//===- BitcodeReader.h - Internal BitcodeReader impl ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the BitcodeReader class. // //===----------------------------------------------------------------------===// #ifndef BITCODE_READER_H #define BITCODE_READER_H #include "llvm/ModuleProvider.h" #include "llvm/Attributes.h" #include "llvm/Type.h" #include "llvm/OperandTraits.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/Support/ValueHandle.h" #include "llvm/ADT/DenseMap.h" #include namespace llvm { class MemoryBuffer; //===----------------------------------------------------------------------===// // BitcodeReaderValueList Class //===----------------------------------------------------------------------===// class BitcodeReaderValueList { std::vector ValuePtrs; /// ResolveConstants - As we resolve forward-referenced constants, we add /// information about them to this vector. This allows us to resolve them in /// bulk instead of resolving each reference at a time. See the code in /// ResolveConstantForwardRefs for more information about this. /// /// The key of this vector is the placeholder constant, the value is the slot /// number that holds the resolved value. typedef std::vector > ResolveConstantsTy; ResolveConstantsTy ResolveConstants; public: BitcodeReaderValueList() {} ~BitcodeReaderValueList() { assert(ResolveConstants.empty() && "Constants not resolved?"); } // vector compatibility methods unsigned size() const { return ValuePtrs.size(); } void resize(unsigned N) { ValuePtrs.resize(N); } void push_back(Value *V) { ValuePtrs.push_back(V); } void clear() { assert(ResolveConstants.empty() && "Constants not resolved?"); ValuePtrs.clear(); } Value *operator[](unsigned i) const { assert(i < ValuePtrs.size()); return ValuePtrs[i]; } Value *back() const { return ValuePtrs.back(); } void pop_back() { ValuePtrs.pop_back(); } bool empty() const { return ValuePtrs.empty(); } void shrinkTo(unsigned N) { assert(N <= size() && "Invalid shrinkTo request!"); ValuePtrs.resize(N); } Constant *getConstantFwdRef(unsigned Idx, const Type *Ty); Value *getValueFwdRef(unsigned Idx, const Type *Ty); void AssignValue(Value *V, unsigned Idx); /// ResolveConstantForwardRefs - Once all constants are read, this method bulk /// resolves any forward references. void ResolveConstantForwardRefs(); }; class BitcodeReader : public ModuleProvider { MemoryBuffer *Buffer; BitstreamReader StreamFile; BitstreamCursor Stream; const char *ErrorString; std::vector TypeList; BitcodeReaderValueList ValueList; std::vector > GlobalInits; std::vector > AliasInits; /// MAttributes - The set of attributes by index. Index zero in the /// file is for null, and is thus not represented here. As such all indices /// are off by one. std::vector MAttributes; /// FunctionBBs - While parsing a function body, this is a list of the basic /// blocks for the function. std::vector FunctionBBs; // When reading the module header, this list is populated with functions that // have bodies later in the file. std::vector FunctionsWithBodies; // When intrinsic functions are encountered which require upgrading they are // stored here with their replacement function. typedef std::vector > UpgradedIntrinsicMap; UpgradedIntrinsicMap UpgradedIntrinsics; // After the module header has been read, the FunctionsWithBodies list is // reversed. This keeps track of whether we've done this yet. bool HasReversedFunctionsWithBodies; /// DeferredFunctionInfo - When function bodies are initially scanned, this /// map contains info about where to find deferred function body (in the /// stream) and what linkage the original function had. DenseMap > DeferredFunctionInfo; public: explicit BitcodeReader(MemoryBuffer *buffer) : Buffer(buffer), ErrorString(0) { HasReversedFunctionsWithBodies = false; } ~BitcodeReader() { FreeState(); } void FreeState(); /// releaseMemoryBuffer - This causes the reader to completely forget about /// the memory buffer it contains, which prevents the buffer from being /// destroyed when it is deleted. void releaseMemoryBuffer() { Buffer = 0; } virtual bool materializeFunction(Function *F, std::string *ErrInfo = 0); virtual Module *materializeModule(std::string *ErrInfo = 0); virtual void dematerializeFunction(Function *F); virtual Module *releaseModule(std::string *ErrInfo = 0); bool Error(const char *Str) { ErrorString = Str; return true; } const char *getErrorString() const { return ErrorString; } /// @brief Main interface to parsing a bitcode buffer. /// @returns true if an error occurred. bool ParseBitcode(); private: const Type *getTypeByID(unsigned ID, bool isTypeTable = false); Value *getFnValueByID(unsigned ID, const Type *Ty) { return ValueList.getValueFwdRef(ID, Ty); } BasicBlock *getBasicBlock(unsigned ID) const { if (ID >= FunctionBBs.size()) return 0; // Invalid ID return FunctionBBs[ID]; } AttrListPtr getAttributes(unsigned i) const { if (i-1 < MAttributes.size()) return MAttributes[i-1]; return AttrListPtr(); } /// getValueTypePair - Read a value/type pair out of the specified record from /// slot 'Slot'. Increment Slot past the number of slots used in the record. /// Return true on failure. bool getValueTypePair(SmallVector &Record, unsigned &Slot, unsigned InstNum, Value *&ResVal) { if (Slot == Record.size()) return true; unsigned ValNo = (unsigned)Record[Slot++]; if (ValNo < InstNum) { // If this is not a forward reference, just return the value we already // have. ResVal = getFnValueByID(ValNo, 0); return ResVal == 0; } else if (Slot == Record.size()) { return true; } unsigned TypeNo = (unsigned)Record[Slot++]; ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); return ResVal == 0; } bool getValue(SmallVector &Record, unsigned &Slot, const Type *Ty, Value *&ResVal) { if (Slot == Record.size()) return true; unsigned ValNo = (unsigned)Record[Slot++]; ResVal = getFnValueByID(ValNo, Ty); return ResVal == 0; } bool ParseModule(const std::string &ModuleID); bool ParseAttributeBlock(); bool ParseTypeTable(); bool ParseTypeSymbolTable(); bool ParseValueSymbolTable(); bool ParseConstants(); bool RememberAndSkipFunctionBody(); bool ParseFunctionBody(Function *F); bool ResolveGlobalAndAliasInits(); }; } // End llvm namespace #endif