//===-- MachineCodeForMethod.cpp -------------------------------------------=// // // Purpose: // Collect native machine code information for a function. // This allows target-specific information about the generated code // to be stored with each function. //===---------------------------------------------------------------------===// #include "llvm/CodeGen/MachineCodeForMethod.h" #include "llvm/CodeGen/MachineInstr.h" // For debug output #include "llvm/CodeGen/MachineCodeForBasicBlock.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/MachineFrameInfo.h" #include "llvm/Target/MachineCacheInfo.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/iOther.h" #include #include const int INVALID_FRAME_OFFSET = INT_MAX; // std::numeric_limits::max(); static AnnotationID MCFM_AID( AnnotationManager::getID("CodeGen::MachineCodeForFunction")); // The next two methods are used to construct and to retrieve // the MachineCodeForFunction object for the given function. // construct() -- Allocates and initializes for a given function and target // get() -- Returns a handle to the object. // This should not be called before "construct()" // for a given Function. // MachineCodeForMethod& MachineCodeForMethod::construct(const Function *M, const TargetMachine &Tar) { assert(M->getAnnotation(MCFM_AID) == 0 && "Object already exists for this function!"); MachineCodeForMethod* mcInfo = new MachineCodeForMethod(M, Tar); M->addAnnotation(mcInfo); return *mcInfo; } void MachineCodeForMethod::destruct(const Function *M) { bool Deleted = M->deleteAnnotation(MCFM_AID); assert(Deleted && "Machine code did not exist for function!"); } MachineCodeForMethod& MachineCodeForMethod::get(const Function *F) { MachineCodeForMethod *mc = (MachineCodeForMethod*)F->getAnnotation(MCFM_AID); assert(mc && "Call construct() method first to allocate the object"); return *mc; } static unsigned ComputeMaxOptionalArgsSize(const TargetMachine& target, const Function *F, unsigned &maxOptionalNumArgs) { const MachineFrameInfo& frameInfo = target.getFrameInfo(); unsigned maxSize = 0; for (Function::const_iterator BB = F->begin(), BBE = F->end(); BB !=BBE; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (const CallInst *callInst = dyn_cast(&*I)) { unsigned numOperands = callInst->getNumOperands() - 1; int numExtra = (int)numOperands-frameInfo.getNumFixedOutgoingArgs(); if (numExtra <= 0) continue; unsigned int sizeForThisCall; if (frameInfo.argsOnStackHaveFixedSize()) { int argSize = frameInfo.getSizeOfEachArgOnStack(); sizeForThisCall = numExtra * (unsigned) argSize; } else { assert(0 && "UNTESTED CODE: Size per stack argument is not " "fixed on this architecture: use actual arg sizes to " "compute MaxOptionalArgsSize"); sizeForThisCall = 0; for (unsigned i = 0; i < numOperands; ++i) sizeForThisCall += target.findOptimalStorageSize(callInst-> getOperand(i)->getType()); } if (maxSize < sizeForThisCall) maxSize = sizeForThisCall; if ((int)maxOptionalNumArgs < numExtra) maxOptionalNumArgs = (unsigned) numExtra; } return maxSize; } // Align data larger than one L1 cache line on L1 cache line boundaries. // Align all smaller data on the next higher 2^x boundary (4, 8, ...), // but not higher than the alignment of the largest type we support // (currently a double word). -- see class TargetData). // // This function is similar to the corresponding function in EmitAssembly.cpp // but they are unrelated. This one does not align at more than a // double-word boundary whereas that one might. // inline unsigned int SizeToAlignment(unsigned int size, const TargetMachine& target) { unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1); if (size > (unsigned) cacheLineSize / 2) return cacheLineSize; else for (unsigned sz=1; /*no condition*/; sz *= 2) if (sz >= size || sz >= target.DataLayout.getDoubleAlignment()) return sz; } /*ctor*/ MachineCodeForMethod::MachineCodeForMethod(const Function *F, const TargetMachine& target) : Annotation(MCFM_AID), method(F), staticStackSize(0), automaticVarsSize(0), regSpillsSize(0), maxOptionalArgsSize(0), maxOptionalNumArgs(0), currentTmpValuesSize(0), maxTmpValuesSize(0), compiledAsLeaf(false), spillsAreaFrozen(false), automaticVarsAreaFrozen(false) { maxOptionalArgsSize = ComputeMaxOptionalArgsSize(target, method, maxOptionalNumArgs); staticStackSize = maxOptionalArgsSize + target.getFrameInfo().getMinStackFrameSize(); } int MachineCodeForMethod::computeOffsetforLocalVar(const TargetMachine& target, const Value* val, unsigned int& getPaddedSize, unsigned int sizeToUse) { if (sizeToUse == 0) sizeToUse = target.findOptimalStorageSize(val->getType()); unsigned int align = SizeToAlignment(sizeToUse, target); bool growUp; int firstOffset = target.getFrameInfo().getFirstAutomaticVarOffset(*this, growUp); int offset = growUp? firstOffset + getAutomaticVarsSize() : firstOffset - (getAutomaticVarsSize() + sizeToUse); int aligned = target.getFrameInfo().adjustAlignment(offset, growUp, align); getPaddedSize = sizeToUse + abs(aligned - offset); return aligned; } int MachineCodeForMethod::allocateLocalVar(const TargetMachine& target, const Value* val, unsigned int sizeToUse) { assert(! automaticVarsAreaFrozen && "Size of auto vars area has been used to compute an offset so " "no more automatic vars should be allocated!"); // Check if we've allocated a stack slot for this value already // int offset = getOffset(val); if (offset == INVALID_FRAME_OFFSET) { unsigned int getPaddedSize; offset = this->computeOffsetforLocalVar(target, val, getPaddedSize, sizeToUse); offsets[val] = offset; incrementAutomaticVarsSize(getPaddedSize); } return offset; } int MachineCodeForMethod::allocateSpilledValue(const TargetMachine& target, const Type* type) { assert(! spillsAreaFrozen && "Size of reg spills area has been used to compute an offset so " "no more register spill slots should be allocated!"); unsigned int size = target.findOptimalStorageSize(type); unsigned char align = target.DataLayout.getTypeAlignment(type); bool growUp; int firstOffset = target.getFrameInfo().getRegSpillAreaOffset(*this, growUp); int offset = growUp? firstOffset + getRegSpillsSize() : firstOffset - (getRegSpillsSize() + size); int aligned = target.getFrameInfo().adjustAlignment(offset, growUp, align); size += abs(aligned - offset); // include alignment padding in size incrementRegSpillsSize(size); // update size of reg. spills area return aligned; } int MachineCodeForMethod::pushTempValue(const TargetMachine& target, unsigned int size) { unsigned int align = SizeToAlignment(size, target); bool growUp; int firstOffset = target.getFrameInfo().getTmpAreaOffset(*this, growUp); int offset = growUp? firstOffset + currentTmpValuesSize : firstOffset - (currentTmpValuesSize + size); int aligned = target.getFrameInfo().adjustAlignment(offset, growUp, align); size += abs(aligned - offset); // include alignment padding in size incrementTmpAreaSize(size); // update "current" size of tmp area return aligned; } void MachineCodeForMethod::popAllTempValues(const TargetMachine& target) { resetTmpAreaSize(); // clear tmp area to reuse } int MachineCodeForMethod::getOffset(const Value* val) const { hash_map::const_iterator pair = offsets.find(val); return (pair == offsets.end())? INVALID_FRAME_OFFSET : pair->second; } void MachineCodeForMethod::dump() const { std::cerr << "\n" << method->getReturnType() << " \"" << method->getName() << "\"\n"; for (Function::const_iterator BB = method->begin(); BB != method->end(); ++BB) { std::cerr << std::endl << (*BB).getName() << " (" << (const void*) BB << ")" << ":" << std::endl; MachineCodeForBasicBlock& mvec = MachineCodeForBasicBlock::get(BB); for (unsigned i=0; i < mvec.size(); i++) std::cerr << "\t" << *mvec[i]; } std::cerr << "\nEnd function \"" << method->getName() << "\"\n\n"; }