//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SystemZTargetLowering class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "systemz-lower" #include "SystemZISelLowering.h" #include "SystemZCallingConv.h" #include "SystemZConstantPoolValue.h" #include "SystemZMachineFunctionInfo.h" #include "SystemZTargetMachine.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" using namespace llvm; // Classify VT as either 32 or 64 bit. static bool is32Bit(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { case MVT::i32: return true; case MVT::i64: return false; default: llvm_unreachable("Unsupported type"); } } // Return a version of MachineOperand that can be safely used before the // final use. static MachineOperand earlyUseOperand(MachineOperand Op) { if (Op.isReg()) Op.setIsKill(false); return Op; } SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) : TargetLowering(tm, new TargetLoweringObjectFileELF()), Subtarget(*tm.getSubtargetImpl()), TM(tm) { MVT PtrVT = getPointerTy(); // Set up the register classes. addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); // Compute derived properties from the register classes computeRegisterProperties(); // Set up special registers. setExceptionPointerRegister(SystemZ::R6D); setExceptionSelectorRegister(SystemZ::R7D); setStackPointerRegisterToSaveRestore(SystemZ::R15D); // TODO: It may be better to default to latency-oriented scheduling, however // LLVM's current latency-oriented scheduler can't handle physreg definitions // such as SystemZ has with PSW, so set this to the register-pressure // scheduler, because it can. setSchedulingPreference(Sched::RegPressure); setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? // Instructions are strings of 2-byte aligned 2-byte values. setMinFunctionAlignment(2); // Handle operations that are handled in a similar way for all types. for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; I <= MVT::LAST_FP_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND). setOperationAction(ISD::SETCC, VT, Expand); // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). setOperationAction(ISD::SELECT, VT, Expand); // Lower SELECT_CC and BR_CC into separate comparisons and branches. setOperationAction(ISD::SELECT_CC, VT, Custom); setOperationAction(ISD::BR_CC, VT, Custom); } } // Expand jump table branches as address arithmetic followed by an // indirect jump. setOperationAction(ISD::BR_JT, MVT::Other, Expand); // Expand BRCOND into a BR_CC (see above). setOperationAction(ISD::BRCOND, MVT::Other, Expand); // Handle integer types. for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; I <= MVT::LAST_INTEGER_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // Expand individual DIV and REMs into DIVREMs. setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Custom); setOperationAction(ISD::UDIVREM, VT, Custom); // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP. // FIXME: probably much too conservative. setOperationAction(ISD::ATOMIC_LOAD, VT, Expand); setOperationAction(ISD::ATOMIC_STORE, VT, Expand); // No special instructions for these. setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); // Use *MUL_LOHI where possible and a wider multiplication otherwise. setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); // We have instructions for signed but not unsigned FP conversion. setOperationAction(ISD::FP_TO_UINT, VT, Expand); } } // Type legalization will convert 8- and 16-bit atomic operations into // forms that operate on i32s (but still keeping the original memory VT). // Lower them into full i32 operations. setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); // We have instructions for signed but not unsigned FP conversion. // Handle unsigned 32-bit types as signed 64-bit types. setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); // We have native support for a 64-bit CTLZ, via FLOGR. setOperationAction(ISD::CTLZ, MVT::i32, Promote); setOperationAction(ISD::CTLZ, MVT::i64, Legal); // Give LowerOperation the chance to replace 64-bit ORs with subregs. setOperationAction(ISD::OR, MVT::i64, Custom); // The architecture has 32-bit SMUL_LOHI and UMUL_LOHI (MR and MLR), // but they aren't really worth using. There is no 64-bit SMUL_LOHI, // but there is a 64-bit UMUL_LOHI: MLGR. setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom); // FIXME: Can we support these natively? setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); // We have native instructions for i8, i16 and i32 extensions, but not i1. setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // Handle the various types of symbolic address. setOperationAction(ISD::ConstantPool, PtrVT, Custom); setOperationAction(ISD::GlobalAddress, PtrVT, Custom); setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); setOperationAction(ISD::BlockAddress, PtrVT, Custom); setOperationAction(ISD::JumpTable, PtrVT, Custom); // We need to handle dynamic allocations specially because of the // 160-byte area at the bottom of the stack. setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); // Use custom expanders so that we can force the function to use // a frame pointer. setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); // Expand these using getExceptionSelectorRegister() and // getExceptionPointerRegister(). setOperationAction(ISD::EXCEPTIONADDR, PtrVT, Expand); setOperationAction(ISD::EHSELECTION, PtrVT, Expand); // Handle floating-point types. for (unsigned I = MVT::FIRST_FP_VALUETYPE; I <= MVT::LAST_FP_VALUETYPE; ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { // We can use FI for FRINT. setOperationAction(ISD::FRINT, VT, Legal); // No special instructions for these. setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); } } // We have fused multiply-addition for f32 and f64 but not f128. setOperationAction(ISD::FMA, MVT::f32, Legal); setOperationAction(ISD::FMA, MVT::f64, Legal); setOperationAction(ISD::FMA, MVT::f128, Expand); // Needed so that we don't try to implement f128 constant loads using // a load-and-extend of a f80 constant (in cases where the constant // would fit in an f80). setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); // Floating-point truncation and stores need to be done separately. setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f64, Expand); // We have 64-bit FPR<->GPR moves, but need special handling for // 32-bit forms. setOperationAction(ISD::BITCAST, MVT::i32, Custom); setOperationAction(ISD::BITCAST, MVT::f32, Custom); // VASTART and VACOPY need to deal with the SystemZ-specific varargs // structure, but VAEND is a no-op. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); } bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. return Imm.isZero() || Imm.isNegZero(); } //===----------------------------------------------------------------------===// // Inline asm support //===----------------------------------------------------------------------===// TargetLowering::ConstraintType SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'a': // Address register case 'd': // Data register (equivalent to 'r') case 'f': // Floating-point register case 'r': // General-purpose register return C_RegisterClass; case 'Q': // Memory with base and unsigned 12-bit displacement case 'R': // Likewise, plus an index case 'S': // Memory with base and signed 20-bit displacement case 'T': // Likewise, plus an index case 'm': // Equivalent to 'T'. return C_Memory; case 'I': // Unsigned 8-bit constant case 'J': // Unsigned 12-bit constant case 'K': // Signed 16-bit constant case 'L': // Signed 20-bit displacement (on all targets we support) case 'M': // 0x7fffffff return C_Other; default: break; } } return TargetLowering::getConstraintType(Constraint); } TargetLowering::ConstraintWeight SystemZTargetLowering:: getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (CallOperandVal == NULL) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'a': // Address register case 'd': // Data register (equivalent to 'r') case 'r': // General-purpose register if (CallOperandVal->getType()->isIntegerTy()) weight = CW_Register; break; case 'f': // Floating-point register if (type->isFloatingPointTy()) weight = CW_Register; break; case 'I': // Unsigned 8-bit constant if (ConstantInt *C = dyn_cast(CallOperandVal)) if (isUInt<8>(C->getZExtValue())) weight = CW_Constant; break; case 'J': // Unsigned 12-bit constant if (ConstantInt *C = dyn_cast(CallOperandVal)) if (isUInt<12>(C->getZExtValue())) weight = CW_Constant; break; case 'K': // Signed 16-bit constant if (ConstantInt *C = dyn_cast(CallOperandVal)) if (isInt<16>(C->getSExtValue())) weight = CW_Constant; break; case 'L': // Signed 20-bit displacement (on all targets we support) if (ConstantInt *C = dyn_cast(CallOperandVal)) if (isInt<20>(C->getSExtValue())) weight = CW_Constant; break; case 'M': // 0x7fffffff if (ConstantInt *C = dyn_cast(CallOperandVal)) if (C->getZExtValue() == 0x7fffffff) weight = CW_Constant; break; } return weight; } std::pair SystemZTargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint.size() == 1) { // GCC Constraint Letters switch (Constraint[0]) { default: break; case 'd': // Data register (equivalent to 'r') case 'r': // General-purpose register if (VT == MVT::i64) return std::make_pair(0U, &SystemZ::GR64BitRegClass); else if (VT == MVT::i128) return std::make_pair(0U, &SystemZ::GR128BitRegClass); return std::make_pair(0U, &SystemZ::GR32BitRegClass); case 'a': // Address register if (VT == MVT::i64) return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); else if (VT == MVT::i128) return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); case 'f': // Floating-point register if (VT == MVT::f64) return std::make_pair(0U, &SystemZ::FP64BitRegClass); else if (VT == MVT::f128) return std::make_pair(0U, &SystemZ::FP128BitRegClass); return std::make_pair(0U, &SystemZ::FP32BitRegClass); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } void SystemZTargetLowering:: LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { // Only support length 1 constraints for now. if (Constraint.length() == 1) { switch (Constraint[0]) { case 'I': // Unsigned 8-bit constant if (ConstantSDNode *C = dyn_cast(Op)) if (isUInt<8>(C->getZExtValue())) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), Op.getValueType())); return; case 'J': // Unsigned 12-bit constant if (ConstantSDNode *C = dyn_cast(Op)) if (isUInt<12>(C->getZExtValue())) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), Op.getValueType())); return; case 'K': // Signed 16-bit constant if (ConstantSDNode *C = dyn_cast(Op)) if (isInt<16>(C->getSExtValue())) Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), Op.getValueType())); return; case 'L': // Signed 20-bit displacement (on all targets we support) if (ConstantSDNode *C = dyn_cast(Op)) if (isInt<20>(C->getSExtValue())) Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), Op.getValueType())); return; case 'M': // 0x7fffffff if (ConstantSDNode *C = dyn_cast(Op)) if (C->getZExtValue() == 0x7fffffff) Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), Op.getValueType())); return; } } TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } //===----------------------------------------------------------------------===// // Calling conventions //===----------------------------------------------------------------------===// #include "SystemZGenCallingConv.inc" // Value is a value that has been passed to us in the location described by VA // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining // any loads onto Chain. static SDValue convertLocVTToValVT(SelectionDAG &DAG, DebugLoc DL, CCValAssign &VA, SDValue Chain, SDValue Value) { // If the argument has been promoted from a smaller type, insert an // assertion to capture this. if (VA.getLocInfo() == CCValAssign::SExt) Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, DAG.getValueType(VA.getValVT())); if (VA.isExtInLoc()) Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); else if (VA.getLocInfo() == CCValAssign::Indirect) Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, MachinePointerInfo(), false, false, false, 0); else assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); return Value; } // Value is a value of type VA.getValVT() that we need to copy into // the location described by VA. Return a copy of Value converted to // VA.getValVT(). The caller is responsible for handling indirect values. static SDValue convertValVTToLocVT(SelectionDAG &DAG, DebugLoc DL, CCValAssign &VA, SDValue Value) { switch (VA.getLocInfo()) { case CCValAssign::SExt: return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::ZExt: return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::AExt: return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); case CCValAssign::Full: return Value; default: llvm_unreachable("Unhandled getLocInfo()"); } } SDValue SystemZTargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, DebugLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); SystemZMachineFunctionInfo *FuncInfo = MF.getInfo(); const SystemZFrameLowering *TFL = static_cast(TM.getFrameLowering()); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); unsigned NumFixedGPRs = 0; unsigned NumFixedFPRs = 0; for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { SDValue ArgValue; CCValAssign &VA = ArgLocs[I]; EVT LocVT = VA.getLocVT(); if (VA.isRegLoc()) { // Arguments passed in registers const TargetRegisterClass *RC; switch (LocVT.getSimpleVT().SimpleTy) { default: // Integers smaller than i64 should be promoted to i64. llvm_unreachable("Unexpected argument type"); case MVT::i32: NumFixedGPRs += 1; RC = &SystemZ::GR32BitRegClass; break; case MVT::i64: NumFixedGPRs += 1; RC = &SystemZ::GR64BitRegClass; break; case MVT::f32: NumFixedFPRs += 1; RC = &SystemZ::FP32BitRegClass; break; case MVT::f64: NumFixedFPRs += 1; RC = &SystemZ::FP64BitRegClass; break; } unsigned VReg = MRI.createVirtualRegister(RC); MRI.addLiveIn(VA.getLocReg(), VReg); ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); } else { assert(VA.isMemLoc() && "Argument not register or memory"); // Create the frame index object for this incoming parameter. int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load // from this parameter. Unpromoted ints and floats are // passed as right-justified 8-byte values. EVT PtrVT = getPointerTy(); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4)); ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } // Convert the value of the argument register into the value that's // being passed. InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); } if (IsVarArg) { // Save the number of non-varargs registers for later use by va_start, etc. FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); // Likewise the address (in the form of a frame index) of where the // first stack vararg would be. The 1-byte size here is arbitrary. int64_t StackSize = CCInfo.getNextStackOffset(); FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); // ...and a similar frame index for the caller-allocated save area // that will be used to store the incoming registers. int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); FuncInfo->setRegSaveFrameIndex(RegSaveIndex); // Store the FPR varargs in the reserved frame slots. (We store the // GPRs as part of the prologue.) if (NumFixedFPRs < SystemZ::NumArgFPRs) { SDValue MemOps[SystemZ::NumArgFPRs]; for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], &SystemZ::FP64BitRegClass); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0); } // Join the stores, which are independent of one another. Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[NumFixedFPRs], SystemZ::NumArgFPRs - NumFixedFPRs); } } return Chain; } SDValue SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; DebugLoc &DL = CLI.DL; SmallVector &Outs = CLI.Outs; SmallVector &OutVals = CLI.OutVals; SmallVector &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); EVT PtrVT = getPointerTy(); // SystemZ target does not yet support tail call optimization. isTailCall = false; // Analyze the operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = ArgCCInfo.getNextStackOffset(); // Mark the start of the call. Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true)); // Copy argument values to their designated locations. SmallVector, 9> RegsToPass; SmallVector MemOpChains; SDValue StackPtr; for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { CCValAssign &VA = ArgLocs[I]; SDValue ArgValue = OutVals[I]; if (VA.getLocInfo() == CCValAssign::Indirect) { // Store the argument in a stack slot and pass its address. SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); int FI = cast(SpillSlot)->getIndex(); MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, MachinePointerInfo::getFixedStack(FI), false, false, 0)); ArgValue = SpillSlot; } else ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); if (VA.isRegLoc()) // Queue up the argument copies and emit them at the end. RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); else { assert(VA.isMemLoc() && "Argument not register or memory"); // Work out the address of the stack slot. Unpromoted ints and // floats are passed as right-justified 8-byte values. if (!StackPtr.getNode()) StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) Offset += 4; SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, DAG.getIntPtrConstant(Offset)); // Emit the store. MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo(), false, false, 0)); } } // Join the stores, which are independent of one another. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes, chained and glued together. SDValue Glue; for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, RegsToPass[I].second, Glue); Glue = Chain.getValue(1); } // Accept direct calls by converting symbolic call addresses to the // associated Target* opcodes. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); } else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); } // The first call operand is the chain and the second is the target address. SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) Ops.push_back(DAG.getRegister(RegsToPass[I].first, RegsToPass[I].second.getValueType())); // Glue the call to the argument copies, if any. if (Glue.getNode()) Ops.push_back(Glue); // Emit the call. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size()); Glue = Chain.getValue(1); // Mark the end of the call, which is glued to the call itself. Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, PtrVT, true), DAG.getConstant(0, PtrVT, true), Glue); Glue = Chain.getValue(1); // Assign locations to each value returned by this call. SmallVector RetLocs; CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); // Copy all of the result registers out of their specified physreg. for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { CCValAssign &VA = RetLocs[I]; // Copy the value out, gluing the copy to the end of the call sequence. SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); Chain = RetValue.getValue(1); Glue = RetValue.getValue(2); // Convert the value of the return register into the value that's // being returned. InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); } return Chain; } SDValue SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, DebugLoc DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); // Assign locations to each returned value. SmallVector RetLocs; CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); // Quick exit for void returns if (RetLocs.empty()) return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); // Copy the result values into the output registers. SDValue Glue; SmallVector RetOps; RetOps.push_back(Chain); for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { CCValAssign &VA = RetLocs[I]; SDValue RetValue = OutVals[I]; // Make the return register live on exit. assert(VA.isRegLoc() && "Can only return in registers!"); // Promote the value as required. RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); // Chain and glue the copies together. unsigned Reg = VA.getLocReg(); Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); } // Update chain and glue. RetOps[0] = Chain; if (Glue.getNode()) RetOps.push_back(Glue); return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps.data(), RetOps.size()); } // CC is a comparison that will be implemented using an integer or // floating-point comparison. Return the condition code mask for // a branch on true. In the integer case, CCMASK_CMP_UO is set for // unsigned comparisons and clear for signed ones. In the floating-point // case, CCMASK_CMP_UO has its normal mask meaning (unordered). static unsigned CCMaskForCondCode(ISD::CondCode CC) { #define CONV(X) \ case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X switch (CC) { default: llvm_unreachable("Invalid integer condition!"); CONV(EQ); CONV(NE); CONV(GT); CONV(GE); CONV(LT); CONV(LE); case ISD::SETO: return SystemZ::CCMASK_CMP_O; case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; } #undef CONV } // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary. static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, SDValue &CmpOp0, SDValue &CmpOp1, unsigned &CCMask) { // For us to make any changes, it must a comparison between a single-use // load and a constant. if (!CmpOp0.hasOneUse() || CmpOp0.getOpcode() != ISD::LOAD || CmpOp1.getOpcode() != ISD::Constant) return; // We must have an 8- or 16-bit load. LoadSDNode *Load = cast(CmpOp0); unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); if (NumBits != 8 && NumBits != 16) return; // The load must be an extending one and the constant must be within the // range of the unextended value. ConstantSDNode *Constant = cast(CmpOp1); uint64_t Value = Constant->getZExtValue(); uint64_t Mask = (1 << NumBits) - 1; if (Load->getExtensionType() == ISD::SEXTLOAD) { int64_t SignedValue = Constant->getSExtValue(); if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask) return; // Unsigned comparison between two sign-extended values is equivalent // to unsigned comparison between two zero-extended values. if (IsUnsigned) Value &= Mask; else if (CCMask == SystemZ::CCMASK_CMP_EQ || CCMask == SystemZ::CCMASK_CMP_NE) // Any choice of IsUnsigned is OK for equality comparisons. // We could use either CHHSI or CLHHSI for 16-bit comparisons, // but since we use CLHHSI for zero extensions, it seems better // to be consistent and do the same here. Value &= Mask, IsUnsigned = true; else if (NumBits == 8) { // Try to treat the comparison as unsigned, so that we can use CLI. // Adjust CCMask and Value as necessary. if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT) // Test whether the high bit of the byte is set. Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true; else if (SignedValue == -1 && CCMask == SystemZ::CCMASK_CMP_GT) // Test whether the high bit of the byte is clear. Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true; else // No instruction exists for this combination. return; } } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { if (Value > Mask) return; // Signed comparison between two zero-extended values is equivalent // to unsigned comparison. IsUnsigned = true; } else return; // Make sure that the first operand is an i32 of the right extension type. ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD; if (CmpOp0.getValueType() != MVT::i32 || Load->getExtensionType() != ExtType) CmpOp0 = DAG.getExtLoad(ExtType, Load->getDebugLoc(), MVT::i32, Load->getChain(), Load->getBasePtr(), Load->getPointerInfo(), Load->getMemoryVT(), Load->isVolatile(), Load->isNonTemporal(), Load->getAlignment()); // Make sure that the second operand is an i32 with the right value. if (CmpOp1.getValueType() != MVT::i32 || Value != Constant->getZExtValue()) CmpOp1 = DAG.getConstant(Value, MVT::i32); } // Return true if a comparison described by CCMask, CmpOp0 and CmpOp1 // is an equality comparison that is better implemented using unsigned // rather than signed comparison instructions. static bool preferUnsignedComparison(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, unsigned CCMask) { // The test must be for equality or inequality. if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE) return false; if (CmpOp1.getOpcode() == ISD::Constant) { uint64_t Value = cast(CmpOp1)->getSExtValue(); // If we're comparing with memory, prefer unsigned comparisons for // values that are in the unsigned 16-bit range but not the signed // 16-bit range. We want to use CLFHSI and CLGHSI. if (CmpOp0.hasOneUse() && ISD::isNormalLoad(CmpOp0.getNode()) && (Value >= 32768 && Value < 65536)) return true; // Use unsigned comparisons for values that are in the CLGFI range // but not in the CGFI range. if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1) return true; return false; } // Prefer CL for zero-extended loads. if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(CmpOp1.getNode())) return true; // ...and for "in-register" zero extensions. if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) { SDValue Mask = CmpOp1.getOperand(1); if (Mask.getOpcode() == ISD::Constant && cast(Mask)->getZExtValue() == 0xffffffff) return true; } return false; } // Return a target node that compares CmpOp0 and CmpOp1. Set CCMask to the // 4-bit condition-code mask for CC. static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, ISD::CondCode CC, unsigned &CCMask) { bool IsUnsigned = false; CCMask = CCMaskForCondCode(CC); if (!CmpOp0.getValueType().isFloatingPoint()) { IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO; CCMask &= ~SystemZ::CCMASK_CMP_UO; adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); if (preferUnsignedComparison(DAG, CmpOp0, CmpOp1, CCMask)) IsUnsigned = true; } DebugLoc DL = CmpOp0.getDebugLoc(); return DAG.getNode((IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP), DL, MVT::Glue, CmpOp0, CmpOp1); } // Lower a binary operation that produces two VT results, one in each // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation // on the extended Op0 and (unextended) Op1. Store the even register result // in Even and the odd register result in Odd. static void lowerGR128Binary(SelectionDAG &DAG, DebugLoc DL, EVT VT, unsigned Extend, unsigned Opcode, SDValue Op0, SDValue Op1, SDValue &Even, SDValue &Odd) { SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, SDValue(In128, 0), Op1); bool Is32Bit = is32Bit(VT); SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT); SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT); SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, Result, SubReg0); SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, Result, SubReg1); Even = SDValue(Reg0, 0); Odd = SDValue(Reg1, 0); } SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue CmpOp0 = Op.getOperand(2); SDValue CmpOp1 = Op.getOperand(3); SDValue Dest = Op.getOperand(4); DebugLoc DL = Op.getDebugLoc(); unsigned CCMask; SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCMask); return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), Chain, DAG.getConstant(CCMask, MVT::i32), Dest, Flags); } SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue CmpOp0 = Op.getOperand(0); SDValue CmpOp1 = Op.getOperand(1); SDValue TrueOp = Op.getOperand(2); SDValue FalseOp = Op.getOperand(3); ISD::CondCode CC = cast(Op.getOperand(4))->get(); DebugLoc DL = Op.getDebugLoc(); unsigned CCMask; SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCMask); SmallVector Ops; Ops.push_back(TrueOp); Ops.push_back(FalseOp); Ops.push_back(DAG.getConstant(CCMask, MVT::i32)); Ops.push_back(Flags); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size()); } SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const { DebugLoc DL = Node->getDebugLoc(); const GlobalValue *GV = Node->getGlobal(); int64_t Offset = Node->getOffset(); EVT PtrVT = getPointerTy(); Reloc::Model RM = TM.getRelocationModel(); CodeModel::Model CM = TM.getCodeModel(); SDValue Result; if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { // Make sure that the offset is aligned to a halfword. If it isn't, // create an "anchor" at the previous 12-bit boundary. // FIXME check whether there is a better way of handling this. if (Offset & 1) { Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset & ~uint64_t(0xfff)); Offset &= 0xfff; } else { Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset); Offset = 0; } Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); } else { Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(), false, false, false, 0); } // If there was a non-zero offset that we didn't fold, create an explicit // addition for it. if (Offset != 0) Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, DAG.getConstant(Offset, PtrVT)); return Result; } SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const { DebugLoc DL = Node->getDebugLoc(); const GlobalValue *GV = Node->getGlobal(); EVT PtrVT = getPointerTy(); TLSModel::Model model = TM.getTLSModel(GV); if (model != TLSModel::LocalExec) llvm_unreachable("only local-exec TLS mode supported"); // The high part of the thread pointer is in access register 0. SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, DAG.getConstant(0, MVT::i32)); TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); // The low part of the thread pointer is in access register 1. SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, DAG.getConstant(1, MVT::i32)); TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); // Merge them into a single 64-bit address. SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, DAG.getConstant(32, PtrVT)); SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); // Get the offset of GA from the thread pointer. SystemZConstantPoolValue *CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); // Force the offset into the constant pool and load it from there. SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8); SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); // Add the base and offset together. return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); } SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, SelectionDAG &DAG) const { DebugLoc DL = Node->getDebugLoc(); const BlockAddress *BA = Node->getBlockAddress(); int64_t Offset = Node->getOffset(); EVT PtrVT = getPointerTy(); SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); return Result; } SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const { DebugLoc DL = JT->getDebugLoc(); EVT PtrVT = getPointerTy(); SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); // Use LARL to load the address of the table. return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); } SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const { DebugLoc DL = CP->getDebugLoc(); EVT PtrVT = getPointerTy(); SDValue Result; if (CP->isMachineConstantPoolEntry()) Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlignment()); else Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset()); // Use LARL to load the address of the constant pool entry. return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); } SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); SDValue In = Op.getOperand(0); EVT InVT = In.getValueType(); EVT ResVT = Op.getValueType(); SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64); SDValue Shift32 = DAG.getConstant(32, MVT::i64); if (InVT == MVT::i32 && ResVT == MVT::f32) { SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32); SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift); SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f32, Out64, SubReg32); return SDValue(Out, 0); } if (InVT == MVT::f32 && ResVT == MVT::i32) { SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f64, SDValue(U64, 0), In, SubReg32); SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0)); SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32); SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); return Out; } llvm_unreachable("Unexpected bitcast combination"); } SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SystemZMachineFunctionInfo *FuncInfo = MF.getInfo(); EVT PtrVT = getPointerTy(); SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); const Value *SV = cast(Op.getOperand(2))->getValue(); DebugLoc DL = Op.getDebugLoc(); // The initial values of each field. const unsigned NumFields = 4; SDValue Fields[NumFields] = { DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT), DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT), DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) }; // Store each field into its respective slot. SDValue MemOps[NumFields]; unsigned Offset = 0; for (unsigned I = 0; I < NumFields; ++I) { SDValue FieldAddr = Addr; if (Offset != 0) FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, DAG.getIntPtrConstant(Offset)); MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, MachinePointerInfo(SV, Offset), false, false, 0); Offset += 8; } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields); } SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue DstPtr = Op.getOperand(1); SDValue SrcPtr = Op.getOperand(2); const Value *DstSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); DebugLoc DL = Op.getDebugLoc(); return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32), /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); } SDValue SystemZTargetLowering:: lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); DebugLoc DL = Op.getDebugLoc(); unsigned SPReg = getStackPointerRegisterToSaveRestore(); // Get a reference to the stack pointer. SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); // Get the new stack pointer value. SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); // Copy the new stack pointer back. Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); // The allocated data lives above the 160 bytes allocated for the standard // frame, plus any outgoing stack arguments. We don't know how much that // amounts to yet, so emit a special ADJDYNALLOC placeholder. SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); SDValue Ops[2] = { Result, Chain }; return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); DebugLoc DL = Op.getDebugLoc(); assert(!is32Bit(VT) && "Only support 64-bit UMUL_LOHI"); // UMUL_LOHI64 returns the low result in the odd register and the high // result in the even register. UMUL_LOHI is defined to return the // low half first, so the results are in reverse order. SDValue Ops[2]; lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); EVT VT = Op.getValueType(); DebugLoc DL = Op.getDebugLoc(); // We use DSGF for 32-bit division. if (is32Bit(VT)) { Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); Op1 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op1); } // DSG(F) takes a 64-bit dividend, so the even register in the GR128 // input is "don't care". The instruction returns the remainder in // the even register and the quotient in the odd register. SDValue Ops[2]; lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::SDIVREM64, Op0, Op1, Ops[1], Ops[0]); return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); DebugLoc DL = Op.getDebugLoc(); // DL(G) uses a double-width dividend, so we need to clear the even // register in the GR128 input. The instruction returns the remainder // in the even register and the quotient in the odd register. SDValue Ops[2]; if (is32Bit(VT)) lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); else lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); return DAG.getMergeValues(Ops, 2, DL); } SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); // Get the known-zero masks for each operand. SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; APInt KnownZero[2], KnownOne[2]; DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]); DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]); // See if the upper 32 bits of one operand and the lower 32 bits of the // other are known zero. They are the low and high operands respectively. uint64_t Masks[] = { KnownZero[0].getZExtValue(), KnownZero[1].getZExtValue() }; unsigned High, Low; if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) High = 1, Low = 0; else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) High = 0, Low = 1; else return Op; SDValue LowOp = Ops[Low]; SDValue HighOp = Ops[High]; // If the high part is a constant, we're better off using IILH. if (HighOp.getOpcode() == ISD::Constant) return Op; // If the low part is a constant that is outside the range of LHI, // then we're better off using IILF. if (LowOp.getOpcode() == ISD::Constant) { int64_t Value = int32_t(cast(LowOp)->getZExtValue()); if (!isInt<16>(Value)) return Op; } // Check whether the high part is an AND that doesn't change the // high 32 bits and just masks out low bits. We can skip it if so. if (HighOp.getOpcode() == ISD::AND && HighOp.getOperand(1).getOpcode() == ISD::Constant) { ConstantSDNode *MaskNode = cast(HighOp.getOperand(1)); uint64_t Mask = MaskNode->getZExtValue() | Masks[High]; if ((Mask >> 32) == 0xffffffff) HighOp = HighOp.getOperand(0); } // Take advantage of the fact that all GR32 operations only change the // low 32 bits by truncating Low to an i32 and inserting it directly // using a subreg. The interesting cases are those where the truncation // can be folded. DebugLoc DL = Op.getDebugLoc(); SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64); SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i64, HighOp, Low32, SubReg32); return SDValue(Result, 0); } // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first // two into the fullword ATOMIC_LOADW_* operation given by Opcode. SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG, unsigned Opcode) const { AtomicSDNode *Node = cast(Op.getNode()); // 32-bit operations need no code outside the main loop. EVT NarrowVT = Node->getMemoryVT(); EVT WideVT = MVT::i32; if (NarrowVT == WideVT) return Op; int64_t BitSize = NarrowVT.getSizeInBits(); SDValue ChainIn = Node->getChain(); SDValue Addr = Node->getBasePtr(); SDValue Src2 = Node->getVal(); MachineMemOperand *MMO = Node->getMemOperand(); DebugLoc DL = Node->getDebugLoc(); EVT PtrVT = Addr.getValueType(); // Convert atomic subtracts of constants into additions. if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) if (ConstantSDNode *Const = dyn_cast(Src2)) { Opcode = SystemZISD::ATOMIC_LOADW_ADD; Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType()); } // Get the address of the containing word. SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, DAG.getConstant(-4, PtrVT)); // Get the number of bits that the word must be rotated left in order // to bring the field to the top bits of a GR32. SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, DAG.getConstant(3, PtrVT)); BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); // Get the complementing shift amount, for rotating a field in the top // bits back to its proper position. SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, DAG.getConstant(0, WideVT), BitShift); // Extend the source operand to 32 bits and prepare it for the inner loop. // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other // operations require the source to be shifted in advance. (This shift // can be folded if the source is constant.) For AND and NAND, the lower // bits must be set, while for other opcodes they should be left clear. if (Opcode != SystemZISD::ATOMIC_SWAPW) Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, DAG.getConstant(32 - BitSize, WideVT)); if (Opcode == SystemZISD::ATOMIC_LOADW_AND || Opcode == SystemZISD::ATOMIC_LOADW_NAND) Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, DAG.getConstant(uint32_t(-1) >> BitSize, WideVT)); // Construct the ATOMIC_LOADW_* node. SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, DAG.getConstant(BitSize, WideVT) }; SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, array_lengthof(Ops), NarrowVT, MMO); // Rotate the result of the final CS so that the field is in the lower // bits of a GR32, then truncate it. SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, DAG.getConstant(BitSize, WideVT)); SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; return DAG.getMergeValues(RetOps, 2, DL); } // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two // into a fullword ATOMIC_CMP_SWAPW operation. SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *Node = cast(Op.getNode()); // We have native support for 32-bit compare and swap. EVT NarrowVT = Node->getMemoryVT(); EVT WideVT = MVT::i32; if (NarrowVT == WideVT) return Op; int64_t BitSize = NarrowVT.getSizeInBits(); SDValue ChainIn = Node->getOperand(0); SDValue Addr = Node->getOperand(1); SDValue CmpVal = Node->getOperand(2); SDValue SwapVal = Node->getOperand(3); MachineMemOperand *MMO = Node->getMemOperand(); DebugLoc DL = Node->getDebugLoc(); EVT PtrVT = Addr.getValueType(); // Get the address of the containing word. SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, DAG.getConstant(-4, PtrVT)); // Get the number of bits that the word must be rotated left in order // to bring the field to the top bits of a GR32. SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, DAG.getConstant(3, PtrVT)); BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); // Get the complementing shift amount, for rotating a field in the top // bits back to its proper position. SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, DAG.getConstant(0, WideVT), BitShift); // Construct the ATOMIC_CMP_SWAPW node. SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, NegBitShift, DAG.getConstant(BitSize, WideVT) }; SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, VTList, Ops, array_lengthof(Ops), NarrowVT, MMO); return AtomicOp; } SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MF.getInfo()->setManipulatesSP(true); return DAG.getCopyFromReg(Op.getOperand(0), Op.getDebugLoc(), SystemZ::R15D, Op.getValueType()); } SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MF.getInfo()->setManipulatesSP(true); return DAG.getCopyToReg(Op.getOperand(0), Op.getDebugLoc(), SystemZ::R15D, Op.getOperand(1)); } SDValue SystemZTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::BR_CC: return lowerBR_CC(Op, DAG); case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG); case ISD::GlobalAddress: return lowerGlobalAddress(cast(Op), DAG); case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(cast(Op), DAG); case ISD::BlockAddress: return lowerBlockAddress(cast(Op), DAG); case ISD::JumpTable: return lowerJumpTable(cast(Op), DAG); case ISD::ConstantPool: return lowerConstantPool(cast(Op), DAG); case ISD::BITCAST: return lowerBITCAST(Op, DAG); case ISD::VASTART: return lowerVASTART(Op, DAG); case ISD::VACOPY: return lowerVACOPY(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return lowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::UMUL_LOHI: return lowerUMUL_LOHI(Op, DAG); case ISD::SDIVREM: return lowerSDIVREM(Op, DAG); case ISD::UDIVREM: return lowerUDIVREM(Op, DAG); case ISD::OR: return lowerOR(Op, DAG); case ISD::ATOMIC_SWAP: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW); case ISD::ATOMIC_LOAD_ADD: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); case ISD::ATOMIC_LOAD_SUB: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); case ISD::ATOMIC_LOAD_AND: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); case ISD::ATOMIC_LOAD_OR: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); case ISD::ATOMIC_LOAD_XOR: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); case ISD::ATOMIC_LOAD_NAND: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); case ISD::ATOMIC_LOAD_MIN: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); case ISD::ATOMIC_LOAD_MAX: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); case ISD::ATOMIC_LOAD_UMIN: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); case ISD::ATOMIC_LOAD_UMAX: return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); case ISD::ATOMIC_CMP_SWAP: return lowerATOMIC_CMP_SWAP(Op, DAG); case ISD::STACKSAVE: return lowerSTACKSAVE(Op, DAG); case ISD::STACKRESTORE: return lowerSTACKRESTORE(Op, DAG); default: llvm_unreachable("Unexpected node to lower"); } } const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME switch (Opcode) { OPCODE(RET_FLAG); OPCODE(CALL); OPCODE(PCREL_WRAPPER); OPCODE(CMP); OPCODE(UCMP); OPCODE(BR_CCMASK); OPCODE(SELECT_CCMASK); OPCODE(ADJDYNALLOC); OPCODE(EXTRACT_ACCESS); OPCODE(UMUL_LOHI64); OPCODE(SDIVREM64); OPCODE(UDIVREM32); OPCODE(UDIVREM64); OPCODE(ATOMIC_SWAPW); OPCODE(ATOMIC_LOADW_ADD); OPCODE(ATOMIC_LOADW_SUB); OPCODE(ATOMIC_LOADW_AND); OPCODE(ATOMIC_LOADW_OR); OPCODE(ATOMIC_LOADW_XOR); OPCODE(ATOMIC_LOADW_NAND); OPCODE(ATOMIC_LOADW_MIN); OPCODE(ATOMIC_LOADW_MAX); OPCODE(ATOMIC_LOADW_UMIN); OPCODE(ATOMIC_LOADW_UMAX); OPCODE(ATOMIC_CMP_SWAPW); } return NULL; #undef OPCODE } //===----------------------------------------------------------------------===// // Custom insertion //===----------------------------------------------------------------------===// // Create a new basic block after MBB. static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { MachineFunction &MF = *MBB->getParent(); MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB); return NewMBB; } // Split MBB after MI and return the new block (the one that contains // instructions after MI). static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, MachineBasicBlock *MBB) { MachineBasicBlock *NewMBB = emitBlockAfter(MBB); NewMBB->splice(NewMBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); NewMBB->transferSuccessorsAndUpdatePHIs(MBB); return NewMBB; } // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. MachineBasicBlock * SystemZTargetLowering::emitSelect(MachineInstr *MI, MachineBasicBlock *MBB) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); unsigned DestReg = MI->getOperand(0).getReg(); unsigned TrueReg = MI->getOperand(1).getReg(); unsigned FalseReg = MI->getOperand(2).getReg(); unsigned CCMask = MI->getOperand(3).getImm(); DebugLoc DL = MI->getDebugLoc(); MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *JoinMBB = splitBlockAfter(MI, MBB); MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); // StartMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // jCC JoinMBB // # fallthrough to FalseMBB MBB = StartMBB; BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(CCMask).addMBB(JoinMBB); MBB->addSuccessor(JoinMBB); MBB->addSuccessor(FalseMBB); // FalseMBB: // # fallthrough to JoinMBB MBB = FalseMBB; MBB->addSuccessor(JoinMBB); // JoinMBB: // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] // ... MBB = JoinMBB; BuildMI(*MBB, MBB->begin(), DL, TII->get(SystemZ::PHI), DestReg) .addReg(TrueReg).addMBB(StartMBB) .addReg(FalseReg).addMBB(FalseMBB); MI->eraseFromParent(); return JoinMBB; } // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. // BitSize is the width of the field in bits, or 0 if this is a partword // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize // is one of the operands. Invert says whether the field should be // inverted after performing BinOpcode (e.g. for NAND). MachineBasicBlock * SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, MachineBasicBlock *MBB, unsigned BinOpcode, unsigned BitSize, bool Invert) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); bool IsSubWord = (BitSize < 32); // Extract the operands. Base can be a register or a frame index. // Src2 can be a register or immediate. unsigned Dest = MI->getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI->getOperand(1)); int64_t Disp = MI->getOperand(2).getImm(); MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); DebugLoc DL = MI->getDebugLoc(); if (IsSubWord) BitSize = MI->getOperand(6).getImm(); // Subword operations use 32-bit registers. const TargetRegisterClass *RC = (BitSize <= 32 ? &SystemZ::GR32BitRegClass : &SystemZ::GR64BitRegClass); unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; // Get the right opcodes for the displacement. LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned NewVal = (BinOpcode || IsSubWord ? MRI.createVirtualRegister(RC) : Src2.getReg()); unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); // Insert a basic block for the main loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); // StartMBB: // ... // %OrigVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) .addOperand(Base).addImm(Disp).addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] // %RotatedOldVal = RLL %OldVal, 0(%BitShift) // %RotatedNewVal = OP %RotatedOldVal, %Src2 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) // %Dest = CS %OldVal, %NewVal, Disp(%Base) // JNE LoopMBB // # fall through to DoneMMB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigVal).addMBB(StartMBB) .addReg(Dest).addMBB(LoopMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) .addReg(OldVal).addReg(BitShift).addImm(0); if (Invert) { // Perform the operation normally and then invert every bit of the field. unsigned Tmp = MRI.createVirtualRegister(RC); BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) .addReg(RotatedOldVal).addOperand(Src2); if (BitSize < 32) // XILF with the upper BitSize bits set. BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal) .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize))); else if (BitSize == 32) // XILF with every bit set. BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal) .addReg(Tmp).addImm(~uint32_t(0)); else { // Use LCGR and add -1 to the result, which is more compact than // an XILF, XILH pair. unsigned Tmp2 = MRI.createVirtualRegister(RC); BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) .addReg(Tmp2).addImm(-1); } } else if (BinOpcode) // A simply binary operation. BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) .addReg(RotatedOldVal).addOperand(Src2); else if (IsSubWord) // Use RISBG to rotate Src2 into position and use it to replace the // field in RotatedOldVal. BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) .addReg(RotatedOldVal).addReg(Src2.getReg()) .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); BuildMI(MBB, DL, TII->get(CSOpcode), Dest) .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(MaskNE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); MI->eraseFromParent(); return DoneMBB; } // Implement EmitInstrWithCustomInserter for pseudo // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the // instruction that should be used to compare the current field with the // minimum or maximum value. KeepOldMask is the BRC condition-code mask // for when the current field should be kept. BitSize is the width of // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. MachineBasicBlock * SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, MachineBasicBlock *MBB, unsigned CompareOpcode, unsigned KeepOldMask, unsigned BitSize) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); bool IsSubWord = (BitSize < 32); // Extract the operands. Base can be a register or a frame index. unsigned Dest = MI->getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI->getOperand(1)); int64_t Disp = MI->getOperand(2).getImm(); unsigned Src2 = MI->getOperand(3).getReg(); unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); DebugLoc DL = MI->getDebugLoc(); if (IsSubWord) BitSize = MI->getOperand(6).getImm(); // Subword operations use 32-bit registers. const TargetRegisterClass *RC = (BitSize <= 32 ? &SystemZ::GR32BitRegClass : &SystemZ::GR64BitRegClass); unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; // Get the right opcodes for the displacement. LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned NewVal = MRI.createVirtualRegister(RC); unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); // Insert 3 basic blocks for the loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); // StartMBB: // ... // %OrigVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) .addOperand(Base).addImm(Disp).addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] // %RotatedOldVal = RLL %OldVal, 0(%BitShift) // CompareOpcode %RotatedOldVal, %Src2 // BRC KeepOldMask, UpdateMBB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigVal).addMBB(StartMBB) .addReg(Dest).addMBB(UpdateMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) .addReg(OldVal).addReg(BitShift).addImm(0); BuildMI(MBB, DL, TII->get(CompareOpcode)) .addReg(RotatedOldVal).addReg(Src2); BuildMI(MBB, DL, TII->get(SystemZ::BRC)) .addImm(KeepOldMask).addMBB(UpdateMBB); MBB->addSuccessor(UpdateMBB); MBB->addSuccessor(UseAltMBB); // UseAltMBB: // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 // # fall through to UpdateMMB MBB = UseAltMBB; if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) .addReg(RotatedOldVal).addReg(Src2) .addImm(32).addImm(31 + BitSize).addImm(0); MBB->addSuccessor(UpdateMBB); // UpdateMBB: // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], // [ %RotatedAltVal, UseAltMBB ] // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) // %Dest = CS %OldVal, %NewVal, Disp(%Base) // JNE LoopMBB // # fall through to DoneMMB MBB = UpdateMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) .addReg(RotatedOldVal).addMBB(LoopMBB) .addReg(RotatedAltVal).addMBB(UseAltMBB); if (IsSubWord) BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); BuildMI(MBB, DL, TII->get(CSOpcode), Dest) .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(MaskNE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); MI->eraseFromParent(); return DoneMBB; } // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW // instruction MI. MachineBasicBlock * SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, MachineBasicBlock *MBB) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); // Extract the operands. Base can be a register or a frame index. unsigned Dest = MI->getOperand(0).getReg(); MachineOperand Base = earlyUseOperand(MI->getOperand(1)); int64_t Disp = MI->getOperand(2).getImm(); unsigned OrigCmpVal = MI->getOperand(3).getReg(); unsigned OrigSwapVal = MI->getOperand(4).getReg(); unsigned BitShift = MI->getOperand(5).getReg(); unsigned NegBitShift = MI->getOperand(6).getReg(); int64_t BitSize = MI->getOperand(7).getImm(); DebugLoc DL = MI->getDebugLoc(); const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; // Get the right opcodes for the displacement. unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); assert(LOpcode && CSOpcode && "Displacement out of range"); // Create virtual registers for temporary results. unsigned OrigOldVal = MRI.createVirtualRegister(RC); unsigned OldVal = MRI.createVirtualRegister(RC); unsigned CmpVal = MRI.createVirtualRegister(RC); unsigned SwapVal = MRI.createVirtualRegister(RC); unsigned StoreVal = MRI.createVirtualRegister(RC); unsigned RetryOldVal = MRI.createVirtualRegister(RC); unsigned RetryCmpVal = MRI.createVirtualRegister(RC); unsigned RetrySwapVal = MRI.createVirtualRegister(RC); // Insert 2 basic blocks for the loop. MachineBasicBlock *StartMBB = MBB; MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); // StartMBB: // ... // %OrigOldVal = L Disp(%Base) // # fall through to LoopMMB MBB = StartMBB; BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) .addOperand(Base).addImm(Disp).addReg(0); MBB->addSuccessor(LoopMBB); // LoopMBB: // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] // %Dest = RLL %OldVal, BitSize(%BitShift) // ^^ The low BitSize bits contain the field // of interest. // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 // ^^ Replace the upper 32-BitSize bits of the // comparison value with those that we loaded, // so that we can use a full word comparison. // CR %Dest, %RetryCmpVal // JNE DoneMBB // # Fall through to SetMBB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigOldVal).addMBB(StartMBB) .addReg(RetryOldVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) .addReg(OrigCmpVal).addMBB(StartMBB) .addReg(RetryCmpVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) .addReg(OrigSwapVal).addMBB(StartMBB) .addReg(RetrySwapVal).addMBB(SetMBB); BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) .addReg(OldVal).addReg(BitShift).addImm(BitSize); BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::CR)) .addReg(Dest).addReg(RetryCmpVal); BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(MaskNE).addMBB(DoneMBB); MBB->addSuccessor(DoneMBB); MBB->addSuccessor(SetMBB); // SetMBB: // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 // ^^ Replace the upper 32-BitSize bits of the new // value with those that we loaded. // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) // ^^ Rotate the new field to its proper position. // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) // JNE LoopMBB // # fall through to ExitMMB MBB = SetMBB; BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); BuildMI(MBB, DL, TII->get(SystemZ::BRC)).addImm(MaskNE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); MI->eraseFromParent(); return DoneMBB; } // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true // if the high register of the GR128 value must be cleared or false if // it's "don't care". SubReg is subreg_odd32 when extending a GR32 // and subreg_odd when extending a GR64. MachineBasicBlock * SystemZTargetLowering::emitExt128(MachineInstr *MI, MachineBasicBlock *MBB, bool ClearEven, unsigned SubReg) const { const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned Dest = MI->getOperand(0).getReg(); unsigned Src = MI->getOperand(1).getReg(); unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); if (ClearEven) { unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) .addImm(0); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high); In128 = NewIn128; } BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) .addReg(In128).addReg(Src).addImm(SubReg); MI->eraseFromParent(); return MBB; } MachineBasicBlock *SystemZTargetLowering:: EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { switch (MI->getOpcode()) { case SystemZ::Select32: case SystemZ::SelectF32: case SystemZ::Select64: case SystemZ::SelectF64: case SystemZ::SelectF128: return emitSelect(MI, MBB); case SystemZ::AEXT128_64: return emitExt128(MI, MBB, false, SystemZ::subreg_low); case SystemZ::ZEXT128_32: return emitExt128(MI, MBB, true, SystemZ::subreg_low32); case SystemZ::ZEXT128_64: return emitExt128(MI, MBB, true, SystemZ::subreg_low); case SystemZ::ATOMIC_SWAPW: return emitAtomicLoadBinary(MI, MBB, 0, 0); case SystemZ::ATOMIC_SWAP_32: return emitAtomicLoadBinary(MI, MBB, 0, 32); case SystemZ::ATOMIC_SWAP_64: return emitAtomicLoadBinary(MI, MBB, 0, 64); case SystemZ::ATOMIC_LOADW_AR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); case SystemZ::ATOMIC_LOADW_AFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); case SystemZ::ATOMIC_LOAD_AR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); case SystemZ::ATOMIC_LOAD_AHI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); case SystemZ::ATOMIC_LOAD_AFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); case SystemZ::ATOMIC_LOAD_AGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); case SystemZ::ATOMIC_LOAD_AGHI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); case SystemZ::ATOMIC_LOAD_AGFI: return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); case SystemZ::ATOMIC_LOADW_SR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); case SystemZ::ATOMIC_LOAD_SR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); case SystemZ::ATOMIC_LOAD_SGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); case SystemZ::ATOMIC_LOADW_NR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); case SystemZ::ATOMIC_LOADW_NILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0); case SystemZ::ATOMIC_LOAD_NR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); case SystemZ::ATOMIC_LOAD_NILL32: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32); case SystemZ::ATOMIC_LOAD_NILH32: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32); case SystemZ::ATOMIC_LOAD_NILF32: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32); case SystemZ::ATOMIC_LOAD_NGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); case SystemZ::ATOMIC_LOAD_NILL: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64); case SystemZ::ATOMIC_LOAD_NILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64); case SystemZ::ATOMIC_LOAD_NIHL: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64); case SystemZ::ATOMIC_LOAD_NIHH: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64); case SystemZ::ATOMIC_LOAD_NILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64); case SystemZ::ATOMIC_LOAD_NIHF: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64); case SystemZ::ATOMIC_LOADW_OR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); case SystemZ::ATOMIC_LOADW_OILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0); case SystemZ::ATOMIC_LOAD_OR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); case SystemZ::ATOMIC_LOAD_OILL32: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32); case SystemZ::ATOMIC_LOAD_OILH32: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32); case SystemZ::ATOMIC_LOAD_OILF32: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32); case SystemZ::ATOMIC_LOAD_OGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); case SystemZ::ATOMIC_LOAD_OILL: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64); case SystemZ::ATOMIC_LOAD_OILH: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64); case SystemZ::ATOMIC_LOAD_OIHL: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64); case SystemZ::ATOMIC_LOAD_OIHH: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64); case SystemZ::ATOMIC_LOAD_OILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64); case SystemZ::ATOMIC_LOAD_OIHF: return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64); case SystemZ::ATOMIC_LOADW_XR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); case SystemZ::ATOMIC_LOADW_XILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0); case SystemZ::ATOMIC_LOAD_XR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); case SystemZ::ATOMIC_LOAD_XILF32: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32); case SystemZ::ATOMIC_LOAD_XGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); case SystemZ::ATOMIC_LOAD_XILF: return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64); case SystemZ::ATOMIC_LOAD_XIHF: return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64); case SystemZ::ATOMIC_LOADW_NRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); case SystemZ::ATOMIC_LOADW_NILHi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true); case SystemZ::ATOMIC_LOAD_NRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); case SystemZ::ATOMIC_LOAD_NILL32i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true); case SystemZ::ATOMIC_LOAD_NILH32i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true); case SystemZ::ATOMIC_LOAD_NILF32i: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true); case SystemZ::ATOMIC_LOAD_NGRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); case SystemZ::ATOMIC_LOAD_NILLi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true); case SystemZ::ATOMIC_LOAD_NILHi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true); case SystemZ::ATOMIC_LOAD_NIHLi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true); case SystemZ::ATOMIC_LOAD_NIHHi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true); case SystemZ::ATOMIC_LOAD_NILFi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true); case SystemZ::ATOMIC_LOAD_NIHFi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true); case SystemZ::ATOMIC_LOADW_MIN: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE, 0); case SystemZ::ATOMIC_LOAD_MIN_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE, 32); case SystemZ::ATOMIC_LOAD_MIN_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, SystemZ::CCMASK_CMP_LE, 64); case SystemZ::ATOMIC_LOADW_MAX: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE, 0); case SystemZ::ATOMIC_LOAD_MAX_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE, 32); case SystemZ::ATOMIC_LOAD_MAX_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, SystemZ::CCMASK_CMP_GE, 64); case SystemZ::ATOMIC_LOADW_UMIN: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE, 0); case SystemZ::ATOMIC_LOAD_UMIN_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE, 32); case SystemZ::ATOMIC_LOAD_UMIN_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, SystemZ::CCMASK_CMP_LE, 64); case SystemZ::ATOMIC_LOADW_UMAX: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE, 0); case SystemZ::ATOMIC_LOAD_UMAX_32: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE, 32); case SystemZ::ATOMIC_LOAD_UMAX_64: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, SystemZ::CCMASK_CMP_GE, 64); case SystemZ::ATOMIC_CMP_SWAPW: return emitAtomicCmpSwapW(MI, MBB); default: llvm_unreachable("Unexpected instr type to insert"); } }