//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the top-level functionality for the LLVM interpreter. // This interpreter is designed to be a very simple, portable, inefficient // interpreter. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include using namespace llvm; static struct RegisterInterp { RegisterInterp() { Interpreter::Register(); } } InterpRegistrator; namespace llvm { void LinkInInterpreter() { } } /// create - Create a new interpreter object. This can never fail. /// ExecutionEngine *Interpreter::create(ModuleProvider *MP, std::string* ErrStr) { // Tell this ModuleProvide to materialize and release the module Module *M = MP->releaseModule(ErrStr); if (!M) // We got an error, just return 0 return 0; // This is a bit nasty, but the ExecutionEngine won't be able to delete the // module due to use/def issues if we don't delete this MP here. Below we // construct a new Interpreter with the Module we just got. This creates a // new ExistingModuleProvider in the EE instance. Consequently, MP is left // dangling and it contains references into the module which cause problems // when the module is deleted via the ExistingModuleProvide via EE. delete MP; // FIXME: This should probably compute the entire data layout std::string DataLayout; int Test = 0; *(char*)&Test = 1; // Return true if the host is little endian bool isLittleEndian = (Test == 1); DataLayout.append(isLittleEndian ? "e" : "E"); bool Ptr64 = sizeof(void*) == 8; DataLayout.append(Ptr64 ? "-p:64:64" : "-p:32:32"); M->setDataLayout(DataLayout); return new Interpreter(M); } //===----------------------------------------------------------------------===// // Interpreter ctor - Initialize stuff // Interpreter::Interpreter(Module *M) : ExecutionEngine(M), TD(M) { memset(&ExitValue, 0, sizeof(ExitValue)); setTargetData(&TD); // Initialize the "backend" initializeExecutionEngine(); initializeExternalFunctions(); emitGlobals(); IL = new IntrinsicLowering(TD); } Interpreter::~Interpreter() { delete IL; } void Interpreter::runAtExitHandlers () { while (!AtExitHandlers.empty()) { callFunction(AtExitHandlers.back(), std::vector()); AtExitHandlers.pop_back(); run(); } } /// run - Start execution with the specified function and arguments. /// GenericValue Interpreter::runFunction(Function *F, const std::vector &ArgValues) { assert (F && "Function *F was null at entry to run()"); // Try extra hard not to pass extra args to a function that isn't // expecting them. C programmers frequently bend the rules and // declare main() with fewer parameters than it actually gets // passed, and the interpreter barfs if you pass a function more // parameters than it is declared to take. This does not attempt to // take into account gratuitous differences in declared types, // though. std::vector ActualArgs; const unsigned ArgCount = F->getFunctionType()->getNumParams(); for (unsigned i = 0; i < ArgCount; ++i) ActualArgs.push_back(ArgValues[i]); // Set up the function call. callFunction(F, ActualArgs); // Start executing the function. run(); return ExitValue; }