//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "X86InstrInfo.h" #include "X86.h" #include "X86InstrBuilder.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/DerivedTypes.h" #include "llvm/LLVMContext.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" #include "llvm/MC/MCAsmInfo.h" #include #define GET_INSTRINFO_CTOR #include "X86GenInstrInfo.inc" using namespace llvm; static cl::opt NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions")); static cl::opt PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden); static cl::opt ReMatPICStubLoad("remat-pic-stub-load", cl::desc("Re-materialize load from stub in PIC mode"), cl::init(false), cl::Hidden); X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) : X86GenInstrInfo((tm.getSubtarget().is64Bit() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32), (tm.getSubtarget().is64Bit() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)), TM(tm), RI(tm, *this) { enum { TB_NOT_REVERSABLE = 1U << 31, TB_FLAGS = TB_NOT_REVERSABLE }; static const unsigned OpTbl2Addr[][2] = { { X86::ADC32ri, X86::ADC32mi }, { X86::ADC32ri8, X86::ADC32mi8 }, { X86::ADC32rr, X86::ADC32mr }, { X86::ADC64ri32, X86::ADC64mi32 }, { X86::ADC64ri8, X86::ADC64mi8 }, { X86::ADC64rr, X86::ADC64mr }, { X86::ADD16ri, X86::ADD16mi }, { X86::ADD16ri8, X86::ADD16mi8 }, { X86::ADD16ri_DB, X86::ADD16mi | TB_NOT_REVERSABLE }, { X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE }, { X86::ADD16rr, X86::ADD16mr }, { X86::ADD16rr_DB, X86::ADD16mr | TB_NOT_REVERSABLE }, { X86::ADD32ri, X86::ADD32mi }, { X86::ADD32ri8, X86::ADD32mi8 }, { X86::ADD32ri_DB, X86::ADD32mi | TB_NOT_REVERSABLE }, { X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE }, { X86::ADD32rr, X86::ADD32mr }, { X86::ADD32rr_DB, X86::ADD32mr | TB_NOT_REVERSABLE }, { X86::ADD64ri32, X86::ADD64mi32 }, { X86::ADD64ri8, X86::ADD64mi8 }, { X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE }, { X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE }, { X86::ADD64rr, X86::ADD64mr }, { X86::ADD64rr_DB, X86::ADD64mr | TB_NOT_REVERSABLE }, { X86::ADD8ri, X86::ADD8mi }, { X86::ADD8rr, X86::ADD8mr }, { X86::AND16ri, X86::AND16mi }, { X86::AND16ri8, X86::AND16mi8 }, { X86::AND16rr, X86::AND16mr }, { X86::AND32ri, X86::AND32mi }, { X86::AND32ri8, X86::AND32mi8 }, { X86::AND32rr, X86::AND32mr }, { X86::AND64ri32, X86::AND64mi32 }, { X86::AND64ri8, X86::AND64mi8 }, { X86::AND64rr, X86::AND64mr }, { X86::AND8ri, X86::AND8mi }, { X86::AND8rr, X86::AND8mr }, { X86::DEC16r, X86::DEC16m }, { X86::DEC32r, X86::DEC32m }, { X86::DEC64_16r, X86::DEC64_16m }, { X86::DEC64_32r, X86::DEC64_32m }, { X86::DEC64r, X86::DEC64m }, { X86::DEC8r, X86::DEC8m }, { X86::INC16r, X86::INC16m }, { X86::INC32r, X86::INC32m }, { X86::INC64_16r, X86::INC64_16m }, { X86::INC64_32r, X86::INC64_32m }, { X86::INC64r, X86::INC64m }, { X86::INC8r, X86::INC8m }, { X86::NEG16r, X86::NEG16m }, { X86::NEG32r, X86::NEG32m }, { X86::NEG64r, X86::NEG64m }, { X86::NEG8r, X86::NEG8m }, { X86::NOT16r, X86::NOT16m }, { X86::NOT32r, X86::NOT32m }, { X86::NOT64r, X86::NOT64m }, { X86::NOT8r, X86::NOT8m }, { X86::OR16ri, X86::OR16mi }, { X86::OR16ri8, X86::OR16mi8 }, { X86::OR16rr, X86::OR16mr }, { X86::OR32ri, X86::OR32mi }, { X86::OR32ri8, X86::OR32mi8 }, { X86::OR32rr, X86::OR32mr }, { X86::OR64ri32, X86::OR64mi32 }, { X86::OR64ri8, X86::OR64mi8 }, { X86::OR64rr, X86::OR64mr }, { X86::OR8ri, X86::OR8mi }, { X86::OR8rr, X86::OR8mr }, { X86::ROL16r1, X86::ROL16m1 }, { X86::ROL16rCL, X86::ROL16mCL }, { X86::ROL16ri, X86::ROL16mi }, { X86::ROL32r1, X86::ROL32m1 }, { X86::ROL32rCL, X86::ROL32mCL }, { X86::ROL32ri, X86::ROL32mi }, { X86::ROL64r1, X86::ROL64m1 }, { X86::ROL64rCL, X86::ROL64mCL }, { X86::ROL64ri, X86::ROL64mi }, { X86::ROL8r1, X86::ROL8m1 }, { X86::ROL8rCL, X86::ROL8mCL }, { X86::ROL8ri, X86::ROL8mi }, { X86::ROR16r1, X86::ROR16m1 }, { X86::ROR16rCL, X86::ROR16mCL }, { X86::ROR16ri, X86::ROR16mi }, { X86::ROR32r1, X86::ROR32m1 }, { X86::ROR32rCL, X86::ROR32mCL }, { X86::ROR32ri, X86::ROR32mi }, { X86::ROR64r1, X86::ROR64m1 }, { X86::ROR64rCL, X86::ROR64mCL }, { X86::ROR64ri, X86::ROR64mi }, { X86::ROR8r1, X86::ROR8m1 }, { X86::ROR8rCL, X86::ROR8mCL }, { X86::ROR8ri, X86::ROR8mi }, { X86::SAR16r1, X86::SAR16m1 }, { X86::SAR16rCL, X86::SAR16mCL }, { X86::SAR16ri, X86::SAR16mi }, { X86::SAR32r1, X86::SAR32m1 }, { X86::SAR32rCL, X86::SAR32mCL }, { X86::SAR32ri, X86::SAR32mi }, { X86::SAR64r1, X86::SAR64m1 }, { X86::SAR64rCL, X86::SAR64mCL }, { X86::SAR64ri, X86::SAR64mi }, { X86::SAR8r1, X86::SAR8m1 }, { X86::SAR8rCL, X86::SAR8mCL }, { X86::SAR8ri, X86::SAR8mi }, { X86::SBB32ri, X86::SBB32mi }, { X86::SBB32ri8, X86::SBB32mi8 }, { X86::SBB32rr, X86::SBB32mr }, { X86::SBB64ri32, X86::SBB64mi32 }, { X86::SBB64ri8, X86::SBB64mi8 }, { X86::SBB64rr, X86::SBB64mr }, { X86::SHL16rCL, X86::SHL16mCL }, { X86::SHL16ri, X86::SHL16mi }, { X86::SHL32rCL, X86::SHL32mCL }, { X86::SHL32ri, X86::SHL32mi }, { X86::SHL64rCL, X86::SHL64mCL }, { X86::SHL64ri, X86::SHL64mi }, { X86::SHL8rCL, X86::SHL8mCL }, { X86::SHL8ri, X86::SHL8mi }, { X86::SHLD16rrCL, X86::SHLD16mrCL }, { X86::SHLD16rri8, X86::SHLD16mri8 }, { X86::SHLD32rrCL, X86::SHLD32mrCL }, { X86::SHLD32rri8, X86::SHLD32mri8 }, { X86::SHLD64rrCL, X86::SHLD64mrCL }, { X86::SHLD64rri8, X86::SHLD64mri8 }, { X86::SHR16r1, X86::SHR16m1 }, { X86::SHR16rCL, X86::SHR16mCL }, { X86::SHR16ri, X86::SHR16mi }, { X86::SHR32r1, X86::SHR32m1 }, { X86::SHR32rCL, X86::SHR32mCL }, { X86::SHR32ri, X86::SHR32mi }, { X86::SHR64r1, X86::SHR64m1 }, { X86::SHR64rCL, X86::SHR64mCL }, { X86::SHR64ri, X86::SHR64mi }, { X86::SHR8r1, X86::SHR8m1 }, { X86::SHR8rCL, X86::SHR8mCL }, { X86::SHR8ri, X86::SHR8mi }, { X86::SHRD16rrCL, X86::SHRD16mrCL }, { X86::SHRD16rri8, X86::SHRD16mri8 }, { X86::SHRD32rrCL, X86::SHRD32mrCL }, { X86::SHRD32rri8, X86::SHRD32mri8 }, { X86::SHRD64rrCL, X86::SHRD64mrCL }, { X86::SHRD64rri8, X86::SHRD64mri8 }, { X86::SUB16ri, X86::SUB16mi }, { X86::SUB16ri8, X86::SUB16mi8 }, { X86::SUB16rr, X86::SUB16mr }, { X86::SUB32ri, X86::SUB32mi }, { X86::SUB32ri8, X86::SUB32mi8 }, { X86::SUB32rr, X86::SUB32mr }, { X86::SUB64ri32, X86::SUB64mi32 }, { X86::SUB64ri8, X86::SUB64mi8 }, { X86::SUB64rr, X86::SUB64mr }, { X86::SUB8ri, X86::SUB8mi }, { X86::SUB8rr, X86::SUB8mr }, { X86::XOR16ri, X86::XOR16mi }, { X86::XOR16ri8, X86::XOR16mi8 }, { X86::XOR16rr, X86::XOR16mr }, { X86::XOR32ri, X86::XOR32mi }, { X86::XOR32ri8, X86::XOR32mi8 }, { X86::XOR32rr, X86::XOR32mr }, { X86::XOR64ri32, X86::XOR64mi32 }, { X86::XOR64ri8, X86::XOR64mi8 }, { X86::XOR64rr, X86::XOR64mr }, { X86::XOR8ri, X86::XOR8mi }, { X86::XOR8rr, X86::XOR8mr } }; for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { unsigned RegOp = OpTbl2Addr[i][0]; unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS; assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?"); RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U); // If this is not a reversible operation (because there is a many->one) // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE) continue; // Index 0, folded load and store, no alignment requirement. unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries in unfolding maps?"); MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); } // If the third value is 1, then it's folding either a load or a store. static const unsigned OpTbl0[][4] = { { X86::BT16ri8, X86::BT16mi8, 1, 0 }, { X86::BT32ri8, X86::BT32mi8, 1, 0 }, { X86::BT64ri8, X86::BT64mi8, 1, 0 }, { X86::CALL32r, X86::CALL32m, 1, 0 }, { X86::CALL64r, X86::CALL64m, 1, 0 }, { X86::WINCALL64r, X86::WINCALL64m, 1, 0 }, { X86::CMP16ri, X86::CMP16mi, 1, 0 }, { X86::CMP16ri8, X86::CMP16mi8, 1, 0 }, { X86::CMP16rr, X86::CMP16mr, 1, 0 }, { X86::CMP32ri, X86::CMP32mi, 1, 0 }, { X86::CMP32ri8, X86::CMP32mi8, 1, 0 }, { X86::CMP32rr, X86::CMP32mr, 1, 0 }, { X86::CMP64ri32, X86::CMP64mi32, 1, 0 }, { X86::CMP64ri8, X86::CMP64mi8, 1, 0 }, { X86::CMP64rr, X86::CMP64mr, 1, 0 }, { X86::CMP8ri, X86::CMP8mi, 1, 0 }, { X86::CMP8rr, X86::CMP8mr, 1, 0 }, { X86::DIV16r, X86::DIV16m, 1, 0 }, { X86::DIV32r, X86::DIV32m, 1, 0 }, { X86::DIV64r, X86::DIV64m, 1, 0 }, { X86::DIV8r, X86::DIV8m, 1, 0 }, { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 }, { X86::FsMOVAPDrr, X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 }, { X86::FsMOVAPSrr, X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 }, { X86::IDIV16r, X86::IDIV16m, 1, 0 }, { X86::IDIV32r, X86::IDIV32m, 1, 0 }, { X86::IDIV64r, X86::IDIV64m, 1, 0 }, { X86::IDIV8r, X86::IDIV8m, 1, 0 }, { X86::IMUL16r, X86::IMUL16m, 1, 0 }, { X86::IMUL32r, X86::IMUL32m, 1, 0 }, { X86::IMUL64r, X86::IMUL64m, 1, 0 }, { X86::IMUL8r, X86::IMUL8m, 1, 0 }, { X86::JMP32r, X86::JMP32m, 1, 0 }, { X86::JMP64r, X86::JMP64m, 1, 0 }, { X86::MOV16ri, X86::MOV16mi, 0, 0 }, { X86::MOV16rr, X86::MOV16mr, 0, 0 }, { X86::MOV32ri, X86::MOV32mi, 0, 0 }, { X86::MOV32rr, X86::MOV32mr, 0, 0 }, { X86::MOV64ri32, X86::MOV64mi32, 0, 0 }, { X86::MOV64rr, X86::MOV64mr, 0, 0 }, { X86::MOV8ri, X86::MOV8mi, 0, 0 }, { X86::MOV8rr, X86::MOV8mr, 0, 0 }, { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 }, { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 }, { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 }, { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 }, { X86::VMOVAPDYrr, X86::VMOVAPDYmr, 0, 32 }, { X86::VMOVAPSYrr, X86::VMOVAPSYmr, 0, 32 }, { X86::VMOVDQAYrr, X86::VMOVDQAYmr, 0, 32 }, { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 }, { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 }, { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 }, { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 }, { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 }, { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 }, { X86::VMOVUPDYrr, X86::VMOVUPDYmr, 0, 0 }, { X86::VMOVUPSYrr, X86::VMOVUPSYmr, 0, 0 }, { X86::MUL16r, X86::MUL16m, 1, 0 }, { X86::MUL32r, X86::MUL32m, 1, 0 }, { X86::MUL64r, X86::MUL64m, 1, 0 }, { X86::MUL8r, X86::MUL8m, 1, 0 }, { X86::SETAEr, X86::SETAEm, 0, 0 }, { X86::SETAr, X86::SETAm, 0, 0 }, { X86::SETBEr, X86::SETBEm, 0, 0 }, { X86::SETBr, X86::SETBm, 0, 0 }, { X86::SETEr, X86::SETEm, 0, 0 }, { X86::SETGEr, X86::SETGEm, 0, 0 }, { X86::SETGr, X86::SETGm, 0, 0 }, { X86::SETLEr, X86::SETLEm, 0, 0 }, { X86::SETLr, X86::SETLm, 0, 0 }, { X86::SETNEr, X86::SETNEm, 0, 0 }, { X86::SETNOr, X86::SETNOm, 0, 0 }, { X86::SETNPr, X86::SETNPm, 0, 0 }, { X86::SETNSr, X86::SETNSm, 0, 0 }, { X86::SETOr, X86::SETOm, 0, 0 }, { X86::SETPr, X86::SETPm, 0, 0 }, { X86::SETSr, X86::SETSm, 0, 0 }, { X86::TAILJMPr, X86::TAILJMPm, 1, 0 }, { X86::TAILJMPr64, X86::TAILJMPm64, 1, 0 }, { X86::TEST16ri, X86::TEST16mi, 1, 0 }, { X86::TEST32ri, X86::TEST32mi, 1, 0 }, { X86::TEST64ri32, X86::TEST64mi32, 1, 0 }, { X86::TEST8ri, X86::TEST8mi, 1, 0 } }; for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { unsigned RegOp = OpTbl0[i][0]; unsigned MemOp = OpTbl0[i][1] & ~TB_FLAGS; unsigned FoldedLoad = OpTbl0[i][2]; unsigned Align = OpTbl0[i][3]; assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?"); RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align); // If this is not a reversible operation (because there is a many->one) // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. if (OpTbl0[i][1] & TB_NOT_REVERSABLE) continue; // Index 0, folded load or store. unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5); assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?"); MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); } static const unsigned OpTbl1[][3] = { { X86::CMP16rr, X86::CMP16rm, 0 }, { X86::CMP32rr, X86::CMP32rm, 0 }, { X86::CMP64rr, X86::CMP64rm, 0 }, { X86::CMP8rr, X86::CMP8rm, 0 }, { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, { X86::FsMOVAPDrr, X86::MOVSDrm | TB_NOT_REVERSABLE , 0 }, { X86::FsMOVAPSrr, X86::MOVSSrm | TB_NOT_REVERSABLE , 0 }, { X86::IMUL16rri, X86::IMUL16rmi, 0 }, { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, { X86::IMUL32rri, X86::IMUL32rmi, 0 }, { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 }, { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 }, { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 }, { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 }, { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 }, { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 }, { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 }, { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 }, { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, 16 }, { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, 16 }, { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 }, { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 }, { X86::MOV16rr, X86::MOV16rm, 0 }, { X86::MOV32rr, X86::MOV32rm, 0 }, { X86::MOV64rr, X86::MOV64rm, 0 }, { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, { X86::MOV8rr, X86::MOV8rm, 0 }, { X86::MOVAPDrr, X86::MOVAPDrm, 16 }, { X86::MOVAPSrr, X86::MOVAPSrm, 16 }, { X86::VMOVAPDYrr, X86::VMOVAPDYrm, 32 }, { X86::VMOVAPSYrr, X86::VMOVAPSYrm, 32 }, { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, { X86::MOVDQArr, X86::MOVDQArm, 16 }, { X86::VMOVDQAYrr, X86::VMOVDQAYrm, 16 }, { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 }, { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 }, { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, { X86::MOVUPDrr, X86::MOVUPDrm, 16 }, { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 }, { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 }, { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 }, { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 }, { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 }, { X86::PSHUFDri, X86::PSHUFDmi, 16 }, { X86::PSHUFHWri, X86::PSHUFHWmi, 16 }, { X86::PSHUFLWri, X86::PSHUFLWmi, 16 }, { X86::RCPPSr, X86::RCPPSm, 16 }, { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 }, { X86::RSQRTPSr, X86::RSQRTPSm, 16 }, { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 }, { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, { X86::SQRTPDr, X86::SQRTPDm, 16 }, { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 }, { X86::SQRTPSr, X86::SQRTPSm, 16 }, { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 }, { X86::SQRTSDr, X86::SQRTSDm, 0 }, { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, { X86::SQRTSSr, X86::SQRTSSm, 0 }, { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, { X86::TEST16rr, X86::TEST16rm, 0 }, { X86::TEST32rr, X86::TEST32rm, 0 }, { X86::TEST64rr, X86::TEST64rm, 0 }, { X86::TEST8rr, X86::TEST8rm, 0 }, // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 } }; for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { unsigned RegOp = OpTbl1[i][0]; unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS; unsigned Align = OpTbl1[i][2]; assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries"); RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align); // If this is not a reversible operation (because there is a many->one) // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. if (OpTbl1[i][1] & TB_NOT_REVERSABLE) continue; // Index 1, folded load unsigned AuxInfo = 1 | (1 << 4); assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries"); MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); } static const unsigned OpTbl2[][3] = { { X86::ADC32rr, X86::ADC32rm, 0 }, { X86::ADC64rr, X86::ADC64rm, 0 }, { X86::ADD16rr, X86::ADD16rm, 0 }, { X86::ADD16rr_DB, X86::ADD16rm | TB_NOT_REVERSABLE, 0 }, { X86::ADD32rr, X86::ADD32rm, 0 }, { X86::ADD32rr_DB, X86::ADD32rm | TB_NOT_REVERSABLE, 0 }, { X86::ADD64rr, X86::ADD64rm, 0 }, { X86::ADD64rr_DB, X86::ADD64rm | TB_NOT_REVERSABLE, 0 }, { X86::ADD8rr, X86::ADD8rm, 0 }, { X86::ADDPDrr, X86::ADDPDrm, 16 }, { X86::ADDPSrr, X86::ADDPSrm, 16 }, { X86::ADDSDrr, X86::ADDSDrm, 0 }, { X86::ADDSSrr, X86::ADDSSrm, 0 }, { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 }, { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 }, { X86::AND16rr, X86::AND16rm, 0 }, { X86::AND32rr, X86::AND32rm, 0 }, { X86::AND64rr, X86::AND64rm, 0 }, { X86::AND8rr, X86::AND8rm, 0 }, { X86::ANDNPDrr, X86::ANDNPDrm, 16 }, { X86::ANDNPSrr, X86::ANDNPSrm, 16 }, { X86::ANDPDrr, X86::ANDPDrm, 16 }, { X86::ANDPSrr, X86::ANDPSrm, 16 }, { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, { X86::CMPPDrri, X86::CMPPDrmi, 16 }, { X86::CMPPSrri, X86::CMPPSrmi, 16 }, { X86::CMPSDrr, X86::CMPSDrm, 0 }, { X86::CMPSSrr, X86::CMPSSrm, 0 }, { X86::DIVPDrr, X86::DIVPDrm, 16 }, { X86::DIVPSrr, X86::DIVPSrm, 16 }, { X86::DIVSDrr, X86::DIVSDrm, 0 }, { X86::DIVSSrr, X86::DIVSSrm, 0 }, { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 }, { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 }, { X86::FsANDPDrr, X86::FsANDPDrm, 16 }, { X86::FsANDPSrr, X86::FsANDPSrm, 16 }, { X86::FsORPDrr, X86::FsORPDrm, 16 }, { X86::FsORPSrr, X86::FsORPSrm, 16 }, { X86::FsXORPDrr, X86::FsXORPDrm, 16 }, { X86::FsXORPSrr, X86::FsXORPSrm, 16 }, { X86::HADDPDrr, X86::HADDPDrm, 16 }, { X86::HADDPSrr, X86::HADDPSrm, 16 }, { X86::HSUBPDrr, X86::HSUBPDrm, 16 }, { X86::HSUBPSrr, X86::HSUBPSrm, 16 }, { X86::IMUL16rr, X86::IMUL16rm, 0 }, { X86::IMUL32rr, X86::IMUL32rm, 0 }, { X86::IMUL64rr, X86::IMUL64rm, 0 }, { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, { X86::MAXPDrr, X86::MAXPDrm, 16 }, { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 }, { X86::MAXPSrr, X86::MAXPSrm, 16 }, { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 }, { X86::MAXSDrr, X86::MAXSDrm, 0 }, { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, { X86::MAXSSrr, X86::MAXSSrm, 0 }, { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, { X86::MINPDrr, X86::MINPDrm, 16 }, { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 }, { X86::MINPSrr, X86::MINPSrm, 16 }, { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 }, { X86::MINSDrr, X86::MINSDrm, 0 }, { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, { X86::MINSSrr, X86::MINSSrm, 0 }, { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, { X86::MULPDrr, X86::MULPDrm, 16 }, { X86::MULPSrr, X86::MULPSrm, 16 }, { X86::MULSDrr, X86::MULSDrm, 0 }, { X86::MULSSrr, X86::MULSSrm, 0 }, { X86::OR16rr, X86::OR16rm, 0 }, { X86::OR32rr, X86::OR32rm, 0 }, { X86::OR64rr, X86::OR64rm, 0 }, { X86::OR8rr, X86::OR8rm, 0 }, { X86::ORPDrr, X86::ORPDrm, 16 }, { X86::ORPSrr, X86::ORPSrm, 16 }, { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 }, { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 }, { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 }, { X86::PADDBrr, X86::PADDBrm, 16 }, { X86::PADDDrr, X86::PADDDrm, 16 }, { X86::PADDQrr, X86::PADDQrm, 16 }, { X86::PADDSBrr, X86::PADDSBrm, 16 }, { X86::PADDSWrr, X86::PADDSWrm, 16 }, { X86::PADDWrr, X86::PADDWrm, 16 }, { X86::PANDNrr, X86::PANDNrm, 16 }, { X86::PANDrr, X86::PANDrm, 16 }, { X86::PAVGBrr, X86::PAVGBrm, 16 }, { X86::PAVGWrr, X86::PAVGWrm, 16 }, { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 }, { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 }, { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 }, { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 }, { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 }, { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 }, { X86::PINSRWrri, X86::PINSRWrmi, 16 }, { X86::PMADDWDrr, X86::PMADDWDrm, 16 }, { X86::PMAXSWrr, X86::PMAXSWrm, 16 }, { X86::PMAXUBrr, X86::PMAXUBrm, 16 }, { X86::PMINSWrr, X86::PMINSWrm, 16 }, { X86::PMINUBrr, X86::PMINUBrm, 16 }, { X86::PMULDQrr, X86::PMULDQrm, 16 }, { X86::PMULHUWrr, X86::PMULHUWrm, 16 }, { X86::PMULHWrr, X86::PMULHWrm, 16 }, { X86::PMULLDrr, X86::PMULLDrm, 16 }, { X86::PMULLWrr, X86::PMULLWrm, 16 }, { X86::PMULUDQrr, X86::PMULUDQrm, 16 }, { X86::PORrr, X86::PORrm, 16 }, { X86::PSADBWrr, X86::PSADBWrm, 16 }, { X86::PSLLDrr, X86::PSLLDrm, 16 }, { X86::PSLLQrr, X86::PSLLQrm, 16 }, { X86::PSLLWrr, X86::PSLLWrm, 16 }, { X86::PSRADrr, X86::PSRADrm, 16 }, { X86::PSRAWrr, X86::PSRAWrm, 16 }, { X86::PSRLDrr, X86::PSRLDrm, 16 }, { X86::PSRLQrr, X86::PSRLQrm, 16 }, { X86::PSRLWrr, X86::PSRLWrm, 16 }, { X86::PSUBBrr, X86::PSUBBrm, 16 }, { X86::PSUBDrr, X86::PSUBDrm, 16 }, { X86::PSUBSBrr, X86::PSUBSBrm, 16 }, { X86::PSUBSWrr, X86::PSUBSWrm, 16 }, { X86::PSUBWrr, X86::PSUBWrm, 16 }, { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 }, { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 }, { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 }, { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 }, { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 }, { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 }, { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 }, { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 }, { X86::PXORrr, X86::PXORrm, 16 }, { X86::SBB32rr, X86::SBB32rm, 0 }, { X86::SBB64rr, X86::SBB64rm, 0 }, { X86::SHUFPDrri, X86::SHUFPDrmi, 16 }, { X86::SHUFPSrri, X86::SHUFPSrmi, 16 }, { X86::SUB16rr, X86::SUB16rm, 0 }, { X86::SUB32rr, X86::SUB32rm, 0 }, { X86::SUB64rr, X86::SUB64rm, 0 }, { X86::SUB8rr, X86::SUB8rm, 0 }, { X86::SUBPDrr, X86::SUBPDrm, 16 }, { X86::SUBPSrr, X86::SUBPSrm, 16 }, { X86::SUBSDrr, X86::SUBSDrm, 0 }, { X86::SUBSSrr, X86::SUBSSrm, 0 }, // FIXME: TEST*rr -> swapped operand of TEST*mr. { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 }, { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 }, { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 }, { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 }, { X86::XOR16rr, X86::XOR16rm, 0 }, { X86::XOR32rr, X86::XOR32rm, 0 }, { X86::XOR64rr, X86::XOR64rm, 0 }, { X86::XOR8rr, X86::XOR8rm, 0 }, { X86::XORPDrr, X86::XORPDrm, 16 }, { X86::XORPSrr, X86::XORPSrm, 16 } }; for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { unsigned RegOp = OpTbl2[i][0]; unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS; unsigned Align = OpTbl2[i][2]; assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!"); RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align); // If this is not a reversible operation (because there is a many->one) // mapping, don't insert the reverse of the operation into MemOp2RegOpTable. if (OpTbl2[i][1] & TB_NOT_REVERSABLE) continue; // Index 2, folded load unsigned AuxInfo = 2 | (1 << 4); assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries in unfolding maps?"); MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo); } } bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { switch (MI.getOpcode()) { default: break; case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: case X86::MOVZX64rr8: if (!TM.getSubtarget().is64Bit()) // It's not always legal to reference the low 8-bit of the larger // register in 32-bit mode. return false; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: case X86::MOVZX64rr16: case X86::MOVSX64rr32: case X86::MOVZX64rr32: { if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) // Be conservative. return false; SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); switch (MI.getOpcode()) { default: llvm_unreachable(0); break; case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: case X86::MOVZX64rr8: SubIdx = X86::sub_8bit; break; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: case X86::MOVZX64rr16: SubIdx = X86::sub_16bit; break; case X86::MOVSX64rr32: case X86::MOVZX64rr32: SubIdx = X86::sub_32bit; break; } return true; } } return false; } /// isFrameOperand - Return true and the FrameIndex if the specified /// operand and follow operands form a reference to the stack frame. bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, int &FrameIndex) const { if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && MI->getOperand(Op+1).getImm() == 1 && MI->getOperand(Op+2).getReg() == 0 && MI->getOperand(Op+3).getImm() == 0) { FrameIndex = MI->getOperand(Op).getIndex(); return true; } return false; } static bool isFrameLoadOpcode(int Opcode) { switch (Opcode) { default: break; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::VMOVAPSYrm: case X86::VMOVAPDYrm: case X86::VMOVDQAYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: return true; break; } return false; } static bool isFrameStoreOpcode(int Opcode) { switch (Opcode) { default: break; case X86::MOV8mr: case X86::MOV16mr: case X86::MOV32mr: case X86::MOV64mr: case X86::ST_FpP64m: case X86::MOVSSmr: case X86::MOVSDmr: case X86::MOVAPSmr: case X86::MOVAPDmr: case X86::MOVDQAmr: case X86::VMOVAPSYmr: case X86::VMOVAPDYmr: case X86::VMOVDQAYmr: case X86::MMX_MOVD64mr: case X86::MMX_MOVQ64mr: case X86::MMX_MOVNTQmr: return true; } return false; } unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { if (isFrameLoadOpcode(MI->getOpcode())) if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) return MI->getOperand(0).getReg(); return 0; } unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { if (isFrameLoadOpcode(MI->getOpcode())) { unsigned Reg; if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasLoadFromStackSlot(MI, Dummy, FrameIndex); } return 0; } unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { if (isFrameStoreOpcode(MI->getOpcode())) if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && isFrameOperand(MI, 0, FrameIndex)) return MI->getOperand(X86::AddrNumOperands).getReg(); return 0; } unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const { if (isFrameStoreOpcode(MI->getOpcode())) { unsigned Reg; if ((Reg = isStoreToStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasStoreToStackSlot(MI, Dummy, FrameIndex); } return 0; } /// regIsPICBase - Return true if register is PIC base (i.e.g defined by /// X86::MOVPC32r. static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { bool isPICBase = false; for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), E = MRI.def_end(); I != E; ++I) { MachineInstr *DefMI = I.getOperand().getParent(); if (DefMI->getOpcode() != X86::MOVPC32r) return false; assert(!isPICBase && "More than one PIC base?"); isPICBase = true; } return isPICBase; } bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, AliasAnalysis *AA) const { switch (MI->getOpcode()) { default: break; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVDQAYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::FsMOVAPSrm: case X86::FsMOVAPDrm: { // Loads from constant pools are trivially rematerializable. if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() && MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && MI->isInvariantLoad(AA)) { unsigned BaseReg = MI->getOperand(1).getReg(); if (BaseReg == 0 || BaseReg == X86::RIP) return true; // Allow re-materialization of PIC load. if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) return false; const MachineFunction &MF = *MI->getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); bool isPICBase = false; for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), E = MRI.def_end(); I != E; ++I) { MachineInstr *DefMI = I.getOperand().getParent(); if (DefMI->getOpcode() != X86::MOVPC32r) return false; assert(!isPICBase && "More than one PIC base?"); isPICBase = true; } return isPICBase; } return false; } case X86::LEA32r: case X86::LEA64r: { if (MI->getOperand(2).isImm() && MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && !MI->getOperand(4).isReg()) { // lea fi#, lea GV, etc. are all rematerializable. if (!MI->getOperand(1).isReg()) return true; unsigned BaseReg = MI->getOperand(1).getReg(); if (BaseReg == 0) return true; // Allow re-materialization of lea PICBase + x. const MachineFunction &MF = *MI->getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return regIsPICBase(BaseReg, MRI); } return false; } } // All other instructions marked M_REMATERIALIZABLE are always trivially // rematerializable. return true; } /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that /// would clobber the EFLAGS condition register. Note the result may be /// conservative. If it cannot definitely determine the safety after visiting /// a few instructions in each direction it assumes it's not safe. static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) { MachineBasicBlock::iterator E = MBB.end(); // It's always safe to clobber EFLAGS at the end of a block. if (I == E) return true; // For compile time consideration, if we are not able to determine the // safety after visiting 4 instructions in each direction, we will assume // it's not safe. MachineBasicBlock::iterator Iter = I; for (unsigned i = 0; i < 4; ++i) { bool SeenDef = false; for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { MachineOperand &MO = Iter->getOperand(j); if (!MO.isReg()) continue; if (MO.getReg() == X86::EFLAGS) { if (MO.isUse()) return false; SeenDef = true; } } if (SeenDef) // This instruction defines EFLAGS, no need to look any further. return true; ++Iter; // Skip over DBG_VALUE. while (Iter != E && Iter->isDebugValue()) ++Iter; // If we make it to the end of the block, it's safe to clobber EFLAGS. if (Iter == E) return true; } MachineBasicBlock::iterator B = MBB.begin(); Iter = I; for (unsigned i = 0; i < 4; ++i) { // If we make it to the beginning of the block, it's safe to clobber // EFLAGS iff EFLAGS is not live-in. if (Iter == B) return !MBB.isLiveIn(X86::EFLAGS); --Iter; // Skip over DBG_VALUE. while (Iter != B && Iter->isDebugValue()) --Iter; bool SawKill = false; for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { MachineOperand &MO = Iter->getOperand(j); if (MO.isReg() && MO.getReg() == X86::EFLAGS) { if (MO.isDef()) return MO.isDead(); if (MO.isKill()) SawKill = true; } } if (SawKill) // This instruction kills EFLAGS and doesn't redefine it, so // there's no need to look further. return true; } // Conservative answer. return false; } void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, const TargetRegisterInfo &TRI) const { DebugLoc DL = Orig->getDebugLoc(); // MOV32r0 etc. are implemented with xor which clobbers condition code. // Re-materialize them as movri instructions to avoid side effects. bool Clone = true; unsigned Opc = Orig->getOpcode(); switch (Opc) { default: break; case X86::MOV8r0: case X86::MOV16r0: case X86::MOV32r0: case X86::MOV64r0: { if (!isSafeToClobberEFLAGS(MBB, I)) { switch (Opc) { default: break; case X86::MOV8r0: Opc = X86::MOV8ri; break; case X86::MOV16r0: Opc = X86::MOV16ri; break; case X86::MOV32r0: Opc = X86::MOV32ri; break; case X86::MOV64r0: Opc = X86::MOV64ri64i32; break; } Clone = false; } break; } } if (Clone) { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); MBB.insert(I, MI); } else { BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0); } MachineInstr *NewMI = prior(I); NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); } /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that /// is not marked dead. static bool hasLiveCondCodeDef(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS && !MO.isDead()) { return true; } } return false; } /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting /// to a 32-bit superregister and then truncating back down to a 16-bit /// subregister. MachineInstr * X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { MachineInstr *MI = MBBI; unsigned Dest = MI->getOperand(0).getReg(); unsigned Src = MI->getOperand(1).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isKill = MI->getOperand(1).isKill(); unsigned Opc = TM.getSubtarget().is64Bit() ? X86::LEA64_32r : X86::LEA32r; MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); // Build and insert into an implicit UNDEF value. This is OK because // well be shifting and then extracting the lower 16-bits. // This has the potential to cause partial register stall. e.g. // movw (%rbp,%rcx,2), %dx // leal -65(%rdx), %esi // But testing has shown this *does* help performance in 64-bit mode (at // least on modern x86 machines). BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); MachineInstr *InsMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) .addReg(leaInReg, RegState::Define, X86::sub_16bit) .addReg(Src, getKillRegState(isKill)); MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg); switch (MIOpc) { default: llvm_unreachable(0); break; case X86::SHL16ri: { unsigned ShAmt = MI->getOperand(2).getImm(); MIB.addReg(0).addImm(1 << ShAmt) .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); break; } case X86::INC16r: case X86::INC64_16r: addRegOffset(MIB, leaInReg, true, 1); break; case X86::DEC16r: case X86::DEC64_16r: addRegOffset(MIB, leaInReg, true, -1); break; case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); break; case X86::ADD16rr: case X86::ADD16rr_DB: { unsigned Src2 = MI->getOperand(2).getReg(); bool isKill2 = MI->getOperand(2).isKill(); unsigned leaInReg2 = 0; MachineInstr *InsMI2 = 0; if (Src == Src2) { // ADD16rr %reg1028, %reg1028 // just a single insert_subreg. addRegReg(MIB, leaInReg, true, leaInReg, false); } else { leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); // Build and insert into an implicit UNDEF value. This is OK because // well be shifting and then extracting the lower 16-bits. BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); InsMI2 = BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) .addReg(leaInReg2, RegState::Define, X86::sub_16bit) .addReg(Src2, getKillRegState(isKill2)); addRegReg(MIB, leaInReg, true, leaInReg2, true); } if (LV && isKill2 && InsMI2) LV->replaceKillInstruction(Src2, MI, InsMI2); break; } } MachineInstr *NewMI = MIB; MachineInstr *ExtMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); if (LV) { // Update live variables LV->getVarInfo(leaInReg).Kills.push_back(NewMI); LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); if (isKill) LV->replaceKillInstruction(Src, MI, InsMI); if (isDead) LV->replaceKillInstruction(Dest, MI, ExtMI); } return ExtMI; } /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the new instruction. /// MachineInstr * X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { MachineInstr *MI = MBBI; MachineFunction &MF = *MI->getParent()->getParent(); // All instructions input are two-addr instructions. Get the known operands. unsigned Dest = MI->getOperand(0).getReg(); unsigned Src = MI->getOperand(1).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isKill = MI->getOperand(1).isKill(); MachineInstr *NewMI = NULL; // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When // we have better subtarget support, enable the 16-bit LEA generation here. // 16-bit LEA is also slow on Core2. bool DisableLEA16 = true; bool is64Bit = TM.getSubtarget().is64Bit(); unsigned MIOpc = MI->getOpcode(); switch (MIOpc) { case X86::SHUFPSrri: { assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); if (!TM.getSubtarget().hasSSE2()) return 0; unsigned B = MI->getOperand(1).getReg(); unsigned C = MI->getOperand(2).getReg(); if (B != C) return 0; unsigned A = MI->getOperand(0).getReg(); unsigned M = MI->getOperand(3).getImm(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) .addReg(A, RegState::Define | getDeadRegState(isDead)) .addReg(B, getKillRegState(isKill)).addImm(M); break; } case X86::SHL64ri: { assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses // the flags produced by a shift yet, so this is safe. unsigned ShAmt = MI->getOperand(2).getImm(); if (ShAmt == 0 || ShAmt >= 4) return 0; // LEA can't handle RSP. if (TargetRegisterInfo::isVirtualRegister(Src) && !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass)) return 0; NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(0).addImm(1 << ShAmt) .addReg(Src, getKillRegState(isKill)) .addImm(0).addReg(0); break; } case X86::SHL32ri: { assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses // the flags produced by a shift yet, so this is safe. unsigned ShAmt = MI->getOperand(2).getImm(); if (ShAmt == 0 || ShAmt >= 4) return 0; // LEA can't handle ESP. if (TargetRegisterInfo::isVirtualRegister(Src) && !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass)) return 0; unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(0).addImm(1 << ShAmt) .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0); break; } case X86::SHL16ri: { assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses // the flags produced by a shift yet, so this is safe. unsigned ShAmt = MI->getOperand(2).getImm(); if (ShAmt == 0 || ShAmt >= 4) return 0; if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(0).addImm(1 << ShAmt) .addReg(Src, getKillRegState(isKill)) .addImm(0).addReg(0); break; } default: { // The following opcodes also sets the condition code register(s). Only // convert them to equivalent lea if the condition code register def's // are dead! if (hasLiveCondCodeDef(MI)) return 0; switch (MIOpc) { default: return 0; case X86::INC64r: case X86::INC32r: case X86::INC64_32r: { assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); // LEA can't handle RSP. if (TargetRegisterInfo::isVirtualRegister(Src) && !MF.getRegInfo().constrainRegClass(Src, MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass : X86::GR32_NOSPRegisterClass)) return 0; NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, 1); break; } case X86::INC16r: case X86::INC64_16r: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, 1); break; case X86::DEC64r: case X86::DEC32r: case X86::DEC64_32r: { assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); // LEA can't handle RSP. if (TargetRegisterInfo::isVirtualRegister(Src) && !MF.getRegInfo().constrainRegClass(Src, MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass : X86::GR32_NOSPRegisterClass)) return 0; NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, -1); break; } case X86::DEC16r: case X86::DEC64_16r: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, -1); break; case X86::ADD64rr: case X86::ADD64rr_DB: case X86::ADD32rr: case X86::ADD32rr_DB: { assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc; TargetRegisterClass *RC; if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) { Opc = X86::LEA64r; RC = X86::GR64_NOSPRegisterClass; } else { Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; RC = X86::GR32_NOSPRegisterClass; } unsigned Src2 = MI->getOperand(2).getReg(); bool isKill2 = MI->getOperand(2).isKill(); // LEA can't handle RSP. if (TargetRegisterInfo::isVirtualRegister(Src2) && !MF.getRegInfo().constrainRegClass(Src2, RC)) return 0; NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, Src2, isKill2); if (LV && isKill2) LV->replaceKillInstruction(Src2, MI, NewMI); break; } case X86::ADD16rr: case X86::ADD16rr_DB: { if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Src2 = MI->getOperand(2).getReg(); bool isKill2 = MI->getOperand(2).isKill(); NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, Src2, isKill2); if (LV && isKill2) LV->replaceKillInstruction(Src2, MI, NewMI); break; } case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD64ri32_DB: case X86::ADD64ri8_DB: assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, MI->getOperand(2).getImm()); break; case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD32ri_DB: case X86::ADD32ri8_DB: { assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, MI->getOperand(2).getImm()); break; } case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)), Src, isKill, MI->getOperand(2).getImm()); break; } } } if (!NewMI) return 0; if (LV) { // Update live variables if (isKill) LV->replaceKillInstruction(Src, MI, NewMI); if (isDead) LV->replaceKillInstruction(Dest, MI, NewMI); } MFI->insert(MBBI, NewMI); // Insert the new inst return NewMI; } /// commuteInstruction - We have a few instructions that must be hacked on to /// commute them. /// MachineInstr * X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { switch (MI->getOpcode()) { case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) unsigned Opc; unsigned Size; switch (MI->getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; } unsigned Amt = MI->getOperand(3).getImm(); if (NewMI) { MachineFunction &MF = *MI->getParent()->getParent(); MI = MF.CloneMachineInstr(MI); NewMI = false; } MI->setDesc(get(Opc)); MI->getOperand(3).setImm(Size-Amt); return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); } case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { unsigned Opc = 0; switch (MI->getOpcode()) { default: break; case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; } if (NewMI) { MachineFunction &MF = *MI->getParent()->getParent(); MI = MF.CloneMachineInstr(MI); NewMI = false; } MI->setDesc(get(Opc)); // Fallthrough intended. } default: return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); } } static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { switch (BrOpc) { default: return X86::COND_INVALID; case X86::JE_4: return X86::COND_E; case X86::JNE_4: return X86::COND_NE; case X86::JL_4: return X86::COND_L; case X86::JLE_4: return X86::COND_LE; case X86::JG_4: return X86::COND_G; case X86::JGE_4: return X86::COND_GE; case X86::JB_4: return X86::COND_B; case X86::JBE_4: return X86::COND_BE; case X86::JA_4: return X86::COND_A; case X86::JAE_4: return X86::COND_AE; case X86::JS_4: return X86::COND_S; case X86::JNS_4: return X86::COND_NS; case X86::JP_4: return X86::COND_P; case X86::JNP_4: return X86::COND_NP; case X86::JO_4: return X86::COND_O; case X86::JNO_4: return X86::COND_NO; } } unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::JE_4; case X86::COND_NE: return X86::JNE_4; case X86::COND_L: return X86::JL_4; case X86::COND_LE: return X86::JLE_4; case X86::COND_G: return X86::JG_4; case X86::COND_GE: return X86::JGE_4; case X86::COND_B: return X86::JB_4; case X86::COND_BE: return X86::JBE_4; case X86::COND_A: return X86::JA_4; case X86::COND_AE: return X86::JAE_4; case X86::COND_S: return X86::JS_4; case X86::COND_NS: return X86::JNS_4; case X86::COND_P: return X86::JP_4; case X86::COND_NP: return X86::JNP_4; case X86::COND_O: return X86::JO_4; case X86::COND_NO: return X86::JNO_4; } } /// GetOppositeBranchCondition - Return the inverse of the specified condition, /// e.g. turning COND_E to COND_NE. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::COND_NE; case X86::COND_NE: return X86::COND_E; case X86::COND_L: return X86::COND_GE; case X86::COND_LE: return X86::COND_G; case X86::COND_G: return X86::COND_LE; case X86::COND_GE: return X86::COND_L; case X86::COND_B: return X86::COND_AE; case X86::COND_BE: return X86::COND_A; case X86::COND_A: return X86::COND_BE; case X86::COND_AE: return X86::COND_B; case X86::COND_S: return X86::COND_NS; case X86::COND_NS: return X86::COND_S; case X86::COND_P: return X86::COND_NP; case X86::COND_NP: return X86::COND_P; case X86::COND_O: return X86::COND_NO; case X86::COND_NO: return X86::COND_O; } } bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { const MCInstrDesc &MCID = MI->getDesc(); if (!MCID.isTerminator()) return false; // Conditional branch is a special case. if (MCID.isBranch() && !MCID.isBarrier()) return true; if (!MCID.isPredicable()) return true; return !isPredicated(MI); } bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); MachineBasicBlock::iterator UnCondBrIter = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; // Working from the bottom, when we see a non-terminator instruction, we're // done. if (!isUnpredicatedTerminator(I)) break; // A terminator that isn't a branch can't easily be handled by this // analysis. if (!I->getDesc().isBranch()) return true; // Handle unconditional branches. if (I->getOpcode() == X86::JMP_4) { UnCondBrIter = I; if (!AllowModify) { TBB = I->getOperand(0).getMBB(); continue; } // If the block has any instructions after a JMP, delete them. while (llvm::next(I) != MBB.end()) llvm::next(I)->eraseFromParent(); Cond.clear(); FBB = 0; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { TBB = 0; I->eraseFromParent(); I = MBB.end(); UnCondBrIter = MBB.end(); continue; } // TBB is used to indicate the unconditional destination. TBB = I->getOperand(0).getMBB(); continue; } // Handle conditional branches. X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode()); if (BranchCode == X86::COND_INVALID) return true; // Can't handle indirect branch. // Working from the bottom, handle the first conditional branch. if (Cond.empty()) { MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); if (AllowModify && UnCondBrIter != MBB.end() && MBB.isLayoutSuccessor(TargetBB)) { // If we can modify the code and it ends in something like: // // jCC L1 // jmp L2 // L1: // ... // L2: // // Then we can change this to: // // jnCC L2 // L1: // ... // L2: // // Which is a bit more efficient. // We conditionally jump to the fall-through block. BranchCode = GetOppositeBranchCondition(BranchCode); unsigned JNCC = GetCondBranchFromCond(BranchCode); MachineBasicBlock::iterator OldInst = I; BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) .addMBB(UnCondBrIter->getOperand(0).getMBB()); BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) .addMBB(TargetBB); OldInst->eraseFromParent(); UnCondBrIter->eraseFromParent(); // Restart the analysis. UnCondBrIter = MBB.end(); I = MBB.end(); continue; } FBB = TBB; TBB = I->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); continue; } // Handle subsequent conditional branches. Only handle the case where all // conditional branches branch to the same destination and their condition // opcodes fit one of the special multi-branch idioms. assert(Cond.size() == 1); assert(TBB); // Only handle the case where all conditional branches branch to the same // destination. if (TBB != I->getOperand(0).getMBB()) return true; // If the conditions are the same, we can leave them alone. X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); if (OldBranchCode == BranchCode) continue; // If they differ, see if they fit one of the known patterns. Theoretically, // we could handle more patterns here, but we shouldn't expect to see them // if instruction selection has done a reasonable job. if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_E) || (OldBranchCode == X86::COND_E && BranchCode == X86::COND_NP)) BranchCode = X86::COND_NP_OR_E; else if ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P)) BranchCode = X86::COND_NE_OR_P; else return true; // Update the MachineOperand. Cond[0].setImm(BranchCode); } return false; } unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; if (I->getOpcode() != X86::JMP_4 && GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) break; // Remove the branch. I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } unsigned X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond, DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 1 || Cond.size() == 0) && "X86 branch conditions have one component!"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); return 1; } // Conditional branch. unsigned Count = 0; X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); switch (CC) { case X86::COND_NP_OR_E: // Synthesize NP_OR_E with two branches. BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); ++Count; BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); ++Count; break; case X86::COND_NE_OR_P: // Synthesize NE_OR_P with two branches. BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); ++Count; BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); ++Count; break; default: { unsigned Opc = GetCondBranchFromCond(CC); BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); ++Count; } } if (FBB) { // Two-way Conditional branch. Insert the second branch. BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); ++Count; } return Count; } /// isHReg - Test if the given register is a physical h register. static bool isHReg(unsigned Reg) { return X86::GR8_ABCD_HRegClass.contains(Reg); } // Try and copy between VR128/VR64 and GR64 registers. static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) { // SrcReg(VR128) -> DestReg(GR64) // SrcReg(VR64) -> DestReg(GR64) // SrcReg(GR64) -> DestReg(VR128) // SrcReg(GR64) -> DestReg(VR64) if (X86::GR64RegClass.contains(DestReg)) { if (X86::VR128RegClass.contains(SrcReg)) { // Copy from a VR128 register to a GR64 register. return X86::MOVPQIto64rr; } else if (X86::VR64RegClass.contains(SrcReg)) { // Copy from a VR64 register to a GR64 register. return X86::MOVSDto64rr; } } else if (X86::GR64RegClass.contains(SrcReg)) { // Copy from a GR64 register to a VR128 register. if (X86::VR128RegClass.contains(DestReg)) return X86::MOV64toPQIrr; // Copy from a GR64 register to a VR64 register. else if (X86::VR64RegClass.contains(DestReg)) return X86::MOV64toSDrr; } return 0; } void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // First deal with the normal symmetric copies. unsigned Opc = 0; if (X86::GR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV64rr; else if (X86::GR32RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV32rr; else if (X86::GR16RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV16rr; else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if ((isHReg(DestReg) || isHReg(SrcReg)) && TM.getSubtarget().is64Bit()) Opc = X86::MOV8rr_NOREX; else Opc = X86::MOV8rr; } else if (X86::VR128RegClass.contains(DestReg, SrcReg)) Opc = X86::MOVAPSrr; else if (X86::VR256RegClass.contains(DestReg, SrcReg)) Opc = X86::VMOVAPSYrr; else if (X86::VR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MMX_MOVQ64rr; else Opc = CopyToFromAsymmetricReg(DestReg, SrcReg); if (Opc) { BuildMI(MBB, MI, DL, get(Opc), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } // Moving EFLAGS to / from another register requires a push and a pop. if (SrcReg == X86::EFLAGS) { if (X86::GR64RegClass.contains(DestReg)) { BuildMI(MBB, MI, DL, get(X86::PUSHF64)); BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); return; } else if (X86::GR32RegClass.contains(DestReg)) { BuildMI(MBB, MI, DL, get(X86::PUSHF32)); BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); return; } } if (DestReg == X86::EFLAGS) { if (X86::GR64RegClass.contains(SrcReg)) { BuildMI(MBB, MI, DL, get(X86::PUSH64r)) .addReg(SrcReg, getKillRegState(KillSrc)); BuildMI(MBB, MI, DL, get(X86::POPF64)); return; } else if (X86::GR32RegClass.contains(SrcReg)) { BuildMI(MBB, MI, DL, get(X86::PUSH32r)) .addReg(SrcReg, getKillRegState(KillSrc)); BuildMI(MBB, MI, DL, get(X86::POPF32)); return; } } DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " << RI.getName(DestReg) << '\n'); llvm_unreachable("Cannot emit physreg copy instruction"); } static unsigned getLoadStoreRegOpcode(unsigned Reg, const TargetRegisterClass *RC, bool isStackAligned, const TargetMachine &TM, bool load) { switch (RC->getSize()) { default: llvm_unreachable("Unknown spill size"); case 1: assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); if (TM.getSubtarget().is64Bit()) // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; return load ? X86::MOV8rm : X86::MOV8mr; case 2: assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); return load ? X86::MOV16rm : X86::MOV16mr; case 4: if (X86::GR32RegClass.hasSubClassEq(RC)) return load ? X86::MOV32rm : X86::MOV32mr; if (X86::FR32RegClass.hasSubClassEq(RC)) return load ? X86::MOVSSrm : X86::MOVSSmr; if (X86::RFP32RegClass.hasSubClassEq(RC)) return load ? X86::LD_Fp32m : X86::ST_Fp32m; llvm_unreachable("Unknown 4-byte regclass"); case 8: if (X86::GR64RegClass.hasSubClassEq(RC)) return load ? X86::MOV64rm : X86::MOV64mr; if (X86::FR64RegClass.hasSubClassEq(RC)) return load ? X86::MOVSDrm : X86::MOVSDmr; if (X86::VR64RegClass.hasSubClassEq(RC)) return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; if (X86::RFP64RegClass.hasSubClassEq(RC)) return load ? X86::LD_Fp64m : X86::ST_Fp64m; llvm_unreachable("Unknown 8-byte regclass"); case 10: assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); return load ? X86::LD_Fp80m : X86::ST_FpP80m; case 16: assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass"); // If stack is realigned we can use aligned stores. if (isStackAligned) return load ? X86::MOVAPSrm : X86::MOVAPSmr; else return load ? X86::MOVUPSrm : X86::MOVUPSmr; case 32: assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); // If stack is realigned we can use aligned stores. if (isStackAligned) return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; else return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; } } static unsigned getStoreRegOpcode(unsigned SrcReg, const TargetRegisterClass *RC, bool isStackAligned, TargetMachine &TM) { return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); } static unsigned getLoadRegOpcode(unsigned DestReg, const TargetRegisterClass *RC, bool isStackAligned, const TargetMachine &TM) { return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); } void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { const MachineFunction &MF = *MBB.getParent(); assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && "Stack slot too small for store"); bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) || RI.canRealignStack(MF); unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); DebugLoc DL = MBB.findDebugLoc(MI); addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) .addReg(SrcReg, getKillRegState(isKill)); } void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl &NewMIs) const { bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16; unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.addOperand(Addr[i]); MIB.addReg(SrcReg, getKillRegState(isKill)); (*MIB).setMemRefs(MMOBegin, MMOEnd); NewMIs.push_back(MIB); } void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { const MachineFunction &MF = *MBB.getParent(); bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) || RI.canRealignStack(MF); unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); DebugLoc DL = MBB.findDebugLoc(MI); addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); } void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl &NewMIs) const { bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16; unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.addOperand(Addr[i]); (*MIB).setMemRefs(MMOBegin, MMOEnd); NewMIs.push_back(MIB); } MachineInstr* X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *MDPtr, DebugLoc DL) const { X86AddressMode AM; AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = FrameIx; MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE)); addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr); return &*MIB; } static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, const SmallVectorImpl &MOs, MachineInstr *MI, const TargetInstrInfo &TII) { // Create the base instruction with the memory operand as the first part. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI->getDebugLoc(), true); MachineInstrBuilder MIB(NewMI); unsigned NumAddrOps = MOs.size(); for (unsigned i = 0; i != NumAddrOps; ++i) MIB.addOperand(MOs[i]); if (NumAddrOps < 4) // FrameIndex only addOffset(MIB, 0); // Loop over the rest of the ri operands, converting them over. unsigned NumOps = MI->getDesc().getNumOperands()-2; for (unsigned i = 0; i != NumOps; ++i) { MachineOperand &MO = MI->getOperand(i+2); MIB.addOperand(MO); } for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); MIB.addOperand(MO); } return MIB; } static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, const SmallVectorImpl &MOs, MachineInstr *MI, const TargetInstrInfo &TII) { MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI->getDebugLoc(), true); MachineInstrBuilder MIB(NewMI); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (i == OpNo) { assert(MO.isReg() && "Expected to fold into reg operand!"); unsigned NumAddrOps = MOs.size(); for (unsigned i = 0; i != NumAddrOps; ++i) MIB.addOperand(MOs[i]); if (NumAddrOps < 4) // FrameIndex only addOffset(MIB, 0); } else { MIB.addOperand(MO); } } return MIB; } static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, const SmallVectorImpl &MOs, MachineInstr *MI) { MachineFunction &MF = *MI->getParent()->getParent(); MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); unsigned NumAddrOps = MOs.size(); for (unsigned i = 0; i != NumAddrOps; ++i) MIB.addOperand(MOs[i]); if (NumAddrOps < 4) // FrameIndex only addOffset(MIB, 0); return MIB.addImm(0); } MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, unsigned i, const SmallVectorImpl &MOs, unsigned Size, unsigned Align) const { const DenseMap > *OpcodeTablePtr = 0; bool isTwoAddrFold = false; unsigned NumOps = MI->getDesc().getNumOperands(); bool isTwoAddr = NumOps > 1 && MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; // FIXME: AsmPrinter doesn't know how to handle // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. if (MI->getOpcode() == X86::ADD32ri && MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) return NULL; MachineInstr *NewMI = NULL; // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires // replacing the *two* registers with the memory location. if (isTwoAddr && NumOps >= 2 && i < 2 && MI->getOperand(0).isReg() && MI->getOperand(1).isReg() && MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { OpcodeTablePtr = &RegOp2MemOpTable2Addr; isTwoAddrFold = true; } else if (i == 0) { // If operand 0 if (MI->getOpcode() == X86::MOV64r0) NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI); else if (MI->getOpcode() == X86::MOV32r0) NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); else if (MI->getOpcode() == X86::MOV16r0) NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI); else if (MI->getOpcode() == X86::MOV8r0) NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI); if (NewMI) return NewMI; OpcodeTablePtr = &RegOp2MemOpTable0; } else if (i == 1) { OpcodeTablePtr = &RegOp2MemOpTable1; } else if (i == 2) { OpcodeTablePtr = &RegOp2MemOpTable2; } // If table selected... if (OpcodeTablePtr) { // Find the Opcode to fuse DenseMap >::const_iterator I = OpcodeTablePtr->find(MI->getOpcode()); if (I != OpcodeTablePtr->end()) { unsigned Opcode = I->second.first; unsigned MinAlign = I->second.second; if (Align < MinAlign) return NULL; bool NarrowToMOV32rm = false; if (Size) { unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize(); if (Size < RCSize) { // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) return NULL; // If this is a 64-bit load, but the spill slot is 32, then we can do // a 32-bit load which is implicitly zero-extended. This likely is due // to liveintervalanalysis remat'ing a load from stack slot. if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) return NULL; Opcode = X86::MOV32rm; NarrowToMOV32rm = true; } } if (isTwoAddrFold) NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); else NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); if (NarrowToMOV32rm) { // If this is the special case where we use a MOV32rm to load a 32-bit // value and zero-extend the top bits. Change the destination register // to a 32-bit one. unsigned DstReg = NewMI->getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(DstReg)) NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); else NewMI->getOperand(0).setSubReg(X86::sub_32bit); } return NewMI; } } // No fusion if (PrintFailedFusing && !MI->isCopy()) dbgs() << "We failed to fuse operand " << i << " in " << *MI; return NULL; } MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl &Ops, int FrameIndex) const { // Check switch flag if (NoFusing) return NULL; if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) switch (MI->getOpcode()) { case X86::CVTSD2SSrr: case X86::Int_CVTSD2SSrr: case X86::CVTSS2SDrr: case X86::Int_CVTSS2SDrr: case X86::RCPSSr: case X86::RCPSSr_Int: case X86::ROUNDSDr: case X86::ROUNDSSr: case X86::RSQRTSSr: case X86::RSQRTSSr_Int: case X86::SQRTSSr: case X86::SQRTSSr_Int: return 0; } const MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned Size = MFI->getObjectSize(FrameIndex); unsigned Alignment = MFI->getObjectAlignment(FrameIndex); if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; unsigned RCSize = 0; switch (MI->getOpcode()) { default: return NULL; case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; } // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Size < RCSize) return NULL; // Change to CMPXXri r, 0 first. MI->setDesc(get(NewOpc)); MI->getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return NULL; SmallVector MOs; MOs.push_back(MachineOperand::CreateFI(FrameIndex)); return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); } MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl &Ops, MachineInstr *LoadMI) const { // Check switch flag if (NoFusing) return NULL; if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) switch (MI->getOpcode()) { case X86::CVTSD2SSrr: case X86::Int_CVTSD2SSrr: case X86::CVTSS2SDrr: case X86::Int_CVTSS2SDrr: case X86::RCPSSr: case X86::RCPSSr_Int: case X86::ROUNDSDr: case X86::ROUNDSSr: case X86::RSQRTSSr: case X86::RSQRTSSr_Int: case X86::SQRTSSr: case X86::SQRTSSr_Int: return 0; } // Determine the alignment of the load. unsigned Alignment = 0; if (LoadMI->hasOneMemOperand()) Alignment = (*LoadMI->memoperands_begin())->getAlignment(); else switch (LoadMI->getOpcode()) { case X86::AVX_SET0PSY: case X86::AVX_SET0PDY: Alignment = 32; break; case X86::V_SET0PS: case X86::V_SET0PD: case X86::V_SET0PI: case X86::V_SETALLONES: case X86::AVX_SET0PS: case X86::AVX_SET0PD: case X86::AVX_SET0PI: case X86::AVX_SETALLONES: Alignment = 16; break; case X86::FsFLD0SD: case X86::VFsFLD0SD: Alignment = 8; break; case X86::FsFLD0SS: case X86::VFsFLD0SS: Alignment = 4; break; default: return 0; } if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; switch (MI->getOpcode()) { default: return NULL; case X86::TEST8rr: NewOpc = X86::CMP8ri; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; } // Change to CMPXXri r, 0 first. MI->setDesc(get(NewOpc)); MI->getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return NULL; // Make sure the subregisters match. // Otherwise we risk changing the size of the load. if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) return NULL; SmallVector MOs; switch (LoadMI->getOpcode()) { case X86::V_SET0PS: case X86::V_SET0PD: case X86::V_SET0PI: case X86::V_SETALLONES: case X86::AVX_SET0PS: case X86::AVX_SET0PD: case X86::AVX_SET0PI: case X86::AVX_SET0PSY: case X86::AVX_SET0PDY: case X86::AVX_SETALLONES: case X86::FsFLD0SD: case X86::FsFLD0SS: case X86::VFsFLD0SD: case X86::VFsFLD0SS: { // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure. // Create a constant-pool entry and operands to load from it. // Medium and large mode can't fold loads this way. if (TM.getCodeModel() != CodeModel::Small && TM.getCodeModel() != CodeModel::Kernel) return NULL; // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; if (TM.getRelocationModel() == Reloc::PIC_) { if (TM.getSubtarget().is64Bit()) PICBase = X86::RIP; else // FIXME: PICBase = getGlobalBaseReg(&MF); // This doesn't work for several reasons. // 1. GlobalBaseReg may have been spilled. // 2. It may not be live at MI. return NULL; } // Create a constant-pool entry. MachineConstantPool &MCP = *MF.getConstantPool(); Type *Ty; unsigned Opc = LoadMI->getOpcode(); if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS) Ty = Type::getFloatTy(MF.getFunction()->getContext()); else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD) Ty = Type::getDoubleTy(MF.getFunction()->getContext()); else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY) Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8); else Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES); const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty); unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); // Create operands to load from the constant pool entry. MOs.push_back(MachineOperand::CreateReg(PICBase, false)); MOs.push_back(MachineOperand::CreateImm(1)); MOs.push_back(MachineOperand::CreateReg(0, false)); MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); MOs.push_back(MachineOperand::CreateReg(0, false)); break; } default: { // Folding a normal load. Just copy the load's address operands. unsigned NumOps = LoadMI->getDesc().getNumOperands(); for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) MOs.push_back(LoadMI->getOperand(i)); break; } } return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); } bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl &Ops) const { // Check switch flag if (NoFusing) return 0; if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { switch (MI->getOpcode()) { default: return false; case X86::TEST8rr: case X86::TEST16rr: case X86::TEST32rr: case X86::TEST64rr: return true; case X86::ADD32ri: // FIXME: AsmPrinter doesn't know how to handle // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) return false; break; } } if (Ops.size() != 1) return false; unsigned OpNum = Ops[0]; unsigned Opc = MI->getOpcode(); unsigned NumOps = MI->getDesc().getNumOperands(); bool isTwoAddr = NumOps > 1 && MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires // replacing the *two* registers with the memory location. const DenseMap > *OpcodeTablePtr = 0; if (isTwoAddr && NumOps >= 2 && OpNum < 2) { OpcodeTablePtr = &RegOp2MemOpTable2Addr; } else if (OpNum == 0) { // If operand 0 switch (Opc) { case X86::MOV8r0: case X86::MOV16r0: case X86::MOV32r0: case X86::MOV64r0: return true; default: break; } OpcodeTablePtr = &RegOp2MemOpTable0; } else if (OpNum == 1) { OpcodeTablePtr = &RegOp2MemOpTable1; } else if (OpNum == 2) { OpcodeTablePtr = &RegOp2MemOpTable2; } if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) return true; return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); } bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const { DenseMap >::const_iterator I = MemOp2RegOpTable.find(MI->getOpcode()); if (I == MemOp2RegOpTable.end()) return false; unsigned Opc = I->second.first; unsigned Index = I->second.second & 0xf; bool FoldedLoad = I->second.second & (1 << 4); bool FoldedStore = I->second.second & (1 << 5); if (UnfoldLoad && !FoldedLoad) return false; UnfoldLoad &= FoldedLoad; if (UnfoldStore && !FoldedStore) return false; UnfoldStore &= FoldedStore; const MCInstrDesc &MCID = get(Opc); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); if (!MI->hasOneMemOperand() && RC == &X86::VR128RegClass && !TM.getSubtarget().isUnalignedMemAccessFast()) // Without memoperands, loadRegFromAddr and storeRegToStackSlot will // conservatively assume the address is unaligned. That's bad for // performance. return false; SmallVector AddrOps; SmallVector BeforeOps; SmallVector AfterOps; SmallVector ImpOps; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &Op = MI->getOperand(i); if (i >= Index && i < Index + X86::AddrNumOperands) AddrOps.push_back(Op); else if (Op.isReg() && Op.isImplicit()) ImpOps.push_back(Op); else if (i < Index) BeforeOps.push_back(Op); else if (i > Index) AfterOps.push_back(Op); } // Emit the load instruction. if (UnfoldLoad) { std::pair MMOs = MF.extractLoadMemRefs(MI->memoperands_begin(), MI->memoperands_end()); loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); if (UnfoldStore) { // Address operands cannot be marked isKill. for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { MachineOperand &MO = NewMIs[0]->getOperand(i); if (MO.isReg()) MO.setIsKill(false); } } } // Emit the data processing instruction. MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); MachineInstrBuilder MIB(DataMI); if (FoldedStore) MIB.addReg(Reg, RegState::Define); for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) MIB.addOperand(BeforeOps[i]); if (FoldedLoad) MIB.addReg(Reg); for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) MIB.addOperand(AfterOps[i]); for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { MachineOperand &MO = ImpOps[i]; MIB.addReg(MO.getReg(), getDefRegState(MO.isDef()) | RegState::Implicit | getKillRegState(MO.isKill()) | getDeadRegState(MO.isDead()) | getUndefRegState(MO.isUndef())); } // Change CMP32ri r, 0 back to TEST32rr r, r, etc. unsigned NewOpc = 0; switch (DataMI->getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP8ri: { MachineOperand &MO0 = DataMI->getOperand(0); MachineOperand &MO1 = DataMI->getOperand(1); if (MO1.getImm() == 0) { switch (DataMI->getOpcode()) { default: break; case X86::CMP64ri8: case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; case X86::CMP32ri8: case X86::CMP32ri: NewOpc = X86::TEST32rr; break; case X86::CMP16ri8: case X86::CMP16ri: NewOpc = X86::TEST16rr; break; case X86::CMP8ri: NewOpc = X86::TEST8rr; break; } DataMI->setDesc(get(NewOpc)); MO1.ChangeToRegister(MO0.getReg(), false); } } } NewMIs.push_back(DataMI); // Emit the store instruction. if (UnfoldStore) { const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI); std::pair MMOs = MF.extractStoreMemRefs(MI->memoperands_begin(), MI->memoperands_end()); storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); } return true; } bool X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { if (!N->isMachineOpcode()) return false; DenseMap >::const_iterator I = MemOp2RegOpTable.find(N->getMachineOpcode()); if (I == MemOp2RegOpTable.end()) return false; unsigned Opc = I->second.first; unsigned Index = I->second.second & 0xf; bool FoldedLoad = I->second.second & (1 << 4); bool FoldedStore = I->second.second & (1 << 5); const MCInstrDesc &MCID = get(Opc); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); unsigned NumDefs = MCID.NumDefs; std::vector AddrOps; std::vector BeforeOps; std::vector AfterOps; DebugLoc dl = N->getDebugLoc(); unsigned NumOps = N->getNumOperands(); for (unsigned i = 0; i != NumOps-1; ++i) { SDValue Op = N->getOperand(i); if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) AddrOps.push_back(Op); else if (i < Index-NumDefs) BeforeOps.push_back(Op); else if (i > Index-NumDefs) AfterOps.push_back(Op); } SDValue Chain = N->getOperand(NumOps-1); AddrOps.push_back(Chain); // Emit the load instruction. SDNode *Load = 0; MachineFunction &MF = DAG.getMachineFunction(); if (FoldedLoad) { EVT VT = *RC->vt_begin(); std::pair MMOs = MF.extractLoadMemRefs(cast(N)->memoperands_begin(), cast(N)->memoperands_end()); if (!(*MMOs.first) && RC == &X86::VR128RegClass && !TM.getSubtarget().isUnalignedMemAccessFast()) // Do not introduce a slow unaligned load. return false; bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16; Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, VT, MVT::Other, &AddrOps[0], AddrOps.size()); NewNodes.push_back(Load); // Preserve memory reference information. cast(Load)->setMemRefs(MMOs.first, MMOs.second); } // Emit the data processing instruction. std::vector VTs; const TargetRegisterClass *DstRC = 0; if (MCID.getNumDefs() > 0) { DstRC = getRegClass(MCID, 0, &RI); VTs.push_back(*DstRC->vt_begin()); } for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { EVT VT = N->getValueType(i); if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) VTs.push_back(VT); } if (Load) BeforeOps.push_back(SDValue(Load, 0)); std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0], BeforeOps.size()); NewNodes.push_back(NewNode); // Emit the store instruction. if (FoldedStore) { AddrOps.pop_back(); AddrOps.push_back(SDValue(NewNode, 0)); AddrOps.push_back(Chain); std::pair MMOs = MF.extractStoreMemRefs(cast(N)->memoperands_begin(), cast(N)->memoperands_end()); if (!(*MMOs.first) && RC == &X86::VR128RegClass && !TM.getSubtarget().isUnalignedMemAccessFast()) // Do not introduce a slow unaligned store. return false; bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16; SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, TM), dl, MVT::Other, &AddrOps[0], AddrOps.size()); NewNodes.push_back(Store); // Preserve memory reference information. cast(Load)->setMemRefs(MMOs.first, MMOs.second); } return true; } unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex) const { DenseMap >::const_iterator I = MemOp2RegOpTable.find(Opc); if (I == MemOp2RegOpTable.end()) return 0; bool FoldedLoad = I->second.second & (1 << 4); bool FoldedStore = I->second.second & (1 << 5); if (UnfoldLoad && !FoldedLoad) return 0; if (UnfoldStore && !FoldedStore) return 0; if (LoadRegIndex) *LoadRegIndex = I->second.second & 0xf; return I->second.first; } bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const { if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); switch (Opc1) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::FsMOVAPSrm: case X86::FsMOVAPDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: break; } switch (Opc2) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::FsMOVAPSrm: case X86::FsMOVAPDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: break; } // Check if chain operands and base addresses match. if (Load1->getOperand(0) != Load2->getOperand(0) || Load1->getOperand(5) != Load2->getOperand(5)) return false; // Segment operands should match as well. if (Load1->getOperand(4) != Load2->getOperand(4)) return false; // Scale should be 1, Index should be Reg0. if (Load1->getOperand(1) == Load2->getOperand(1) && Load1->getOperand(2) == Load2->getOperand(2)) { if (cast(Load1->getOperand(1))->getZExtValue() != 1) return false; // Now let's examine the displacements. if (isa(Load1->getOperand(3)) && isa(Load2->getOperand(3))) { Offset1 = cast(Load1->getOperand(3))->getSExtValue(); Offset2 = cast(Load2->getOperand(3))->getSExtValue(); return true; } } return false; } bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { assert(Offset2 > Offset1); if ((Offset2 - Offset1) / 8 > 64) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); if (Opc1 != Opc2) return false; // FIXME: overly conservative? switch (Opc1) { default: break; case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: return false; } EVT VT = Load1->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: // XMM registers. In 64-bit mode we can be a bit more aggressive since we // have 16 of them to play with. if (TM.getSubtargetImpl()->is64Bit()) { if (NumLoads >= 3) return false; } else if (NumLoads) { return false; } break; case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f32: case MVT::f64: if (NumLoads) return false; break; } return true; } bool X86InstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { assert(Cond.size() == 1 && "Invalid X86 branch condition!"); X86::CondCode CC = static_cast(Cond[0].getImm()); if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) return true; Cond[0].setImm(GetOppositeBranchCondition(CC)); return false; } bool X86InstrInfo:: isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { // FIXME: Return false for x87 stack register classes for now. We can't // allow any loads of these registers before FpGet_ST0_80. return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); } /// getGlobalBaseReg - Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. /// unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { assert(!TM.getSubtarget().is64Bit() && "X86-64 PIC uses RIP relative addressing"); X86MachineFunctionInfo *X86FI = MF->getInfo(); unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // Create the register. The code to initialize it is inserted // later, by the CGBR pass (below). MachineRegisterInfo &RegInfo = MF->getRegInfo(); GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); X86FI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } // These are the replaceable SSE instructions. Some of these have Int variants // that we don't include here. We don't want to replace instructions selected // by intrinsics. static const unsigned ReplaceableInstrs[][3] = { //PackedSingle PackedDouble PackedInt { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, { X86::V_SET0PS, X86::V_SET0PD, X86::V_SET0PI }, { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, // AVX 128-bit support { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI }, { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, // AVX 256-bit support { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, }; // FIXME: Some shuffle and unpack instructions have equivalents in different // domains, but they require a bit more work than just switching opcodes. static const unsigned *lookup(unsigned opcode, unsigned domain) { for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) if (ReplaceableInstrs[i][domain-1] == opcode) return ReplaceableInstrs[i]; return 0; } std::pair X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const { uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; return std::make_pair(domain, domain && lookup(MI->getOpcode(), domain) ? 0xe : 0); } void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const { assert(Domain>0 && Domain<4 && "Invalid execution domain"); uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; assert(dom && "Not an SSE instruction"); const unsigned *table = lookup(MI->getOpcode(), dom); assert(table && "Cannot change domain"); MI->setDesc(get(table[Domain-1])); } /// getNoopForMachoTarget - Return the noop instruction to use for a noop. void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(X86::NOOP); } bool X86InstrInfo::isHighLatencyDef(int opc) const { switch (opc) { default: return false; case X86::DIVSDrm: case X86::DIVSDrm_Int: case X86::DIVSDrr: case X86::DIVSDrr_Int: case X86::DIVSSrm: case X86::DIVSSrm_Int: case X86::DIVSSrr: case X86::DIVSSrr_Int: case X86::SQRTPDm: case X86::SQRTPDm_Int: case X86::SQRTPDr: case X86::SQRTPDr_Int: case X86::SQRTPSm: case X86::SQRTPSm_Int: case X86::SQRTPSr: case X86::SQRTPSr_Int: case X86::SQRTSDm: case X86::SQRTSDm_Int: case X86::SQRTSDr: case X86::SQRTSDr_Int: case X86::SQRTSSm: case X86::SQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSr_Int: return true; } } bool X86InstrInfo:: hasHighOperandLatency(const InstrItineraryData *ItinData, const MachineRegisterInfo *MRI, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const { return isHighLatencyDef(DefMI->getOpcode()); } namespace { /// CGBR - Create Global Base Reg pass. This initializes the PIC /// global base register for x86-32. struct CGBR : public MachineFunctionPass { static char ID; CGBR() : MachineFunctionPass(ID) {} virtual bool runOnMachineFunction(MachineFunction &MF) { const X86TargetMachine *TM = static_cast(&MF.getTarget()); assert(!TM->getSubtarget().is64Bit() && "X86-64 PIC uses RIP relative addressing"); // Only emit a global base reg in PIC mode. if (TM->getRelocationModel() != Reloc::PIC_) return false; X86MachineFunctionInfo *X86FI = MF.getInfo(); unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); // If we didn't need a GlobalBaseReg, don't insert code. if (GlobalBaseReg == 0) return false; // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF.front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); DebugLoc DL = FirstMBB.findDebugLoc(MBBI); MachineRegisterInfo &RegInfo = MF.getRegInfo(); const X86InstrInfo *TII = TM->getInstrInfo(); unsigned PC; if (TM->getSubtarget().isPICStyleGOT()) PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); else PC = GlobalBaseReg; // Operand of MovePCtoStack is completely ignored by asm printer. It's // only used in JIT code emission as displacement to pc. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); // If we're using vanilla 'GOT' PIC style, we should use relative addressing // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. if (TM->getSubtarget().isPICStyleGOT()) { // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", X86II::MO_GOT_ABSOLUTE_ADDRESS); } return true; } virtual const char *getPassName() const { return "X86 PIC Global Base Reg Initialization"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char CGBR::ID = 0; FunctionPass* llvm::createGlobalBaseRegPass() { return new CGBR(); }