUse() && CheapToScalarize(BO, isa(EI.getOperand(1)))) { Value *newEI0 = Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1), EI.getName()+".lhs"); Value *newEI1 = Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1), EI.getName()+".rhs"); return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1); } } else if (InsertElementInst *IE = dyn_cast(I)) { // Extracting the inserted element? if (IE->getOperand(2) == EI.getOperand(1)) return ReplaceInstUsesWith(EI, IE->getOperand(1)); // If the inserted and extracted elements are constants, they must not // be the same value, extract from the pre-inserted value instead. if (isa(IE->getOperand(2)) && isa(EI.getOperand(1))) { Worklist.AddValue(EI.getOperand(0)); EI.setOperand(0, IE->getOperand(0)); return &EI; } } else if (ShuffleVectorInst *SVI = dyn_cast(I)) { // If this is extracting an element from a shufflevector, figure out where // it came from and extract from the appropriate input element instead. if (ConstantInt *Elt = dyn_cast(EI.getOperand(1))) { int SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()]; Value *Src; unsigned LHSWidth = cast(SVI->getOperand(0)->getType())->getNumElements(); if (SrcIdx < 0) return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); if (SrcIdx < (int)LHSWidth) Src = SVI->getOperand(0); else { SrcIdx -= LHSWidth; Src = SVI->getOperand(1); } Type *Int32Ty = Type::getInt32Ty(EI.getContext()); return ExtractElementInst::Create(Src, ConstantInt::get(Int32Ty, SrcIdx, false)); } } else if (CastInst *CI = dyn_cast(I)) { // Canonicalize extractelement(cast) -> cast(extractelement) // bitcasts can change the number of vector elements and they cost nothing if (CI->hasOneUse() && EI.hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { Value *EE = Builder->CreateExtractElement(CI->getOperand(0), EI.getIndexOperand()); return CastInst::Create(CI->getOpcode(), EE, EI.getType()); } } } return 0; } /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns /// elements from either LHS or RHS, return the shuffle mask and true. /// Otherwise, return false. static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, std::vector &Mask) { assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() && "Invalid CollectSingleShuffleElements"); unsigned NumElts = cast(V->getType())->getNumElements(); if (isa(V)) { Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); return true; } if (V == LHS) { for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); return true; } if (V == RHS) { for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i+NumElts)); return true; } if (InsertElementInst *IEI = dyn_cast(V)) { // If this is an insert of an extract from some other vector, include it. Value *VecOp = IEI->getOperand(0); Value *ScalarOp = IEI->getOperand(1); Value *IdxOp = IEI->getOperand(2); if (!isa(IdxOp)) return false; unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); if (isa(ScalarOp)) { // inserting undef into vector. // Okay, we can handle this if the vector we are insertinting into is // transitively ok. if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted undef. Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); return true; } } else if (ExtractElementInst *EI = dyn_cast(ScalarOp)){ if (isa(EI->getOperand(1)) && EI->getOperand(0)->getType() == V->getType()) { unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); // This must be extracting from either LHS or RHS. if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { // Okay, we can handle this if the vector we are insertinting into is // transitively ok. if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted value. if (EI->getOperand(0) == LHS) { Mask[InsertedIdx % NumElts] = ConstantInt::get(Type::getInt32Ty(V->getContext()), ExtractedIdx); } else { assert(EI->getOperand(0) == RHS); Mask[InsertedIdx % NumElts] = ConstantInt::get(Type::getInt32Ty(V->getContext()), ExtractedIdx+NumElts); } return true; } } } } } // TODO: Handle shufflevector here! return false; } /// CollectShuffleElements - We are building a shuffle of V, using RHS as the /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask /// that computes V and the LHS value of the shuffle. static Value *CollectShuffleElements(Value *V, std::vector &Mask, Value *&RHS) { assert(V->getType()->isVectorTy() && (RHS == 0 || V->getType() == RHS->getType()) && "Invalid shuffle!"); unsigned NumElts = cast(V->getType())->getNumElements(); if (isa(V)) { Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); return V; } else if (isa(V)) { Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); return V; } else if (InsertElementInst *IEI = dyn_cast(V)) { // If this is an insert of an extract from some other vector, include it. Value *VecOp = IEI->getOperand(0); Value *ScalarOp = IEI->getOperand(1); Value *IdxOp = IEI->getOperand(2); if (ExtractElementInst *EI = dyn_cast(ScalarOp)) { if (isa(EI->getOperand(1)) && isa(IdxOp) && EI->getOperand(0)->getType() == V->getType()) { unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); // Either the extracted from or inserted into vector must be RHSVec, // otherwise we'd end up with a shuffle of three inputs. if (EI->getOperand(0) == RHS || RHS == 0) { RHS = EI->getOperand(0); Value *V = CollectShuffleElements(VecOp, Mask, RHS); Mask[InsertedIdx % NumElts] = ConstantInt::get(Type::getInt32Ty(V->getContext()), NumElts+ExtractedIdx); return V; } if (VecOp == RHS) { Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS); // Everything but the extracted element is replaced with the RHS. for (unsigned i = 0; i != NumElts; ++i) { if (i != InsertedIdx) Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), NumElts+i); } return V; } // If this insertelement is a chain that comes from exactly these two // vectors, return the vector and the effective shuffle. if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask)) return EI->getOperand(0); } } } // TODO: Handle shufflevector here! // Otherwise, can't do anything fancy. Return an identity vector. for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); return V; } Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { Value *VecOp = IE.getOperand(0); Value *ScalarOp = IE.getOperand(1); Value *IdxOp = IE.getOperand(2); // Inserting an undef or into an undefined place, remove this. if (isa(ScalarOp) || isa(IdxOp)) ReplaceInstUsesWith(IE, VecOp); // If the inserted element was extracted from some other vector, and if the // indexes are constant, try to turn this into a shufflevector operation. if (ExtractElementInst *EI = dyn_cast(ScalarOp)) { if (isa(EI->getOperand(1)) && isa(IdxOp) && EI->getOperand(0)->getType() == IE.getType()) { unsigned NumVectorElts = IE.getType()->getNumElements(); unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); if (ExtractedIdx >= NumVectorElts) // Out of range extract. return ReplaceInstUsesWith(IE, VecOp); if (InsertedIdx >= NumVectorElts) // Out of range insert. return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); // If we are extracting a value from a vector, then inserting it right // back into the same place, just use the input vector. if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) return ReplaceInstUsesWith(IE, VecOp); // If this insertelement isn't used by some other insertelement, turn it // (and any insertelements it points to), into one big shuffle. if (!IE.hasOneUse() || !isa(IE.use_back())) { std::vector Mask; Value *RHS = 0; Value *LHS = CollectShuffleElements(&IE, Mask, RHS); if (RHS == 0) RHS = UndefValue::get(LHS->getType()); // We now have a shuffle of LHS, RHS, Mask. return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask)); } } } unsigned VWidth = cast(VecOp->getType())->getNumElements(); APInt UndefElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { if (V != &IE) return ReplaceInstUsesWith(IE, V); return &IE; } return 0; } Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { Value *LHS = SVI.getOperand(0); Value *RHS = SVI.getOperand(1); SmallVector Mask = getShuffleMask(&SVI); bool MadeChange = false; // Undefined shuffle mask -> undefined value. if (isa(SVI.getOperand(2))) return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); unsigned VWidth = cast(SVI.getType())->getNumElements(); APInt UndefElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { if (V != &SVI) return ReplaceInstUsesWith(SVI, V); LHS = SVI.getOperand(0); RHS = SVI.getOperand(1); MadeChange = true; } unsigned LHSWidth = cast(LHS->getType())->getNumElements(); // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). if (LHS == RHS || isa(LHS)) { if (isa(LHS) && LHS == RHS) { // shuffle(undef,undef,mask) -> undef. Value* result = (VWidth == LHSWidth) ? LHS : UndefValue::get(SVI.getType()); return ReplaceInstUsesWith(SVI, result); } // Remap any references to RHS to use LHS. std::vector Elts; for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { if (Mask[i] < 0) Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext()))); else { if ((Mask[i] >= (int)e && isa(RHS)) || (Mask[i] < (int)e && isa(LHS))) { Mask[i] = -1; // Turn into undef. Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext()))); } else { Mask[i] = Mask[i] % e; // Force to LHS. Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()), Mask[i])); } } } SVI.setOperand(0, SVI.getOperand(1)); SVI.setOperand(1, UndefValue::get(RHS->getType())); SVI.setOperand(2, ConstantVector::get(Elts)); LHS = SVI.getOperand(0); RHS = SVI.getOperand(1); MadeChange = true; } if (VWidth == LHSWidth) { // Analyze the shuffle, are the LHS or RHS and identity shuffles? bool isLHSID = true, isRHSID = true; for (unsigned i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] < 0) continue; // Ignore undef values. // Is this an identity shuffle of the LHS value? isLHSID &= (Mask[i] == (int)i); // Is this an identity shuffle of the RHS value? isRHSID &= (Mask[i]-e == i); } // Eliminate identity shuffles. if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); } // If the LHS is a shufflevector itself, see if we can combine it with this // one without producing an unusual shuffle. // Cases that might be simplified: // 1. // x1=shuffle(v1,v2,mask1) // x=shuffle(x1,undef,mask) // ==> // x=shuffle(v1,undef,newMask) // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 // 2. // x1=shuffle(v1,undef,mask1) // x=shuffle(x1,x2,mask) // where v1.size() == mask1.size() // ==> // x=shuffle(v1,x2,newMask) // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] // 3. // x2=shuffle(v2,undef,mask2) // x=shuffle(x1,x2,mask) // where v2.size() == mask2.size() // ==> // x=shuffle(x1,v2,newMask) // newMask[i] = (mask[i] < x1.size()) // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() // 4. // x1=shuffle(v1,undef,mask1) // x2=shuffle(v2,undef,mask2) // x=shuffle(x1,x2,mask) // where v1.size() == v2.size() // ==> // x=shuffle(v1,v2,newMask) // newMask[i] = (mask[i] < x1.size()) // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() // // Here we are really conservative: // we are absolutely afraid of producing a shuffle mask not in the input // program, because the code gen may not be smart enough to turn a merged // shuffle into two specific shuffles: it may produce worse code. As such, // we only merge two shuffles if the result is either a splat or one of the // input shuffle masks. In this case, merging the shuffles just removes // one instruction, which we know is safe. This is good for things like // turning: (splat(splat)) -> splat, or // merge(V[0..n], V[n+1..2n]) -> V[0..2n] ShuffleVectorInst* LHSShuffle = dyn_cast(LHS); ShuffleVectorInst* RHSShuffle = dyn_cast(RHS); if (LHSShuffle) if (!isa(LHSShuffle->getOperand(1)) && !isa(RHS)) LHSShuffle = NULL; if (RHSShuffle) if (!isa(RHSShuffle->getOperand(1))) RHSShuffle = NULL; if (!LHSShuffle && !RHSShuffle) return MadeChange ? &SVI : 0; Value* LHSOp0 = NULL; Value* LHSOp1 = NULL; Value* RHSOp0 = NULL; unsigned LHSOp0Width = 0; unsigned RHSOp0Width = 0; if (LHSShuffle) { LHSOp0 = LHSShuffle->getOperand(0); LHSOp1 = LHSShuffle->getOperand(1); LHSOp0Width = cast(LHSOp0->getType())->getNumElements(); } if (RHSShuffle) { RHSOp0 = RHSShuffle->getOperand(0); RHSOp0Width = cast(RHSOp0->getType())->getNumElements(); } Value* newLHS = LHS; Value* newRHS = RHS; if (LHSShuffle) { // case 1 if (isa(RHS)) { newLHS = LHSOp0; newRHS = LHSOp1; } // case 2 or 4 else if (LHSOp0Width == LHSWidth) { newLHS = LHSOp0; } } // case 3 or 4 if (RHSShuffle && RHSOp0Width == LHSWidth) { newRHS = RHSOp0; } // case 4 if (LHSOp0 == RHSOp0) { newLHS = LHSOp0; newRHS = NULL; } if (newLHS == LHS && newRHS == RHS) return MadeChange ? &SVI : 0; SmallVector LHSMask; SmallVector RHSMask; if (newLHS != LHS) { LHSMask = getShuffleMask(LHSShuffle); } if (RHSShuffle && newRHS != RHS) { RHSMask = getShuffleMask(RHSShuffle); } unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; SmallVector newMask; bool isSplat = true; int SplatElt = -1; // Create a new mask for the new ShuffleVectorInst so that the new // ShuffleVectorInst is equivalent to the original one. for (unsigned i = 0; i < VWidth; ++i) { int eltMask; if (Mask[i] == -1) { // This element is an undef value. eltMask = -1; } else if (Mask[i] < (int)LHSWidth) { // This element is from left hand side vector operand. // // If LHS is going to be replaced (case 1, 2, or 4), calculate the // new mask value for the element. if (newLHS != LHS) { eltMask = LHSMask[Mask[i]]; // If the value selected is an undef value, explicitly specify it // with a -1 mask value. if (eltMask >= (int)LHSOp0Width && isa(LHSOp1)) eltMask = -1; } else eltMask = Mask[i]; } else { // This element is from right hand side vector operand // // If the value selected is an undef value, explicitly specify it // with a -1 mask value. (case 1) if (isa(RHS)) eltMask = -1; // If RHS is going to be replaced (case 3 or 4), calculate the // new mask value for the element. else if (newRHS != RHS) { eltMask = RHSMask[Mask[i]-LHSWidth]; // If the value selected is an undef value, explicitly specify it // with a -1 mask value. if (eltMask >= (int)RHSOp0Width) { assert(isa(RHSShuffle->getOperand(1)) && "should have been check above"); eltMask = -1; } } else eltMask = Mask[i]-LHSWidth; // If LHS's width is changed, shift the mask value accordingly. // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any // references to RHSOp0 to LHSOp0, so we don't need to shift the mask. if (eltMask >= 0 && newRHS != NULL) eltMask += newLHSWidth; } // Check if this could still be a splat. if (eltMask >= 0) { if (SplatElt >= 0 && SplatElt != eltMask) isSplat = false; SplatElt = eltMask; } newMask.push_back(eltMask); } // If the result mask is equal to one of the original shuffle masks, // or is a splat, do the replacement. if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { SmallVector Elts; Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); for (unsigned i = 0, e = newMask.size(); i != e; ++i) { if (newMask[i] < 0) { Elts.push_back(UndefValue::get(Int32Ty)); } else { Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); } } if (newRHS == NULL) newRHS = UndefValue::get(newLHS->getType()); return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); } return MadeChange ? &SVI : 0; }