//===- lib/Support/Compressor.cpp -------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Reid Spencer and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the llvm::Compressor class, an abstraction for memory // block compression. // //===----------------------------------------------------------------------===// #include "llvm/Config/config.h" #include "llvm/Support/Compressor.h" #include "llvm/ADT/StringExtras.h" #include #include #include "bzip2/bzlib.h" namespace { enum CompressionTypes { COMP_TYPE_NONE = '0', COMP_TYPE_BZIP2 = '2', }; inline int getdata(char*& buffer, unsigned& size, llvm::Compressor::OutputDataCallback* cb, void* context) { buffer = 0; size = 0; int result = (*cb)(buffer, size, context); assert(buffer != 0 && "Invalid result from Compressor callback"); assert(size != 0 && "Invalid result from Compressor callback"); return result; } //===----------------------------------------------------------------------===// //=== NULLCOMP - a compression like set of routines that just copies data //=== without doing any compression. This is provided so that if the //=== configured environment doesn't have a compression library the //=== program can still work, albeit using more data/memory. //===----------------------------------------------------------------------===// struct NULLCOMP_stream { // User provided fields char* next_in; unsigned avail_in; char* next_out; unsigned avail_out; // Information fields uint64_t output_count; // Total count of output bytes }; void NULLCOMP_init(NULLCOMP_stream* s) { s->output_count = 0; } bool NULLCOMP_compress(NULLCOMP_stream* s) { assert(s && "Invalid NULLCOMP_stream"); assert(s->next_in != 0); assert(s->next_out != 0); assert(s->avail_in >= 1); assert(s->avail_out >= 1); if (s->avail_out >= s->avail_in) { ::memcpy(s->next_out, s->next_in, s->avail_in); s->output_count += s->avail_in; s->avail_out -= s->avail_in; s->next_in += s->avail_in; s->avail_in = 0; return true; } else { ::memcpy(s->next_out, s->next_in, s->avail_out); s->output_count += s->avail_out; s->avail_in -= s->avail_out; s->next_in += s->avail_out; s->avail_out = 0; return false; } } bool NULLCOMP_decompress(NULLCOMP_stream* s) { assert(s && "Invalid NULLCOMP_stream"); assert(s->next_in != 0); assert(s->next_out != 0); assert(s->avail_in >= 1); assert(s->avail_out >= 1); if (s->avail_out >= s->avail_in) { ::memcpy(s->next_out, s->next_in, s->avail_in); s->output_count += s->avail_in; s->avail_out -= s->avail_in; s->next_in += s->avail_in; s->avail_in = 0; return true; } else { ::memcpy(s->next_out, s->next_in, s->avail_out); s->output_count += s->avail_out; s->avail_in -= s->avail_out; s->next_in += s->avail_out; s->avail_out = 0; return false; } } void NULLCOMP_end(NULLCOMP_stream* strm) { } /// This structure is only used when a bytecode file is compressed. /// As bytecode is being decompressed, the memory buffer might need /// to be reallocated. The buffer allocation is handled in a callback /// and this structure is needed to retain information across calls /// to the callback. /// @brief An internal buffer object used for handling decompression struct BufferContext { char* buff; unsigned size; BufferContext(unsigned compressedSize ) { // Null to indicate malloc of a new block buff = 0; // Compute the initial length of the uncompression buffer. Note that this // is twice the length of the compressed buffer and will be doubled again // in the callback for an initial allocation of 4x compressedSize. This // calculation is based on the typical compression ratio of bzip2 on LLVM // bytecode files which typically ranges in the 50%-75% range. Since we // tyipcally get at least 50%, doubling is insufficient. By using a 4x // multiplier on the first allocation, we minimize the impact of having to // copy the buffer on reallocation. size = compressedSize*2; } /// This function handles allocation of the buffer used for decompression of /// compressed bytecode files. It is called by Compressor::decompress which is /// called by BytecodeReader::ParseBytecode. static unsigned callback(char*&buff, unsigned& sz, void* ctxt){ // Case the context variable to our BufferContext BufferContext* bc = reinterpret_cast(ctxt); // Compute the new, doubled, size of the block unsigned new_size = bc->size * 2; // Extend or allocate the block (realloc(0,n) == malloc(n)) char* new_buff = (char*) ::realloc(bc->buff, new_size); // Figure out what to return to the Compressor. If this is the first call, // then bc->buff will be null. In this case we want to return the entire // buffer because there was no previous allocation. Otherwise, when the // buffer is reallocated, we save the new base pointer in the // BufferContext.buff field but return the address of only the extension, // mid-way through the buffer (since its size was doubled). Furthermore, // the sz result must be 1/2 the total size of the buffer. if (bc->buff == 0 ) { buff = bc->buff = new_buff; sz = new_size; } else { bc->buff = new_buff; buff = new_buff + bc->size; sz = bc->size; } // Retain the size of the allocated block bc->size = new_size; // Make sure we fail (return 1) if we didn't get any memory. return (bc->buff == 0 ? 1 : 0); } }; // This structure retains the context when compressing the bytecode file. The // WriteCompressedData function below uses it to keep track of the previously // filled chunk of memory (which it writes) and how many bytes have been // written. struct WriterContext { // Initialize the context WriterContext(std::ostream*OS, unsigned CS) : chunk(0), sz(0), written(0), compSize(CS), Out(OS) {} // Make sure we clean up memory ~WriterContext() { if (chunk) delete [] chunk; } // Write the chunk void write(unsigned size = 0) { unsigned write_size = (size == 0 ? sz : size); Out->write(chunk,write_size); written += write_size; delete [] chunk; chunk = 0; sz = 0; } // This function is a callback used by the Compressor::compress function to // allocate memory for the compression buffer. This function fulfills that // responsibility but also writes the previous (now filled) buffer out to the // stream. static unsigned callback(char*& buffer, unsigned& size, void* context) { // Cast the context to the structure it must point to. WriterContext* ctxt = reinterpret_cast(context); // If there's a previously allocated chunk, it must now be filled with // compressed data, so we write it out and deallocate it. if (ctxt->chunk != 0 && ctxt->sz > 0 ) { ctxt->write(); } // Compute the size of the next chunk to allocate. We attempt to allocate // enough memory to handle the compression in a single memory allocation. In // general, the worst we do on compression of bytecode is about 50% so we // conservatively estimate compSize / 2 as the size needed for the // compression buffer. compSize is the size of the compressed data, provided // by WriteBytecodeToFile. size = ctxt->sz = ctxt->compSize / 2; // Allocate the chunks buffer = ctxt->chunk = new char [size]; // We must return 1 if the allocation failed so that the Compressor knows // not to use the buffer pointer. return (ctxt->chunk == 0 ? 1 : 0); } char* chunk; // pointer to the chunk of memory filled by compression unsigned sz; // size of chunk unsigned written; // aggregate total of bytes written in all chunks unsigned compSize; // size of the uncompressed buffer std::ostream* Out; // The stream we write the data to. }; } namespace llvm { // Compress in one of three ways uint64_t Compressor::compress(const char* in, unsigned size, OutputDataCallback* cb, void* context ) { assert(in && "Can't compress null buffer"); assert(size && "Can't compress empty buffer"); assert(cb && "Can't compress without a callback function"); uint64_t result = 0; // For small files, we just don't bother compressing. bzip2 isn't very good // with tiny files and can actually make the file larger, so we just avoid // it altogether. if (size > 64*1024) { // Set up the bz_stream bz_stream bzdata; bzdata.bzalloc = 0; bzdata.bzfree = 0; bzdata.opaque = 0; bzdata.next_in = (char*)in; bzdata.avail_in = size; bzdata.next_out = 0; bzdata.avail_out = 0; switch ( BZ2_bzCompressInit(&bzdata, 5, 0, 100) ) { case BZ_CONFIG_ERROR: throw std::string("bzip2 library mis-compiled"); case BZ_PARAM_ERROR: throw std::string("Compressor internal error"); case BZ_MEM_ERROR: throw std::string("Out of memory"); case BZ_OK: default: break; } // Get a block of memory if (0 != getdata(bzdata.next_out, bzdata.avail_out,cb,context)) { BZ2_bzCompressEnd(&bzdata); throw std::string("Can't allocate output buffer"); } // Put compression code in first byte (*bzdata.next_out++) = COMP_TYPE_BZIP2; bzdata.avail_out--; // Compress it int bzerr = BZ_FINISH_OK; while (BZ_FINISH_OK == (bzerr = BZ2_bzCompress(&bzdata, BZ_FINISH))) { if (0 != getdata(bzdata.next_out, bzdata.avail_out,cb,context)) { BZ2_bzCompressEnd(&bzdata); throw std::string("Can't allocate output buffer"); } } switch (bzerr) { case BZ_SEQUENCE_ERROR: case BZ_PARAM_ERROR: throw std::string("Param/Sequence error"); case BZ_FINISH_OK: case BZ_STREAM_END: break; default: throw std::string("Oops: ") + utostr(unsigned(bzerr)); } // Finish result = (static_cast(bzdata.total_out_hi32) << 32) | bzdata.total_out_lo32 + 1; BZ2_bzCompressEnd(&bzdata); } else { // Do null compression, for small files NULLCOMP_stream sdata; sdata.next_in = (char*)in; sdata.avail_in = size; NULLCOMP_init(&sdata); if (0 != getdata(sdata.next_out, sdata.avail_out,cb,context)) { throw std::string("Can't allocate output buffer"); } *(sdata.next_out++) = COMP_TYPE_NONE; sdata.avail_out--; while (!NULLCOMP_compress(&sdata)) { if (0 != getdata(sdata.next_out, sdata.avail_out,cb,context)) { throw std::string("Can't allocate output buffer"); } } result = sdata.output_count + 1; NULLCOMP_end(&sdata); } return result; } uint64_t Compressor::compressToNewBuffer(const char* in, unsigned size, char*&out) { BufferContext bc(size); uint64_t result = compress(in,size,BufferContext::callback,(void*)&bc); out = bc.buff; return result; } uint64_t Compressor::compressToStream(const char*in, unsigned size, std::ostream& out) { // Set up the context and writer WriterContext ctxt(&out,size / 2); // Compress everything after the magic number (which we'll alter) uint64_t zipSize = Compressor::compress(in,size, WriterContext::callback, (void*)&ctxt); if (ctxt.chunk) { ctxt.write(zipSize - ctxt.written); } return zipSize; } // Decompress in one of three ways uint64_t Compressor::decompress(const char *in, unsigned size, OutputDataCallback* cb, void* context) { assert(in && "Can't decompress null buffer"); assert(size > 1 && "Can't decompress empty buffer"); assert(cb && "Can't decompress without a callback function"); uint64_t result = 0; switch (*in++) { case COMP_TYPE_BZIP2: { // Set up the bz_stream bz_stream bzdata; bzdata.bzalloc = 0; bzdata.bzfree = 0; bzdata.opaque = 0; bzdata.next_in = (char*)in; bzdata.avail_in = size - 1; bzdata.next_out = 0; bzdata.avail_out = 0; switch ( BZ2_bzDecompressInit(&bzdata, 0, 0) ) { case BZ_CONFIG_ERROR: throw std::string("bzip2 library mis-compiled"); case BZ_PARAM_ERROR: throw std::string("Compressor internal error"); case BZ_MEM_ERROR: throw std::string("Out of memory"); case BZ_OK: default: break; } // Get a block of memory if (0 != getdata(bzdata.next_out, bzdata.avail_out,cb,context)) { BZ2_bzDecompressEnd(&bzdata); throw std::string("Can't allocate output buffer"); } // Decompress it int bzerr = BZ_OK; while (BZ_OK == (bzerr = BZ2_bzDecompress(&bzdata))) { if (0 != getdata(bzdata.next_out, bzdata.avail_out,cb,context)) { BZ2_bzDecompressEnd(&bzdata); throw std::string("Can't allocate output buffer"); } } switch (bzerr) { case BZ_PARAM_ERROR: throw std::string("Compressor internal error"); case BZ_MEM_ERROR: throw std::string("Out of memory"); case BZ_DATA_ERROR: throw std::string("Data integrity error"); case BZ_DATA_ERROR_MAGIC:throw std::string("Data is not BZIP2"); default: throw("Ooops"); case BZ_STREAM_END: break; } // Finish result = (static_cast(bzdata.total_out_hi32) << 32) | bzdata.total_out_lo32; BZ2_bzDecompressEnd(&bzdata); break; } case COMP_TYPE_NONE: { NULLCOMP_stream sdata; sdata.next_in = (char*)in; sdata.avail_in = size - 1; NULLCOMP_init(&sdata); if (0 != getdata(sdata.next_out, sdata.avail_out,cb,context)) { throw std::string("Can't allocate output buffer"); } while (!NULLCOMP_decompress(&sdata)) { if (0 != getdata(sdata.next_out, sdata.avail_out,cb,context)) { throw std::string("Can't allocate output buffer"); } } result = sdata.output_count; NULLCOMP_end(&sdata); break; } default: throw std::string("Unknown type of compressed data"); } return result; } uint64_t Compressor::decompressToNewBuffer(const char* in, unsigned size, char*&out) { BufferContext bc(size); unsigned result = decompress(in,size,BufferContext::callback,(void*)&bc); out = bc.buff; return result; } uint64_t Compressor::decompressToStream(const char*in, unsigned size, std::ostream& out){ // Set up the context and writer WriterContext ctxt(&out,size / 2); // Compress everything after the magic number (which we'll alter) uint64_t zipSize = Compressor::decompress(in,size, WriterContext::callback, (void*)&ctxt); if (ctxt.chunk) { ctxt.write(zipSize - ctxt.written); } return zipSize; } } // vim: sw=2 ai