//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for PowerPC, // converting from a legalized dag to a PPC dag. // //===----------------------------------------------------------------------===// #include "PPC.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPCTargetMachine.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "ppc-codegen" // FIXME: Remove this once the bug has been fixed! cl::opt ANDIGlueBug("expose-ppc-andi-glue-bug", cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); namespace llvm { void initializePPCDAGToDAGISelPass(PassRegistry&); } namespace { //===--------------------------------------------------------------------===// /// PPCDAGToDAGISel - PPC specific code to select PPC machine /// instructions for SelectionDAG operations. /// class PPCDAGToDAGISel : public SelectionDAGISel { const PPCTargetMachine &TM; const PPCTargetLowering &PPCLowering; const PPCSubtarget &PPCSubTarget; unsigned GlobalBaseReg; public: explicit PPCDAGToDAGISel(PPCTargetMachine &tm) : SelectionDAGISel(tm), TM(tm), PPCLowering(*TM.getTargetLowering()), PPCSubTarget(*TM.getSubtargetImpl()) { initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry()); } virtual bool runOnMachineFunction(MachineFunction &MF) { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseReg = 0; SelectionDAGISel::runOnMachineFunction(MF); if (!PPCSubTarget.isSVR4ABI()) InsertVRSaveCode(MF); return true; } virtual void PostprocessISelDAG(); /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDValue getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } /// getI64Imm - Return a target constant with the specified value, of type /// i64. inline SDValue getI64Imm(uint64_t Imm) { return CurDAG->getTargetConstant(Imm, MVT::i64); } /// getSmallIPtrImm - Return a target constant of pointer type. inline SDValue getSmallIPtrImm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy()); } /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s /// with any number of 0s on either side. The 1s are allowed to wrap from /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. /// 0x0F0F0000 is not, since all 1s are not contiguous. static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME); /// isRotateAndMask - Returns true if Mask and Shift can be folded into a /// rotate and mask opcode and mask operation. static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, unsigned &SH, unsigned &MB, unsigned &ME); /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC /// base register. Return the virtual register that holds this value. SDNode *getGlobalBaseReg(); // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDNode *Select(SDNode *N); SDNode *SelectBitfieldInsert(SDNode *N); /// SelectCC - Select a comparison of the specified values with the /// specified condition code, returning the CR# of the expression. SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl); /// SelectAddrImm - Returns true if the address N can be represented by /// a base register plus a signed 16-bit displacement [r+imm]. bool SelectAddrImm(SDValue N, SDValue &Disp, SDValue &Base) { return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, false); } /// SelectAddrImmOffs - Return true if the operand is valid for a preinc /// immediate field. Note that the operand at this point is already the /// result of a prior SelectAddressRegImm call. bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { if (N.getOpcode() == ISD::TargetConstant || N.getOpcode() == ISD::TargetGlobalAddress) { Out = N; return true; } return false; } /// SelectAddrIdx - Given the specified addressed, check to see if it can be /// represented as an indexed [r+r] operation. Returns false if it can /// be represented by [r+imm], which are preferred. bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG); } /// SelectAddrIdxOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG); } /// SelectAddrImmX4 - Returns true if the address N can be represented by /// a base register plus a signed 16-bit displacement that is a multiple of 4. /// Suitable for use by STD and friends. bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, true); } // Select an address into a single register. bool SelectAddr(SDValue N, SDValue &Base) { Base = N; return true; } /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. It is always correct to compute the value into /// a register. The case of adding a (possibly relocatable) constant to a /// register can be improved, but it is wrong to substitute Reg+Reg for /// Reg in an asm, because the load or store opcode would have to change. virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { OutOps.push_back(Op); return false; } void InsertVRSaveCode(MachineFunction &MF); virtual const char *getPassName() const { return "PowerPC DAG->DAG Pattern Instruction Selection"; } // Include the pieces autogenerated from the target description. #include "PPCGenDAGISel.inc" private: SDNode *SelectSETCC(SDNode *N); void PeepholePPC64(); void PeepholdCROps(); bool AllUsersSelectZero(SDNode *N); void SwapAllSelectUsers(SDNode *N); }; } /// InsertVRSaveCode - Once the entire function has been instruction selected, /// all virtual registers are created and all machine instructions are built, /// check to see if we need to save/restore VRSAVE. If so, do it. void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { // Check to see if this function uses vector registers, which means we have to // save and restore the VRSAVE register and update it with the regs we use. // // In this case, there will be virtual registers of vector type created // by the scheduler. Detect them now. bool HasVectorVReg = false; for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { HasVectorVReg = true; break; } } if (!HasVectorVReg) return; // nothing to do. // If we have a vector register, we want to emit code into the entry and exit // blocks to save and restore the VRSAVE register. We do this here (instead // of marking all vector instructions as clobbering VRSAVE) for two reasons: // // 1. This (trivially) reduces the load on the register allocator, by not // having to represent the live range of the VRSAVE register. // 2. This (more significantly) allows us to create a temporary virtual // register to hold the saved VRSAVE value, allowing this temporary to be // register allocated, instead of forcing it to be spilled to the stack. // Create two vregs - one to hold the VRSAVE register that is live-in to the // function and one for the value after having bits or'd into it. unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); const TargetInstrInfo &TII = *TM.getInstrInfo(); MachineBasicBlock &EntryBB = *Fn.begin(); DebugLoc dl; // Emit the following code into the entry block: // InVRSAVE = MFVRSAVE // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE // MTVRSAVE UpdatedVRSAVE MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), UpdatedVRSAVE).addReg(InVRSAVE); BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); // Find all return blocks, outputting a restore in each epilog. for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { if (!BB->empty() && BB->back().isReturn()) { IP = BB->end(); --IP; // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = IP; while (I2 != BB->begin() && (--I2)->isTerminator()) IP = I2; // Emit: MTVRSAVE InVRSave BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); } } } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { if (!GlobalBaseReg) { const TargetInstrInfo &TII = *TM.getInstrInfo(); // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); DebugLoc dl; if (PPCLowering.getPointerTy() == MVT::i32) { GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); } else { GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); } } return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).getNode(); } /// isIntS16Immediate - This method tests to see if the node is either a 32-bit /// or 64-bit immediate, and if the value can be accurately represented as a /// sign extension from a 16-bit value. If so, this returns true and the /// immediate. static bool isIntS16Immediate(SDNode *N, short &Imm) { if (N->getOpcode() != ISD::Constant) return false; Imm = (short)cast(N)->getZExtValue(); if (N->getValueType(0) == MVT::i32) return Imm == (int32_t)cast(N)->getZExtValue(); else return Imm == (int64_t)cast(N)->getZExtValue(); } static bool isIntS16Immediate(SDValue Op, short &Imm) { return isIntS16Immediate(Op.getNode(), Imm); } /// isInt32Immediate - This method tests to see if the node is a 32-bit constant /// operand. If so Imm will receive the 32-bit value. static bool isInt32Immediate(SDNode *N, unsigned &Imm) { if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { Imm = cast(N)->getZExtValue(); return true; } return false; } /// isInt64Immediate - This method tests to see if the node is a 64-bit constant /// operand. If so Imm will receive the 64-bit value. static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { Imm = cast(N)->getZExtValue(); return true; } return false; } // isInt32Immediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isInt32Immediate(SDValue N, unsigned &Imm) { return isInt32Immediate(N.getNode(), Imm); } // isOpcWithIntImmediate - This method tests to see if the node is a specific // opcode and that it has a immediate integer right operand. // If so Imm will receive the 32 bit value. static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).getNode(), Imm); } bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { if (!Val) return false; if (isShiftedMask_32(Val)) { // look for the first non-zero bit MB = countLeadingZeros(Val); // look for the first zero bit after the run of ones ME = countLeadingZeros((Val - 1) ^ Val); return true; } else { Val = ~Val; // invert mask if (isShiftedMask_32(Val)) { // effectively look for the first zero bit ME = countLeadingZeros(Val) - 1; // effectively look for the first one bit after the run of zeros MB = countLeadingZeros((Val - 1) ^ Val) + 1; return true; } } // no run present return false; } bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, unsigned &SH, unsigned &MB, unsigned &ME) { // Don't even go down this path for i64, since different logic will be // necessary for rldicl/rldicr/rldimi. if (N->getValueType(0) != MVT::i32) return false; unsigned Shift = 32; unsigned Indeterminant = ~0; // bit mask marking indeterminant results unsigned Opcode = N->getOpcode(); if (N->getNumOperands() != 2 || !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) return false; if (Opcode == ISD::SHL) { // apply shift left to mask if it comes first if (isShiftMask) Mask = Mask << Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu << Shift); } else if (Opcode == ISD::SRL) { // apply shift right to mask if it comes first if (isShiftMask) Mask = Mask >> Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu >> Shift); // adjust for the left rotate Shift = 32 - Shift; } else if (Opcode == ISD::ROTL) { Indeterminant = 0; } else { return false; } // if the mask doesn't intersect any Indeterminant bits if (Mask && !(Mask & Indeterminant)) { SH = Shift & 31; // make sure the mask is still a mask (wrap arounds may not be) return isRunOfOnes(Mask, MB, ME); } return false; } /// SelectBitfieldInsert - turn an or of two masked values into /// the rotate left word immediate then mask insert (rlwimi) instruction. SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDLoc dl(N); APInt LKZ, LKO, RKZ, RKO; CurDAG->ComputeMaskedBits(Op0, LKZ, LKO); CurDAG->ComputeMaskedBits(Op1, RKZ, RKO); unsigned TargetMask = LKZ.getZExtValue(); unsigned InsertMask = RKZ.getZExtValue(); if ((TargetMask | InsertMask) == 0xFFFFFFFF) { unsigned Op0Opc = Op0.getOpcode(); unsigned Op1Opc = Op1.getOpcode(); unsigned Value, SH = 0; TargetMask = ~TargetMask; InsertMask = ~InsertMask; // If the LHS has a foldable shift and the RHS does not, then swap it to the // RHS so that we can fold the shift into the insert. if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { if (Op0.getOperand(0).getOpcode() == ISD::SHL || Op0.getOperand(0).getOpcode() == ISD::SRL) { if (Op1.getOperand(0).getOpcode() != ISD::SHL && Op1.getOperand(0).getOpcode() != ISD::SRL) { std::swap(Op0, Op1); std::swap(Op0Opc, Op1Opc); std::swap(TargetMask, InsertMask); } } } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && Op1.getOperand(0).getOpcode() != ISD::SRL) { std::swap(Op0, Op1); std::swap(Op0Opc, Op1Opc); std::swap(TargetMask, InsertMask); } } unsigned MB, ME; if (isRunOfOnes(InsertMask, MB, ME)) { SDValue Tmp1, Tmp2; if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && isInt32Immediate(Op1.getOperand(1), Value)) { Op1 = Op1.getOperand(0); SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; } if (Op1Opc == ISD::AND) { // The AND mask might not be a constant, and we need to make sure that // if we're going to fold the masking with the insert, all bits not // know to be zero in the mask are known to be one. APInt MKZ, MKO; CurDAG->ComputeMaskedBits(Op1.getOperand(1), MKZ, MKO); bool CanFoldMask = InsertMask == MKO.getZExtValue(); unsigned SHOpc = Op1.getOperand(0).getOpcode(); if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { // Note that Value must be in range here (less than 32) because // otherwise there would not be any bits set in InsertMask. Op1 = Op1.getOperand(0).getOperand(0); SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; } } SH &= 31; SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops); } } return nullptr; } /// SelectCC - Select a comparison of the specified values with the specified /// condition code, returning the CR# of the expression. SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl) { // Always select the LHS. unsigned Opc; if (LHS.getValueType() == MVT::i32) { unsigned Imm; if (CC == ISD::SETEQ || CC == ISD::SETNE) { if (isInt32Immediate(RHS, Imm)) { // SETEQ/SETNE comparison with 16-bit immediate, fold it. if (isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0); // If this is a 16-bit signed immediate, fold it. if (isInt<16>((int)Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0); // For non-equality comparisons, the default code would materialize the // constant, then compare against it, like this: // lis r2, 4660 // ori r2, r2, 22136 // cmpw cr0, r3, r2 // Since we are just comparing for equality, we can emit this instead: // xoris r0,r3,0x1234 // cmplwi cr0,r0,0x5678 // beq cr0,L6 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, getI32Imm(Imm >> 16)), 0); return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, getI32Imm(Imm & 0xFFFF)), 0); } Opc = PPC::CMPLW; } else if (ISD::isUnsignedIntSetCC(CC)) { if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0); Opc = PPC::CMPLW; } else { short SImm; if (isIntS16Immediate(RHS, SImm)) return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, getI32Imm((int)SImm & 0xFFFF)), 0); Opc = PPC::CMPW; } } else if (LHS.getValueType() == MVT::i64) { uint64_t Imm; if (CC == ISD::SETEQ || CC == ISD::SETNE) { if (isInt64Immediate(RHS.getNode(), Imm)) { // SETEQ/SETNE comparison with 16-bit immediate, fold it. if (isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, getI32Imm(Imm & 0xFFFF)), 0); // If this is a 16-bit signed immediate, fold it. if (isInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, getI32Imm(Imm & 0xFFFF)), 0); // For non-equality comparisons, the default code would materialize the // constant, then compare against it, like this: // lis r2, 4660 // ori r2, r2, 22136 // cmpd cr0, r3, r2 // Since we are just comparing for equality, we can emit this instead: // xoris r0,r3,0x1234 // cmpldi cr0,r0,0x5678 // beq cr0,L6 if (isUInt<32>(Imm)) { SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, getI64Imm(Imm >> 16)), 0); return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, getI64Imm(Imm & 0xFFFF)), 0); } } Opc = PPC::CMPLD; } else if (ISD::isUnsignedIntSetCC(CC)) { if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, getI64Imm(Imm & 0xFFFF)), 0); Opc = PPC::CMPLD; } else { short SImm; if (isIntS16Immediate(RHS, SImm)) return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, getI64Imm(SImm & 0xFFFF)), 0); Opc = PPC::CMPD; } } else if (LHS.getValueType() == MVT::f32) { Opc = PPC::FCMPUS; } else { assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); Opc = PPCSubTarget.hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; } return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); } static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { switch (CC) { case ISD::SETUEQ: case ISD::SETONE: case ISD::SETOLE: case ISD::SETOGE: llvm_unreachable("Should be lowered by legalize!"); default: llvm_unreachable("Unknown condition!"); case ISD::SETOEQ: case ISD::SETEQ: return PPC::PRED_EQ; case ISD::SETUNE: case ISD::SETNE: return PPC::PRED_NE; case ISD::SETOLT: case ISD::SETLT: return PPC::PRED_LT; case ISD::SETULE: case ISD::SETLE: return PPC::PRED_LE; case ISD::SETOGT: case ISD::SETGT: return PPC::PRED_GT; case ISD::SETUGE: case ISD::SETGE: return PPC::PRED_GE; case ISD::SETO: return PPC::PRED_NU; case ISD::SETUO: return PPC::PRED_UN; // These two are invalid for floating point. Assume we have int. case ISD::SETULT: return PPC::PRED_LT; case ISD::SETUGT: return PPC::PRED_GT; } } /// getCRIdxForSetCC - Return the index of the condition register field /// associated with the SetCC condition, and whether or not the field is /// treated as inverted. That is, lt = 0; ge = 0 inverted. static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { Invert = false; switch (CC) { default: llvm_unreachable("Unknown condition!"); case ISD::SETOLT: case ISD::SETLT: return 0; // Bit #0 = SETOLT case ISD::SETOGT: case ISD::SETGT: return 1; // Bit #1 = SETOGT case ISD::SETOEQ: case ISD::SETEQ: return 2; // Bit #2 = SETOEQ case ISD::SETUO: return 3; // Bit #3 = SETUO case ISD::SETUGE: case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE case ISD::SETULE: case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE case ISD::SETUNE: case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO case ISD::SETUEQ: case ISD::SETOGE: case ISD::SETOLE: case ISD::SETONE: llvm_unreachable("Invalid branch code: should be expanded by legalize"); // These are invalid for floating point. Assume integer. case ISD::SETULT: return 0; case ISD::SETUGT: return 1; } } // getVCmpInst: return the vector compare instruction for the specified // vector type and condition code. Since this is for altivec specific code, // only support the altivec types (v16i8, v8i16, v4i32, and v4f32). static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC, bool HasVSX) { switch (CC) { case ISD::SETEQ: case ISD::SETUEQ: case ISD::SETNE: case ISD::SETUNE: if (VecVT == MVT::v16i8) return PPC::VCMPEQUB; else if (VecVT == MVT::v8i16) return PPC::VCMPEQUH; else if (VecVT == MVT::v4i32) return PPC::VCMPEQUW; // v4f32 != v4f32 could be translate to unordered not equal else if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPEQDP; break; case ISD::SETLT: case ISD::SETGT: case ISD::SETLE: case ISD::SETGE: if (VecVT == MVT::v16i8) return PPC::VCMPGTSB; else if (VecVT == MVT::v8i16) return PPC::VCMPGTSH; else if (VecVT == MVT::v4i32) return PPC::VCMPGTSW; else if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPGTDP; break; case ISD::SETULT: case ISD::SETUGT: case ISD::SETUGE: case ISD::SETULE: if (VecVT == MVT::v16i8) return PPC::VCMPGTUB; else if (VecVT == MVT::v8i16) return PPC::VCMPGTUH; else if (VecVT == MVT::v4i32) return PPC::VCMPGTUW; break; case ISD::SETOEQ: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPEQDP; break; case ISD::SETOLT: case ISD::SETOGT: case ISD::SETOLE: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPGTDP; break; case ISD::SETOGE: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPGEDP; break; default: break; } llvm_unreachable("Invalid integer vector compare condition"); } // getVCmpEQInst: return the equal compare instruction for the specified vector // type. Since this is for altivec specific code, only support the altivec // types (v16i8, v8i16, v4i32, and v4f32). static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT, bool HasVSX) { switch (VecVT) { case MVT::v16i8: return PPC::VCMPEQUB; case MVT::v8i16: return PPC::VCMPEQUH; case MVT::v4i32: return PPC::VCMPEQUW; case MVT::v4f32: return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; case MVT::v2f64: return PPC::XVCMPEQDP; default: llvm_unreachable("Invalid integer vector compare condition"); } } SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { SDLoc dl(N); unsigned Imm; ISD::CondCode CC = cast(N->getOperand(2))->get(); EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); bool isPPC64 = (PtrVT == MVT::i64); if (!PPCSubTarget.useCRBits() && isInt32Immediate(N->getOperand(1), Imm)) { // We can codegen setcc op, imm very efficiently compared to a brcond. // Check for those cases here. // setcc op, 0 if (Imm == 0) { SDValue Op = N->getOperand(0); switch (CC) { default: break; case ISD::SETEQ: { Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } case ISD::SETNE: { if (isPPC64) break; SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(~0U)), 0); return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); } case ISD::SETLT: { SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } case ISD::SETGT: { SDValue T = SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } } } else if (Imm == ~0U) { // setcc op, -1 SDValue Op = N->getOperand(0); switch (CC) { default: break; case ISD::SETEQ: if (isPPC64) break; Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(1)), 0); return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(CurDAG->getMachineNode(PPC::LI, dl, MVT::i32, getI32Imm(0)), 0), Op.getValue(1)); case ISD::SETNE: { if (isPPC64) break; Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(~0U)); return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, SDValue(AD, 1)); } case ISD::SETLT: { SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, getI32Imm(1)), 0); SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, Op), 0); SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } case ISD::SETGT: { SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1)); } } } } SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Altivec Vector compare instructions do not set any CR register by default and // vector compare operations return the same type as the operands. if (LHS.getValueType().isVector()) { EVT VecVT = LHS.getValueType(); MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy; unsigned int VCmpInst = getVCmpInst(VT, CC, PPCSubTarget.hasVSX()); switch (CC) { case ISD::SETEQ: case ISD::SETOEQ: case ISD::SETUEQ: return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); case ISD::SETNE: case ISD::SETONE: case ISD::SETUNE: { SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0); return CurDAG->SelectNodeTo(N, PPCSubTarget.hasVSX() ? PPC::XXLNOR : PPC::VNOR, VecVT, VCmp, VCmp); } case ISD::SETLT: case ISD::SETOLT: case ISD::SETULT: return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS); case ISD::SETGT: case ISD::SETOGT: case ISD::SETUGT: return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); case ISD::SETGE: case ISD::SETOGE: case ISD::SETUGE: { // Small optimization: Altivec provides a 'Vector Compare Greater Than // or Equal To' instruction (vcmpgefp), so in this case there is no // need for extra logic for the equal compare. if (VecVT.getSimpleVT().isFloatingPoint()) { return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); } else { SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0); unsigned int VCmpEQInst = getVCmpEQInst(VT, PPCSubTarget.hasVSX()); SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0); return CurDAG->SelectNodeTo(N, PPCSubTarget.hasVSX() ? PPC::XXLOR : PPC::VOR, VecVT, VCmpGT, VCmpEQ); } } case ISD::SETLE: case ISD::SETOLE: case ISD::SETULE: { SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0); unsigned int VCmpEQInst = getVCmpEQInst(VT, PPCSubTarget.hasVSX()); SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0); return CurDAG->SelectNodeTo(N, PPCSubTarget.hasVSX() ? PPC::XXLOR : PPC::VOR, VecVT, VCmpLE, VCmpEQ); } default: llvm_unreachable("Invalid vector compare type: should be expanded by legalize"); } } if (PPCSubTarget.useCRBits()) return nullptr; bool Inv; unsigned Idx = getCRIdxForSetCC(CC, Inv); SDValue CCReg = SelectCC(LHS, RHS, CC, dl); SDValue IntCR; // Force the ccreg into CR7. SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); SDValue InFlag(nullptr, 0); // Null incoming flag value. CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, InFlag).getValue(1); IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, CCReg), 0); SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), getI32Imm(31), getI32Imm(31) }; if (!Inv) return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); // Get the specified bit. SDValue Tmp = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDNode *PPCDAGToDAGISel::Select(SDNode *N) { SDLoc dl(N); if (N->isMachineOpcode()) { N->setNodeId(-1); return nullptr; // Already selected. } switch (N->getOpcode()) { default: break; case ISD::Constant: { if (N->getValueType(0) == MVT::i64) { // Get 64 bit value. int64_t Imm = cast(N)->getZExtValue(); // Assume no remaining bits. unsigned Remainder = 0; // Assume no shift required. unsigned Shift = 0; // If it can't be represented as a 32 bit value. if (!isInt<32>(Imm)) { Shift = countTrailingZeros(Imm); int64_t ImmSh = static_cast(Imm) >> Shift; // If the shifted value fits 32 bits. if (isInt<32>(ImmSh)) { // Go with the shifted value. Imm = ImmSh; } else { // Still stuck with a 64 bit value. Remainder = Imm; Shift = 32; Imm >>= 32; } } // Intermediate operand. SDNode *Result; // Handle first 32 bits. unsigned Lo = Imm & 0xFFFF; unsigned Hi = (Imm >> 16) & 0xFFFF; // Simple value. if (isInt<16>(Imm)) { // Just the Lo bits. Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); } else if (Lo) { // Handle the Hi bits. unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); // And Lo bits. Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Lo)); } else { // Just the Hi bits. Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); } // If no shift, we're done. if (!Shift) return Result; // Shift for next step if the upper 32-bits were not zero. if (Imm) { Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Shift), getI32Imm(63 - Shift)); } // Add in the last bits as required. if ((Hi = (Remainder >> 16) & 0xFFFF)) { Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Hi)); } if ((Lo = Remainder & 0xFFFF)) { Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Lo)); } return Result; } break; } case ISD::SETCC: { SDNode *SN = SelectSETCC(N); if (SN) return SN; break; } case PPCISD::GlobalBaseReg: return getGlobalBaseReg(); case ISD::FrameIndex: { int FI = cast(N)->getIndex(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; if (N->hasOneUse()) return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI, getSmallIPtrImm(0)); return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, getSmallIPtrImm(0)); } case PPCISD::MFOCRF: { SDValue InFlag = N->getOperand(1); return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, N->getOperand(0), InFlag); } case ISD::SDIV: { // FIXME: since this depends on the setting of the carry flag from the srawi // we should really be making notes about that for the scheduler. // FIXME: It sure would be nice if we could cheaply recognize the // srl/add/sra pattern the dag combiner will generate for this as // sra/addze rather than having to handle sdiv ourselves. oh well. unsigned Imm; if (isInt32Immediate(N->getOperand(1), Imm)) { SDValue N0 = N->getOperand(0); if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { SDNode *Op = CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, N0, getI32Imm(Log2_32(Imm))); return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), SDValue(Op, 1)); } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { SDNode *Op = CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, N0, getI32Imm(Log2_32(-Imm))); SDValue PT = SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32, SDValue(Op, 0), SDValue(Op, 1)), 0); return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); } } // Other cases are autogenerated. break; } case ISD::LOAD: { // Handle preincrement loads. LoadSDNode *LD = cast(N); EVT LoadedVT = LD->getMemoryVT(); // Normal loads are handled by code generated from the .td file. if (LD->getAddressingMode() != ISD::PRE_INC) break; SDValue Offset = LD->getOffset(); if (Offset.getOpcode() == ISD::TargetConstant || Offset.getOpcode() == ISD::TargetGlobalAddress) { unsigned Opcode; bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; if (LD->getValueType(0) != MVT::i64) { // Handle PPC32 integer and normal FP loads. assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::f64: Opcode = PPC::LFDU; break; case MVT::f32: Opcode = PPC::LFSU; break; case MVT::i32: Opcode = PPC::LWZU; break; case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZU; break; } } else { assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::i64: Opcode = PPC::LDU; break; case MVT::i32: Opcode = PPC::LWZU8; break; case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZU8; break; } } SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[] = { Offset, Base, Chain }; return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), PPCLowering.getPointerTy(), MVT::Other, Ops); } else { unsigned Opcode; bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; if (LD->getValueType(0) != MVT::i64) { // Handle PPC32 integer and normal FP loads. assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::f64: Opcode = PPC::LFDUX; break; case MVT::f32: Opcode = PPC::LFSUX; break; case MVT::i32: Opcode = PPC::LWZUX; break; case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZUX; break; } } else { assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::i64: Opcode = PPC::LDUX; break; case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZUX8; break; } } SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[] = { Base, Offset, Chain }; return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), PPCLowering.getPointerTy(), MVT::Other, Ops); } } case ISD::AND: { unsigned Imm, Imm2, SH, MB, ME; uint64_t Imm64; // If this is an and of a value rotated between 0 and 31 bits and then and'd // with a mask, emit rlwinm if (isInt32Immediate(N->getOperand(1), Imm) && isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { SDValue Val = N->getOperand(0).getOperand(0); SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } // If this is just a masked value where the input is not handled above, and // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm if (isInt32Immediate(N->getOperand(1), Imm) && isRunOfOnes(Imm, MB, ME) && N->getOperand(0).getOpcode() != ISD::ROTL) { SDValue Val = N->getOperand(0); SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } // If this is a 64-bit zero-extension mask, emit rldicl. if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && isMask_64(Imm64)) { SDValue Val = N->getOperand(0); MB = 64 - CountTrailingOnes_64(Imm64); SH = 0; // If the operand is a logical right shift, we can fold it into this // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) // for n <= mb. The right shift is really a left rotate followed by a // mask, and this mask is a more-restrictive sub-mask of the mask implied // by the shift. if (Val.getOpcode() == ISD::SRL && isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { assert(Imm < 64 && "Illegal shift amount"); Val = Val.getOperand(0); SH = 64 - Imm; } SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) }; return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); } // AND X, 0 -> 0, not "rlwinm 32". if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { ReplaceUses(SDValue(N, 0), N->getOperand(1)); return nullptr; } // ISD::OR doesn't get all the bitfield insertion fun. // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert if (isInt32Immediate(N->getOperand(1), Imm) && N->getOperand(0).getOpcode() == ISD::OR && isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { unsigned MB, ME; Imm = ~(Imm^Imm2); if (isRunOfOnes(Imm, MB, ME)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), N->getOperand(0).getOperand(1), getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops); } } // Other cases are autogenerated. break; } case ISD::OR: if (N->getValueType(0) == MVT::i32) if (SDNode *I = SelectBitfieldInsert(N)) return I; // Other cases are autogenerated. break; case ISD::SHL: { unsigned Imm, SH, MB, ME; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && isRotateAndMask(N, Imm, true, SH, MB, ME)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } // Other cases are autogenerated. break; } case ISD::SRL: { unsigned Imm, SH, MB, ME; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && isRotateAndMask(N, Imm, true, SH, MB, ME)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } // Other cases are autogenerated. break; } // FIXME: Remove this once the ANDI glue bug is fixed: case PPCISD::ANDIo_1_EQ_BIT: case PPCISD::ANDIo_1_GT_BIT: { if (!ANDIGlueBug) break; EVT InVT = N->getOperand(0).getValueType(); assert((InVT == MVT::i64 || InVT == MVT::i32) && "Invalid input type for ANDIo_1_EQ_BIT"); unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, N->getOperand(0), CurDAG->getTargetConstant(1, InVT)), 0); SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); SDValue SRIdxVal = CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, MVT::i32); return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); } case ISD::SELECT_CC: { ISD::CondCode CC = cast(N->getOperand(4))->get(); EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); bool isPPC64 = (PtrVT == MVT::i64); // If this is a select of i1 operands, we'll pattern match it. if (PPCSubTarget.useCRBits() && N->getOperand(0).getValueType() == MVT::i1) break; // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc if (!isPPC64) if (ConstantSDNode *N1C = dyn_cast(N->getOperand(1))) if (ConstantSDNode *N2C = dyn_cast(N->getOperand(2))) if (ConstantSDNode *N3C = dyn_cast(N->getOperand(3))) if (N1C->isNullValue() && N3C->isNullValue() && N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && // FIXME: Implement this optzn for PPC64. N->getValueType(0) == MVT::i32) { SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, N->getOperand(0), getI32Imm(~0U)); return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), N->getOperand(0), SDValue(Tmp, 1)); } SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); if (N->getValueType(0) == MVT::i1) { // An i1 select is: (c & t) | (!c & f). bool Inv; unsigned Idx = getCRIdxForSetCC(CC, Inv); unsigned SRI; switch (Idx) { default: llvm_unreachable("Invalid CC index"); case 0: SRI = PPC::sub_lt; break; case 1: SRI = PPC::sub_gt; break; case 2: SRI = PPC::sub_eq; break; case 3: SRI = PPC::sub_un; break; } SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, CCBit, CCBit), 0); SDValue C = Inv ? NotCCBit : CCBit, NotC = Inv ? CCBit : NotCCBit; SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, C, N->getOperand(2)), 0); SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, NotC, N->getOperand(3)), 0); return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); } unsigned BROpc = getPredicateForSetCC(CC); unsigned SelectCCOp; if (N->getValueType(0) == MVT::i32) SelectCCOp = PPC::SELECT_CC_I4; else if (N->getValueType(0) == MVT::i64) SelectCCOp = PPC::SELECT_CC_I8; else if (N->getValueType(0) == MVT::f32) SelectCCOp = PPC::SELECT_CC_F4; else if (N->getValueType(0) == MVT::f64) SelectCCOp = PPC::SELECT_CC_F8; else SelectCCOp = PPC::SELECT_CC_VRRC; SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), getI32Imm(BROpc) }; return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); } case ISD::VSELECT: if (PPCSubTarget.hasVSX()) { SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) }; return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops); } break; case ISD::VECTOR_SHUFFLE: if (PPCSubTarget.hasVSX() && (N->getValueType(0) == MVT::v2f64 || N->getValueType(0) == MVT::v2i64)) { ShuffleVectorSDNode *SVN = cast(N); SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); unsigned DM[2]; for (int i = 0; i < 2; ++i) if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) DM[i] = 0; else DM[i] = 1; SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32); if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && isa(Op1.getOperand(0))) { LoadSDNode *LD = cast(Op1.getOperand(0)); SDValue Base, Offset; if (LD->isUnindexed() && SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { SDValue Chain = LD->getChain(); SDValue Ops[] = { Base, Offset, Chain }; return CurDAG->SelectNodeTo(N, PPC::LXVDSX, N->getValueType(0), Ops); } } SDValue Ops[] = { Op1, Op2, DMV }; return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); } break; case PPCISD::BDNZ: case PPCISD::BDZ: { bool IsPPC64 = PPCSubTarget.isPPC64(); SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), MVT::Other, Ops); } case PPCISD::COND_BRANCH: { // Op #0 is the Chain. // Op #1 is the PPC::PRED_* number. // Op #2 is the CR# // Op #3 is the Dest MBB // Op #4 is the Flag. // Prevent PPC::PRED_* from being selected into LI. SDValue Pred = getI32Imm(cast(N->getOperand(1))->getZExtValue()); SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), N->getOperand(0), N->getOperand(4) }; return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); } case ISD::BR_CC: { ISD::CondCode CC = cast(N->getOperand(1))->get(); unsigned PCC = getPredicateForSetCC(CC); if (N->getOperand(2).getValueType() == MVT::i1) { unsigned Opc; bool Swap; switch (PCC) { default: llvm_unreachable("Unexpected Boolean-operand predicate"); case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; } SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, N->getOperand(Swap ? 3 : 2), N->getOperand(Swap ? 2 : 3)), 0); return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), N->getOperand(0)); } SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); SDValue Ops[] = { getI32Imm(PCC), CondCode, N->getOperand(4), N->getOperand(0) }; return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); } case ISD::BRIND: { // FIXME: Should custom lower this. SDValue Chain = N->getOperand(0); SDValue Target = N->getOperand(1); unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, Chain), 0); return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); } case PPCISD::TOC_ENTRY: { assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI"); // For medium and large code model, we generate two instructions as // described below. Otherwise we allow SelectCodeCommon to handle this, // selecting one of LDtoc, LDtocJTI, and LDtocCPT. CodeModel::Model CModel = TM.getCodeModel(); if (CModel != CodeModel::Medium && CModel != CodeModel::Large) break; // The first source operand is a TargetGlobalAddress or a // TargetJumpTable. If it is an externally defined symbol, a symbol // with common linkage, a function address, or a jump table address, // or if we are generating code for large code model, we generate: // LDtocL(, ADDIStocHA(%X2, )) // Otherwise we generate: // ADDItocL(ADDIStocHA(%X2, ), ) SDValue GA = N->getOperand(0); SDValue TOCbase = N->getOperand(1); SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, TOCbase, GA); if (isa(GA) || CModel == CodeModel::Large) return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, SDValue(Tmp, 0)); if (GlobalAddressSDNode *G = dyn_cast(GA)) { const GlobalValue *GValue = G->getGlobal(); const GlobalAlias *GAlias = dyn_cast(GValue); const GlobalValue *RealGValue = GAlias ? GAlias->getAliasedGlobal() : GValue; const GlobalVariable *GVar = dyn_cast(RealGValue); assert((GVar || isa(RealGValue)) && "Unexpected global value subclass!"); // An external variable is one without an initializer. For these, // for variables with common linkage, and for Functions, generate // the LDtocL form. if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() || RealGValue->hasAvailableExternallyLinkage()) return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, SDValue(Tmp, 0)); } return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, SDValue(Tmp, 0), GA); } case PPCISD::VADD_SPLAT: { // This expands into one of three sequences, depending on whether // the first operand is odd or even, positive or negative. assert(isa(N->getOperand(0)) && isa(N->getOperand(1)) && "Invalid operand on VADD_SPLAT!"); int Elt = N->getConstantOperandVal(0); int EltSize = N->getConstantOperandVal(1); unsigned Opc1, Opc2, Opc3; EVT VT; if (EltSize == 1) { Opc1 = PPC::VSPLTISB; Opc2 = PPC::VADDUBM; Opc3 = PPC::VSUBUBM; VT = MVT::v16i8; } else if (EltSize == 2) { Opc1 = PPC::VSPLTISH; Opc2 = PPC::VADDUHM; Opc3 = PPC::VSUBUHM; VT = MVT::v8i16; } else { assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); Opc1 = PPC::VSPLTISW; Opc2 = PPC::VADDUWM; Opc3 = PPC::VSUBUWM; VT = MVT::v4i32; } if ((Elt & 1) == 0) { // Elt is even, in the range [-32,-18] + [16,30]. // // Convert: VADD_SPLAT elt, size // Into: tmp = VSPLTIS[BHW] elt // VADDU[BHW]M tmp, tmp // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 SDValue EltVal = getI32Imm(Elt >> 1); SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); SDValue TmpVal = SDValue(Tmp, 0); return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal); } else if (Elt > 0) { // Elt is odd and positive, in the range [17,31]. // // Convert: VADD_SPLAT elt, size // Into: tmp1 = VSPLTIS[BHW] elt-16 // tmp2 = VSPLTIS[BHW] -16 // VSUBU[BHW]M tmp1, tmp2 SDValue EltVal = getI32Imm(Elt - 16); SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); EltVal = getI32Imm(-16); SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), SDValue(Tmp2, 0)); } else { // Elt is odd and negative, in the range [-31,-17]. // // Convert: VADD_SPLAT elt, size // Into: tmp1 = VSPLTIS[BHW] elt+16 // tmp2 = VSPLTIS[BHW] -16 // VADDU[BHW]M tmp1, tmp2 SDValue EltVal = getI32Imm(Elt + 16); SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); EltVal = getI32Imm(-16); SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), SDValue(Tmp2, 0)); } } } return SelectCode(N); } /// PostprocessISelDAG - Perform some late peephole optimizations /// on the DAG representation. void PPCDAGToDAGISel::PostprocessISelDAG() { // Skip peepholes at -O0. if (TM.getOptLevel() == CodeGenOpt::None) return; PeepholePPC64(); PeepholdCROps(); } // Check if all users of this node will become isel where the second operand // is the constant zero. If this is so, and if we can negate the condition, // then we can flip the true and false operands. This will allow the zero to // be folded with the isel so that we don't need to materialize a register // containing zero. bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { // If we're not using isel, then this does not matter. if (!PPCSubTarget.hasISEL()) return false; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (!User->isMachineOpcode()) return false; if (User->getMachineOpcode() != PPC::SELECT_I4 && User->getMachineOpcode() != PPC::SELECT_I8) return false; SDNode *Op2 = User->getOperand(2).getNode(); if (!Op2->isMachineOpcode()) return false; if (Op2->getMachineOpcode() != PPC::LI && Op2->getMachineOpcode() != PPC::LI8) return false; ConstantSDNode *C = dyn_cast(Op2->getOperand(0)); if (!C) return false; if (!C->isNullValue()) return false; } return true; } void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { SmallVector ToReplace; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDNode *User = *UI; assert((User->getMachineOpcode() == PPC::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && "Must have all select users"); ToReplace.push_back(User); } for (SmallVector::iterator UI = ToReplace.begin(), UE = ToReplace.end(); UI != UE; ++UI) { SDNode *User = *UI; SDNode *ResNode = CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), User->getValueType(0), User->getOperand(0), User->getOperand(2), User->getOperand(1)); DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); DEBUG(User->dump(CurDAG)); DEBUG(dbgs() << "\nNew: "); DEBUG(ResNode->dump(CurDAG)); DEBUG(dbgs() << "\n"); ReplaceUses(User, ResNode); } } void PPCDAGToDAGISel::PeepholdCROps() { bool IsModified; do { IsModified = false; for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ++I) { MachineSDNode *MachineNode = dyn_cast(I); if (!MachineNode || MachineNode->use_empty()) continue; SDNode *ResNode = MachineNode; bool Op1Set = false, Op1Unset = false, Op1Not = false, Op2Set = false, Op2Unset = false, Op2Not = false; unsigned Opcode = MachineNode->getMachineOpcode(); switch (Opcode) { default: break; case PPC::CRAND: case PPC::CRNAND: case PPC::CROR: case PPC::CRXOR: case PPC::CRNOR: case PPC::CREQV: case PPC::CRANDC: case PPC::CRORC: { SDValue Op = MachineNode->getOperand(1); if (Op.isMachineOpcode()) { if (Op.getMachineOpcode() == PPC::CRSET) Op2Set = true; else if (Op.getMachineOpcode() == PPC::CRUNSET) Op2Unset = true; else if (Op.getMachineOpcode() == PPC::CRNOR && Op.getOperand(0) == Op.getOperand(1)) Op2Not = true; } } // fallthrough case PPC::BC: case PPC::BCn: case PPC::SELECT_I4: case PPC::SELECT_I8: case PPC::SELECT_F4: case PPC::SELECT_F8: case PPC::SELECT_VRRC: { SDValue Op = MachineNode->getOperand(0); if (Op.isMachineOpcode()) { if (Op.getMachineOpcode() == PPC::CRSET) Op1Set = true; else if (Op.getMachineOpcode() == PPC::CRUNSET) Op1Unset = true; else if (Op.getMachineOpcode() == PPC::CRNOR && Op.getOperand(0) == Op.getOperand(1)) Op1Not = true; } } break; } bool SelectSwap = false; switch (Opcode) { default: break; case PPC::CRAND: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // x & x = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Set) // 1 & y = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Set) // x & 1 = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset || Op2Unset) // x & 0 = 0 & y = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Not) // ~x & y = andc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0). getOperand(0)); else if (Op2Not) // x & ~y = andc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CRNAND: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // nand(x, x) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Set) // nand(1, y) -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Set) // nand(x, 1) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Unset || Op2Unset) // nand(x, 0) = nand(0, y) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Not) // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // nand(x, ~y) = ~x | y = orc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1). getOperand(0), MachineNode->getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CROR: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // x | x = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Set || Op2Set) // x | 1 = 1 | y = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Unset) // 0 | y = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Unset) // x | 0 = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // ~x | y = orc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0). getOperand(0)); else if (Op2Not) // x | ~y = orc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CRXOR: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // xor(x, x) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // xor(1, y) -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Set) // xor(x, 1) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Unset) // xor(0, y) = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Unset) // xor(x, 0) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // xor(~x, y) = eqv(x, y) ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // xor(x, ~y) = eqv(x, y) ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CRNOR: if (Op1Set || Op2Set) // nor(1, y) -> 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Unset) // nor(0, y) = ~y -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Unset) // nor(x, 0) = ~x ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Not) // nor(~x, y) = andc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // nor(x, ~y) = andc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1). getOperand(0), MachineNode->getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CREQV: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // eqv(x, x) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // eqv(1, y) = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Set) // eqv(x, 1) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset) // eqv(0, y) = ~y -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Unset) // eqv(x, 0) = ~x ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Not) // eqv(~x, y) = xor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // eqv(x, ~y) = xor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CRANDC: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // andc(x, x) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // andc(1, y) = ~y ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op1Unset || Op2Set) // andc(0, y) = andc(x, 1) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op2Unset) // andc(x, 0) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // andc(~x, y) = ~(x | y) = nor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // andc(x, ~y) = x & y ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0)), SelectSwap = true; break; case PPC::CRORC: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // orc(x, x) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set || Op2Unset) // orc(1, y) = orc(x, 0) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op2Set) // orc(x, 1) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset) // orc(0, y) = ~y ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op1Not) // orc(~x, y) = ~(x & y) = nand(x, y) ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // orc(x, ~y) = x | y ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0)), SelectSwap = true; break; case PPC::SELECT_I4: case PPC::SELECT_I8: case PPC::SELECT_F4: case PPC::SELECT_F8: case PPC::SELECT_VRRC: if (Op1Set) ResNode = MachineNode->getOperand(1).getNode(); else if (Op1Unset) ResNode = MachineNode->getOperand(2).getNode(); else if (Op1Not) ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), SDLoc(MachineNode), MachineNode->getValueType(0), MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(2), MachineNode->getOperand(1)); break; case PPC::BC: case PPC::BCn: if (Op1Not) ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : PPC::BC, SDLoc(MachineNode), MVT::Other, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1), MachineNode->getOperand(2)); // FIXME: Handle Op1Set, Op1Unset here too. break; } // If we're inverting this node because it is used only by selects that // we'd like to swap, then swap the selects before the node replacement. if (SelectSwap) SwapAllSelectUsers(MachineNode); if (ResNode != MachineNode) { DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); DEBUG(MachineNode->dump(CurDAG)); DEBUG(dbgs() << "\nNew: "); DEBUG(ResNode->dump(CurDAG)); DEBUG(dbgs() << "\n"); ReplaceUses(MachineNode, ResNode); IsModified = true; } } if (IsModified) CurDAG->RemoveDeadNodes(); } while (IsModified); } void PPCDAGToDAGISel::PeepholePPC64() { // These optimizations are currently supported only for 64-bit SVR4. if (PPCSubTarget.isDarwin() || !PPCSubTarget.isPPC64()) return; SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); ++Position; while (Position != CurDAG->allnodes_begin()) { SDNode *N = --Position; // Skip dead nodes and any non-machine opcodes. if (N->use_empty() || !N->isMachineOpcode()) continue; unsigned FirstOp; unsigned StorageOpcode = N->getMachineOpcode(); switch (StorageOpcode) { default: continue; case PPC::LBZ: case PPC::LBZ8: case PPC::LD: case PPC::LFD: case PPC::LFS: case PPC::LHA: case PPC::LHA8: case PPC::LHZ: case PPC::LHZ8: case PPC::LWA: case PPC::LWZ: case PPC::LWZ8: FirstOp = 0; break; case PPC::STB: case PPC::STB8: case PPC::STD: case PPC::STFD: case PPC::STFS: case PPC::STH: case PPC::STH8: case PPC::STW: case PPC::STW8: FirstOp = 1; break; } // If this is a load or store with a zero offset, we may be able to // fold an add-immediate into the memory operation. if (!isa(N->getOperand(FirstOp)) || N->getConstantOperandVal(FirstOp) != 0) continue; SDValue Base = N->getOperand(FirstOp + 1); if (!Base.isMachineOpcode()) continue; unsigned Flags = 0; bool ReplaceFlags = true; // When the feeding operation is an add-immediate of some sort, // determine whether we need to add relocation information to the // target flags on the immediate operand when we fold it into the // load instruction. // // For something like ADDItocL, the relocation information is // inferred from the opcode; when we process it in the AsmPrinter, // we add the necessary relocation there. A load, though, can receive // relocation from various flavors of ADDIxxx, so we need to carry // the relocation information in the target flags. switch (Base.getMachineOpcode()) { default: continue; case PPC::ADDI8: case PPC::ADDI: // In some cases (such as TLS) the relocation information // is already in place on the operand, so copying the operand // is sufficient. ReplaceFlags = false; // For these cases, the immediate may not be divisible by 4, in // which case the fold is illegal for DS-form instructions. (The // other cases provide aligned addresses and are always safe.) if ((StorageOpcode == PPC::LWA || StorageOpcode == PPC::LD || StorageOpcode == PPC::STD) && (!isa(Base.getOperand(1)) || Base.getConstantOperandVal(1) % 4 != 0)) continue; break; case PPC::ADDIdtprelL: Flags = PPCII::MO_DTPREL_LO; break; case PPC::ADDItlsldL: Flags = PPCII::MO_TLSLD_LO; break; case PPC::ADDItocL: Flags = PPCII::MO_TOC_LO; break; } // We found an opportunity. Reverse the operands from the add // immediate and substitute them into the load or store. If // needed, update the target flags for the immediate operand to // reflect the necessary relocation information. DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); DEBUG(Base->dump(CurDAG)); DEBUG(dbgs() << "\nN: "); DEBUG(N->dump(CurDAG)); DEBUG(dbgs() << "\n"); SDValue ImmOpnd = Base.getOperand(1); // If the relocation information isn't already present on the // immediate operand, add it now. if (ReplaceFlags) { if (GlobalAddressSDNode *GA = dyn_cast(ImmOpnd)) { SDLoc dl(GA); const GlobalValue *GV = GA->getGlobal(); // We can't perform this optimization for data whose alignment // is insufficient for the instruction encoding. if (GV->getAlignment() < 4 && (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD || StorageOpcode == PPC::LWA)) { DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); continue; } ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags); } else if (ConstantPoolSDNode *CP = dyn_cast(ImmOpnd)) { const Constant *C = CP->getConstVal(); ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlignment(), 0, Flags); } } if (FirstOp == 1) // Store (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, Base.getOperand(0), N->getOperand(3)); else // Load (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), N->getOperand(2)); // The add-immediate may now be dead, in which case remove it. if (Base.getNode()->use_empty()) CurDAG->RemoveDeadNode(Base.getNode()); } } /// createPPCISelDag - This pass converts a legalized DAG into a /// PowerPC-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { return new PPCDAGToDAGISel(TM); } static void initializePassOnce(PassRegistry &Registry) { const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection"; PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, nullptr, false, false); Registry.registerPass(*PI, true); } void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) { CALL_ONCE_INITIALIZATION(initializePassOnce); }