//===- GVN.cpp - Eliminate redundant values and loads ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs global value numbering to eliminate fully redundant // instructions. It also performs simple dead load elimination. // // Note that this pass does the value numbering itself; it does not use the // ValueNumbering analysis passes. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "gvn" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Value.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Support/CFG.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include using namespace llvm; STATISTIC(NumGVNInstr, "Number of instructions deleted"); STATISTIC(NumGVNLoad, "Number of loads deleted"); STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); STATISTIC(NumGVNBlocks, "Number of blocks merged"); STATISTIC(NumPRELoad, "Number of loads PRE'd"); static cl::opt EnablePRE("enable-pre", cl::init(true), cl::Hidden); static cl::opt EnableLoadPRE("enable-load-pre", cl::init(true)); //===----------------------------------------------------------------------===// // ValueTable Class //===----------------------------------------------------------------------===// /// This class holds the mapping between values and value numbers. It is used /// as an efficient mechanism to determine the expression-wise equivalence of /// two values. namespace { struct VISIBILITY_HIDDEN Expression { enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL, UDIV, SDIV, FDIV, UREM, SREM, FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI, FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT, EMPTY, TOMBSTONE }; ExpressionOpcode opcode; const Type* type; uint32_t firstVN; uint32_t secondVN; uint32_t thirdVN; SmallVector varargs; Value* function; Expression() { } Expression(ExpressionOpcode o) : opcode(o) { } bool operator==(const Expression &other) const { if (opcode != other.opcode) return false; else if (opcode == EMPTY || opcode == TOMBSTONE) return true; else if (type != other.type) return false; else if (function != other.function) return false; else if (firstVN != other.firstVN) return false; else if (secondVN != other.secondVN) return false; else if (thirdVN != other.thirdVN) return false; else { if (varargs.size() != other.varargs.size()) return false; for (size_t i = 0; i < varargs.size(); ++i) if (varargs[i] != other.varargs[i]) return false; return true; } } bool operator!=(const Expression &other) const { return !(*this == other); } }; class VISIBILITY_HIDDEN ValueTable { private: DenseMap valueNumbering; DenseMap expressionNumbering; AliasAnalysis* AA; MemoryDependenceAnalysis* MD; DominatorTree* DT; uint32_t nextValueNumber; Expression::ExpressionOpcode getOpcode(BinaryOperator* BO); Expression::ExpressionOpcode getOpcode(CmpInst* C); Expression::ExpressionOpcode getOpcode(CastInst* C); Expression create_expression(BinaryOperator* BO); Expression create_expression(CmpInst* C); Expression create_expression(ShuffleVectorInst* V); Expression create_expression(ExtractElementInst* C); Expression create_expression(InsertElementInst* V); Expression create_expression(SelectInst* V); Expression create_expression(CastInst* C); Expression create_expression(GetElementPtrInst* G); Expression create_expression(CallInst* C); Expression create_expression(Constant* C); public: ValueTable() : nextValueNumber(1) { } uint32_t lookup_or_add(Value* V); uint32_t lookup(Value* V) const; void add(Value* V, uint32_t num); void clear(); void erase(Value* v); unsigned size(); void setAliasAnalysis(AliasAnalysis* A) { AA = A; } AliasAnalysis *getAliasAnalysis() const { return AA; } void setMemDep(MemoryDependenceAnalysis* M) { MD = M; } void setDomTree(DominatorTree* D) { DT = D; } uint32_t getNextUnusedValueNumber() { return nextValueNumber; } void verifyRemoved(const Value *) const; }; } namespace llvm { template <> struct DenseMapInfo { static inline Expression getEmptyKey() { return Expression(Expression::EMPTY); } static inline Expression getTombstoneKey() { return Expression(Expression::TOMBSTONE); } static unsigned getHashValue(const Expression e) { unsigned hash = e.opcode; hash = e.firstVN + hash * 37; hash = e.secondVN + hash * 37; hash = e.thirdVN + hash * 37; hash = ((unsigned)((uintptr_t)e.type >> 4) ^ (unsigned)((uintptr_t)e.type >> 9)) + hash * 37; for (SmallVector::const_iterator I = e.varargs.begin(), E = e.varargs.end(); I != E; ++I) hash = *I + hash * 37; hash = ((unsigned)((uintptr_t)e.function >> 4) ^ (unsigned)((uintptr_t)e.function >> 9)) + hash * 37; return hash; } static bool isEqual(const Expression &LHS, const Expression &RHS) { return LHS == RHS; } static bool isPod() { return true; } }; } //===----------------------------------------------------------------------===// // ValueTable Internal Functions //===----------------------------------------------------------------------===// Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) { switch(BO->getOpcode()) { default: // THIS SHOULD NEVER HAPPEN assert(0 && "Binary operator with unknown opcode?"); case Instruction::Add: return Expression::ADD; case Instruction::FAdd: return Expression::FADD; case Instruction::Sub: return Expression::SUB; case Instruction::FSub: return Expression::FSUB; case Instruction::Mul: return Expression::MUL; case Instruction::FMul: return Expression::FMUL; case Instruction::UDiv: return Expression::UDIV; case Instruction::SDiv: return Expression::SDIV; case Instruction::FDiv: return Expression::FDIV; case Instruction::URem: return Expression::UREM; case Instruction::SRem: return Expression::SREM; case Instruction::FRem: return Expression::FREM; case Instruction::Shl: return Expression::SHL; case Instruction::LShr: return Expression::LSHR; case Instruction::AShr: return Expression::ASHR; case Instruction::And: return Expression::AND; case Instruction::Or: return Expression::OR; case Instruction::Xor: return Expression::XOR; } } Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { if (isa(C)) { switch (C->getPredicate()) { default: // THIS SHOULD NEVER HAPPEN assert(0 && "Comparison with unknown predicate?"); case ICmpInst::ICMP_EQ: return Expression::ICMPEQ; case ICmpInst::ICMP_NE: return Expression::ICMPNE; case ICmpInst::ICMP_UGT: return Expression::ICMPUGT; case ICmpInst::ICMP_UGE: return Expression::ICMPUGE; case ICmpInst::ICMP_ULT: return Expression::ICMPULT; case ICmpInst::ICMP_ULE: return Expression::ICMPULE; case ICmpInst::ICMP_SGT: return Expression::ICMPSGT; case ICmpInst::ICMP_SGE: return Expression::ICMPSGE; case ICmpInst::ICMP_SLT: return Expression::ICMPSLT; case ICmpInst::ICMP_SLE: return Expression::ICMPSLE; } } else { switch (C->getPredicate()) { default: // THIS SHOULD NEVER HAPPEN assert(0 && "Comparison with unknown predicate?"); case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ; case FCmpInst::FCMP_OGT: return Expression::FCMPOGT; case FCmpInst::FCMP_OGE: return Expression::FCMPOGE; case FCmpInst::FCMP_OLT: return Expression::FCMPOLT; case FCmpInst::FCMP_OLE: return Expression::FCMPOLE; case FCmpInst::FCMP_ONE: return Expression::FCMPONE; case FCmpInst::FCMP_ORD: return Expression::FCMPORD; case FCmpInst::FCMP_UNO: return Expression::FCMPUNO; case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ; case FCmpInst::FCMP_UGT: return Expression::FCMPUGT; case FCmpInst::FCMP_UGE: return Expression::FCMPUGE; case FCmpInst::FCMP_ULT: return Expression::FCMPULT; case FCmpInst::FCMP_ULE: return Expression::FCMPULE; case FCmpInst::FCMP_UNE: return Expression::FCMPUNE; } } } Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) { switch(C->getOpcode()) { default: // THIS SHOULD NEVER HAPPEN assert(0 && "Cast operator with unknown opcode?"); case Instruction::Trunc: return Expression::TRUNC; case Instruction::ZExt: return Expression::ZEXT; case Instruction::SExt: return Expression::SEXT; case Instruction::FPToUI: return Expression::FPTOUI; case Instruction::FPToSI: return Expression::FPTOSI; case Instruction::UIToFP: return Expression::UITOFP; case Instruction::SIToFP: return Expression::SITOFP; case Instruction::FPTrunc: return Expression::FPTRUNC; case Instruction::FPExt: return Expression::FPEXT; case Instruction::PtrToInt: return Expression::PTRTOINT; case Instruction::IntToPtr: return Expression::INTTOPTR; case Instruction::BitCast: return Expression::BITCAST; } } Expression ValueTable::create_expression(CallInst* C) { Expression e; e.type = C->getType(); e.firstVN = 0; e.secondVN = 0; e.thirdVN = 0; e.function = C->getCalledFunction(); e.opcode = Expression::CALL; for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end(); I != E; ++I) e.varargs.push_back(lookup_or_add(*I)); return e; } Expression ValueTable::create_expression(BinaryOperator* BO) { Expression e; e.firstVN = lookup_or_add(BO->getOperand(0)); e.secondVN = lookup_or_add(BO->getOperand(1)); e.thirdVN = 0; e.function = 0; e.type = BO->getType(); e.opcode = getOpcode(BO); return e; } Expression ValueTable::create_expression(CmpInst* C) { Expression e; e.firstVN = lookup_or_add(C->getOperand(0)); e.secondVN = lookup_or_add(C->getOperand(1)); e.thirdVN = 0; e.function = 0; e.type = C->getType(); e.opcode = getOpcode(C); return e; } Expression ValueTable::create_expression(CastInst* C) { Expression e; e.firstVN = lookup_or_add(C->getOperand(0)); e.secondVN = 0; e.thirdVN = 0; e.function = 0; e.type = C->getType(); e.opcode = getOpcode(C); return e; } Expression ValueTable::create_expression(ShuffleVectorInst* S) { Expression e; e.firstVN = lookup_or_add(S->getOperand(0)); e.secondVN = lookup_or_add(S->getOperand(1)); e.thirdVN = lookup_or_add(S->getOperand(2)); e.function = 0; e.type = S->getType(); e.opcode = Expression::SHUFFLE; return e; } Expression ValueTable::create_expression(ExtractElementInst* E) { Expression e; e.firstVN = lookup_or_add(E->getOperand(0)); e.secondVN = lookup_or_add(E->getOperand(1)); e.thirdVN = 0; e.function = 0; e.type = E->getType(); e.opcode = Expression::EXTRACT; return e; } Expression ValueTable::create_expression(InsertElementInst* I) { Expression e; e.firstVN = lookup_or_add(I->getOperand(0)); e.secondVN = lookup_or_add(I->getOperand(1)); e.thirdVN = lookup_or_add(I->getOperand(2)); e.function = 0; e.type = I->getType(); e.opcode = Expression::INSERT; return e; } Expression ValueTable::create_expression(SelectInst* I) { Expression e; e.firstVN = lookup_or_add(I->getCondition()); e.secondVN = lookup_or_add(I->getTrueValue()); e.thirdVN = lookup_or_add(I->getFalseValue()); e.function = 0; e.type = I->getType(); e.opcode = Expression::SELECT; return e; } Expression ValueTable::create_expression(GetElementPtrInst* G) { Expression e; e.firstVN = lookup_or_add(G->getPointerOperand()); e.secondVN = 0; e.thirdVN = 0; e.function = 0; e.type = G->getType(); e.opcode = Expression::GEP; for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end(); I != E; ++I) e.varargs.push_back(lookup_or_add(*I)); return e; } //===----------------------------------------------------------------------===// // ValueTable External Functions //===----------------------------------------------------------------------===// /// add - Insert a value into the table with a specified value number. void ValueTable::add(Value* V, uint32_t num) { valueNumbering.insert(std::make_pair(V, num)); } /// lookup_or_add - Returns the value number for the specified value, assigning /// it a new number if it did not have one before. uint32_t ValueTable::lookup_or_add(Value* V) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; if (CallInst* C = dyn_cast(V)) { if (AA->doesNotAccessMemory(C)) { Expression e = create_expression(C); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (AA->onlyReadsMemory(C)) { Expression e = create_expression(C); if (expressionNumbering.find(e) == expressionNumbering.end()) { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } MemDepResult local_dep = MD->getDependency(C); if (!local_dep.isDef() && !local_dep.isNonLocal()) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } if (local_dep.isDef()) { CallInst* local_cdep = cast(local_dep.getInst()); if (local_cdep->getNumOperands() != C->getNumOperands()) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } for (unsigned i = 1; i < C->getNumOperands(); ++i) { uint32_t c_vn = lookup_or_add(C->getOperand(i)); uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i)); if (c_vn != cd_vn) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } uint32_t v = lookup_or_add(local_cdep); valueNumbering.insert(std::make_pair(V, v)); return v; } // Non-local case. const MemoryDependenceAnalysis::NonLocalDepInfo &deps = MD->getNonLocalCallDependency(CallSite(C)); // FIXME: call/call dependencies for readonly calls should return def, not // clobber! Move the checking logic to MemDep! CallInst* cdep = 0; // Check to see if we have a single dominating call instruction that is // identical to C. for (unsigned i = 0, e = deps.size(); i != e; ++i) { const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i]; // Ignore non-local dependencies. if (I->second.isNonLocal()) continue; // We don't handle non-depedencies. If we already have a call, reject // instruction dependencies. if (I->second.isClobber() || cdep != 0) { cdep = 0; break; } CallInst *NonLocalDepCall = dyn_cast(I->second.getInst()); // FIXME: All duplicated with non-local case. if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){ cdep = NonLocalDepCall; continue; } cdep = 0; break; } if (!cdep) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } if (cdep->getNumOperands() != C->getNumOperands()) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } for (unsigned i = 1; i < C->getNumOperands(); ++i) { uint32_t c_vn = lookup_or_add(C->getOperand(i)); uint32_t cd_vn = lookup_or_add(cdep->getOperand(i)); if (c_vn != cd_vn) { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } uint32_t v = lookup_or_add(cdep); valueNumbering.insert(std::make_pair(V, v)); return v; } else { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (BinaryOperator* BO = dyn_cast(V)) { Expression e = create_expression(BO); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (CmpInst* C = dyn_cast(V)) { Expression e = create_expression(C); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (ShuffleVectorInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (ExtractElementInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (InsertElementInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (SelectInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (CastInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (GetElementPtrInst* U = dyn_cast(V)) { Expression e = create_expression(U); DenseMap::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } /// lookup - Returns the value number of the specified value. Fails if /// the value has not yet been numbered. uint32_t ValueTable::lookup(Value* V) const { DenseMap::iterator VI = valueNumbering.find(V); assert(VI != valueNumbering.end() && "Value not numbered?"); return VI->second; } /// clear - Remove all entries from the ValueTable void ValueTable::clear() { valueNumbering.clear(); expressionNumbering.clear(); nextValueNumber = 1; } /// erase - Remove a value from the value numbering void ValueTable::erase(Value* V) { valueNumbering.erase(V); } /// verifyRemoved - Verify that the value is removed from all internal data /// structures. void ValueTable::verifyRemoved(const Value *V) const { for (DenseMap::iterator I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { assert(I->first != V && "Inst still occurs in value numbering map!"); } } //===----------------------------------------------------------------------===// // GVN Pass //===----------------------------------------------------------------------===// namespace { struct VISIBILITY_HIDDEN ValueNumberScope { ValueNumberScope* parent; DenseMap table; ValueNumberScope(ValueNumberScope* p) : parent(p) { } }; } namespace { class VISIBILITY_HIDDEN GVN : public FunctionPass { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid GVN() : FunctionPass(&ID) { } private: MemoryDependenceAnalysis *MD; DominatorTree *DT; ValueTable VN; DenseMap localAvail; typedef DenseMap > PhiMapType; PhiMapType phiMap; // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } // Helper fuctions // FIXME: eliminate or document these better bool processLoad(LoadInst* L, SmallVectorImpl &toErase); bool processInstruction(Instruction* I, SmallVectorImpl &toErase); bool processNonLocalLoad(LoadInst* L, SmallVectorImpl &toErase); bool processBlock(BasicBlock* BB); Value *GetValueForBlock(BasicBlock *BB, Instruction* orig, DenseMap &Phis, bool top_level = false); void dump(DenseMap& d); bool iterateOnFunction(Function &F); Value* CollapsePhi(PHINode* p); bool isSafeReplacement(PHINode* p, Instruction* inst); bool performPRE(Function& F); Value* lookupNumber(BasicBlock* BB, uint32_t num); bool mergeBlockIntoPredecessor(BasicBlock* BB); Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno); void cleanupGlobalSets(); void verifyRemoved(const Instruction *I) const; }; char GVN::ID = 0; } // createGVNPass - The public interface to this file... FunctionPass *llvm::createGVNPass() { return new GVN(); } static RegisterPass X("gvn", "Global Value Numbering"); void GVN::dump(DenseMap& d) { printf("{\n"); for (DenseMap::iterator I = d.begin(), E = d.end(); I != E; ++I) { printf("%d\n", I->first); I->second->dump(); } printf("}\n"); } Value* GVN::CollapsePhi(PHINode* p) { Value* constVal = p->hasConstantValue(); if (!constVal) return 0; Instruction* inst = dyn_cast(constVal); if (!inst) return constVal; if (DT->dominates(inst, p)) if (isSafeReplacement(p, inst)) return inst; return 0; } bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) { if (!isa(inst)) return true; for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end(); UI != E; ++UI) if (PHINode* use_phi = dyn_cast(UI)) if (use_phi->getParent() == inst->getParent()) return false; return true; } /// GetValueForBlock - Get the value to use within the specified basic block. /// available values are in Phis. Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig, DenseMap &Phis, bool top_level) { // If we have already computed this value, return the previously computed val. DenseMap::iterator V = Phis.find(BB); if (V != Phis.end() && !top_level) return V->second; // If the block is unreachable, just return undef, since this path // can't actually occur at runtime. if (!DT->isReachableFromEntry(BB)) return Phis[BB] = Context->getUndef(orig->getType()); if (BasicBlock *Pred = BB->getSinglePredecessor()) { Value *ret = GetValueForBlock(Pred, orig, Phis); Phis[BB] = ret; return ret; } // Get the number of predecessors of this block so we can reserve space later. // If there is already a PHI in it, use the #preds from it, otherwise count. // Getting it from the PHI is constant time. unsigned NumPreds; if (PHINode *ExistingPN = dyn_cast(BB->begin())) NumPreds = ExistingPN->getNumIncomingValues(); else NumPreds = std::distance(pred_begin(BB), pred_end(BB)); // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so // now, then get values to fill in the incoming values for the PHI. PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle", BB->begin()); PN->reserveOperandSpace(NumPreds); Phis.insert(std::make_pair(BB, PN)); // Fill in the incoming values for the block. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { Value* val = GetValueForBlock(*PI, orig, Phis); PN->addIncoming(val, *PI); } VN.getAliasAnalysis()->copyValue(orig, PN); // Attempt to collapse PHI nodes that are trivially redundant Value* v = CollapsePhi(PN); if (!v) { // Cache our phi construction results if (LoadInst* L = dyn_cast(orig)) phiMap[L->getPointerOperand()].insert(PN); else phiMap[orig].insert(PN); return PN; } PN->replaceAllUsesWith(v); if (isa(v->getType())) MD->invalidateCachedPointerInfo(v); for (DenseMap::iterator I = Phis.begin(), E = Phis.end(); I != E; ++I) if (I->second == PN) I->second = v; DEBUG(cerr << "GVN removed: " << *PN); MD->removeInstruction(PN); PN->eraseFromParent(); DEBUG(verifyRemoved(PN)); Phis[BB] = v; return v; } /// IsValueFullyAvailableInBlock - Return true if we can prove that the value /// we're analyzing is fully available in the specified block. As we go, keep /// track of which blocks we know are fully alive in FullyAvailableBlocks. This /// map is actually a tri-state map with the following values: /// 0) we know the block *is not* fully available. /// 1) we know the block *is* fully available. /// 2) we do not know whether the block is fully available or not, but we are /// currently speculating that it will be. /// 3) we are speculating for this block and have used that to speculate for /// other blocks. static bool IsValueFullyAvailableInBlock(BasicBlock *BB, DenseMap &FullyAvailableBlocks) { // Optimistically assume that the block is fully available and check to see // if we already know about this block in one lookup. std::pair::iterator, char> IV = FullyAvailableBlocks.insert(std::make_pair(BB, 2)); // If the entry already existed for this block, return the precomputed value. if (!IV.second) { // If this is a speculative "available" value, mark it as being used for // speculation of other blocks. if (IV.first->second == 2) IV.first->second = 3; return IV.first->second != 0; } // Otherwise, see if it is fully available in all predecessors. pred_iterator PI = pred_begin(BB), PE = pred_end(BB); // If this block has no predecessors, it isn't live-in here. if (PI == PE) goto SpeculationFailure; for (; PI != PE; ++PI) // If the value isn't fully available in one of our predecessors, then it // isn't fully available in this block either. Undo our previous // optimistic assumption and bail out. if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks)) goto SpeculationFailure; return true; // SpeculationFailure - If we get here, we found out that this is not, after // all, a fully-available block. We have a problem if we speculated on this and // used the speculation to mark other blocks as available. SpeculationFailure: char &BBVal = FullyAvailableBlocks[BB]; // If we didn't speculate on this, just return with it set to false. if (BBVal == 2) { BBVal = 0; return false; } // If we did speculate on this value, we could have blocks set to 1 that are // incorrect. Walk the (transitive) successors of this block and mark them as // 0 if set to one. SmallVector BBWorklist; BBWorklist.push_back(BB); while (!BBWorklist.empty()) { BasicBlock *Entry = BBWorklist.pop_back_val(); // Note that this sets blocks to 0 (unavailable) if they happen to not // already be in FullyAvailableBlocks. This is safe. char &EntryVal = FullyAvailableBlocks[Entry]; if (EntryVal == 0) continue; // Already unavailable. // Mark as unavailable. EntryVal = 0; for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I) BBWorklist.push_back(*I); } return false; } /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are /// non-local by performing PHI construction. bool GVN::processNonLocalLoad(LoadInst *LI, SmallVectorImpl &toErase) { // Find the non-local dependencies of the load. SmallVector Deps; MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(), Deps); //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI); // If we had to process more than one hundred blocks to find the // dependencies, this load isn't worth worrying about. Optimizing // it will be too expensive. if (Deps.size() > 100) return false; // If we had a phi translation failure, we'll have a single entry which is a // clobber in the current block. Reject this early. if (Deps.size() == 1 && Deps[0].second.isClobber()) { DEBUG( DOUT << "GVN: non-local load "; WriteAsOperand(*DOUT.stream(), LI); DOUT << " is clobbered by " << *Deps[0].second.getInst(); ); return false; } // Filter out useless results (non-locals, etc). Keep track of the blocks // where we have a value available in repl, also keep track of whether we see // dependencies that produce an unknown value for the load (such as a call // that could potentially clobber the load). SmallVector, 16> ValuesPerBlock; SmallVector UnavailableBlocks; for (unsigned i = 0, e = Deps.size(); i != e; ++i) { BasicBlock *DepBB = Deps[i].first; MemDepResult DepInfo = Deps[i].second; if (DepInfo.isClobber()) { UnavailableBlocks.push_back(DepBB); continue; } Instruction *DepInst = DepInfo.getInst(); // Loading the allocation -> undef. if (isa(DepInst)) { ValuesPerBlock.push_back(std::make_pair(DepBB, Context->getUndef(LI->getType()))); continue; } if (StoreInst* S = dyn_cast(DepInst)) { // Reject loads and stores that are to the same address but are of // different types. // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because // of bitfield access, it would be interesting to optimize for it at some // point. if (S->getOperand(0)->getType() != LI->getType()) { UnavailableBlocks.push_back(DepBB); continue; } ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0))); } else if (LoadInst* LD = dyn_cast(DepInst)) { if (LD->getType() != LI->getType()) { UnavailableBlocks.push_back(DepBB); continue; } ValuesPerBlock.push_back(std::make_pair(DepBB, LD)); } else { UnavailableBlocks.push_back(DepBB); continue; } } // If we have no predecessors that produce a known value for this load, exit // early. if (ValuesPerBlock.empty()) return false; // If all of the instructions we depend on produce a known value for this // load, then it is fully redundant and we can use PHI insertion to compute // its value. Insert PHIs and remove the fully redundant value now. if (UnavailableBlocks.empty()) { // Use cached PHI construction information from previous runs SmallPtrSet &p = phiMap[LI->getPointerOperand()]; // FIXME: What does phiMap do? Are we positive it isn't getting invalidated? for (SmallPtrSet::iterator I = p.begin(), E = p.end(); I != E; ++I) { if ((*I)->getParent() == LI->getParent()) { DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI); LI->replaceAllUsesWith(*I); if (isa((*I)->getType())) MD->invalidateCachedPointerInfo(*I); toErase.push_back(LI); NumGVNLoad++; return true; } ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I)); } DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI); DenseMap BlockReplValues; BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end()); // Perform PHI construction. Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true); LI->replaceAllUsesWith(v); if (isa(v)) v->takeName(LI); if (isa(v->getType())) MD->invalidateCachedPointerInfo(v); toErase.push_back(LI); NumGVNLoad++; return true; } if (!EnablePRE || !EnableLoadPRE) return false; // Okay, we have *some* definitions of the value. This means that the value // is available in some of our (transitive) predecessors. Lets think about // doing PRE of this load. This will involve inserting a new load into the // predecessor when it's not available. We could do this in general, but // prefer to not increase code size. As such, we only do this when we know // that we only have to insert *one* load (which means we're basically moving // the load, not inserting a new one). SmallPtrSet Blockers; for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) Blockers.insert(UnavailableBlocks[i]); // Lets find first basic block with more than one predecessor. Walk backwards // through predecessors if needed. BasicBlock *LoadBB = LI->getParent(); BasicBlock *TmpBB = LoadBB; bool isSinglePred = false; bool allSingleSucc = true; while (TmpBB->getSinglePredecessor()) { isSinglePred = true; TmpBB = TmpBB->getSinglePredecessor(); if (!TmpBB) // If haven't found any, bail now. return false; if (TmpBB == LoadBB) // Infinite (unreachable) loop. return false; if (Blockers.count(TmpBB)) return false; if (TmpBB->getTerminator()->getNumSuccessors() != 1) allSingleSucc = false; } assert(TmpBB); LoadBB = TmpBB; // If we have a repl set with LI itself in it, this means we have a loop where // at least one of the values is LI. Since this means that we won't be able // to eliminate LI even if we insert uses in the other predecessors, we will // end up increasing code size. Reject this by scanning for LI. for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) if (ValuesPerBlock[i].second == LI) return false; if (isSinglePred) { bool isHot = false; for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) if (Instruction *I = dyn_cast(ValuesPerBlock[i].second)) // "Hot" Instruction is in some loop (because it dominates its dep. // instruction). if (DT->dominates(LI, I)) { isHot = true; break; } // We are interested only in "hot" instructions. We don't want to do any // mis-optimizations here. if (!isHot) return false; } // Okay, we have some hope :). Check to see if the loaded value is fully // available in all but one predecessor. // FIXME: If we could restructure the CFG, we could make a common pred with // all the preds that don't have an available LI and insert a new load into // that one block. BasicBlock *UnavailablePred = 0; DenseMap FullyAvailableBlocks; for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) FullyAvailableBlocks[ValuesPerBlock[i].first] = true; for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) FullyAvailableBlocks[UnavailableBlocks[i]] = false; for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; ++PI) { if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks)) continue; // If this load is not available in multiple predecessors, reject it. if (UnavailablePred && UnavailablePred != *PI) return false; UnavailablePred = *PI; } assert(UnavailablePred != 0 && "Fully available value should be eliminated above!"); // If the loaded pointer is PHI node defined in this block, do PHI translation // to get its value in the predecessor. Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred); // Make sure the value is live in the predecessor. If it was defined by a // non-PHI instruction in this block, we don't know how to recompute it above. if (Instruction *LPInst = dyn_cast(LoadPtr)) if (!DT->dominates(LPInst->getParent(), UnavailablePred)) { DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: " << *LPInst << *LI << "\n"); return false; } // We don't currently handle critical edges :( if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) { DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '" << UnavailablePred->getName() << "': " << *LI); return false; } // Make sure it is valid to move this load here. We have to watch out for: // @1 = getelementptr (i8* p, ... // test p and branch if == 0 // load @1 // It is valid to have the getelementptr before the test, even if p can be 0, // as getelementptr only does address arithmetic. // If we are not pushing the value through any multiple-successor blocks // we do not have this case. Otherwise, check that the load is safe to // put anywhere; this can be improved, but should be conservatively safe. if (!allSingleSucc && !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) return false; // Okay, we can eliminate this load by inserting a reload in the predecessor // and using PHI construction to get the value in the other predecessors, do // it. DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI); Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false, LI->getAlignment(), UnavailablePred->getTerminator()); SmallPtrSet &p = phiMap[LI->getPointerOperand()]; for (SmallPtrSet::iterator I = p.begin(), E = p.end(); I != E; ++I) ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I)); DenseMap BlockReplValues; BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end()); BlockReplValues[UnavailablePred] = NewLoad; // Perform PHI construction. Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true); LI->replaceAllUsesWith(v); if (isa(v)) v->takeName(LI); if (isa(v->getType())) MD->invalidateCachedPointerInfo(v); toErase.push_back(LI); NumPRELoad++; return true; } /// processLoad - Attempt to eliminate a load, first by eliminating it /// locally, and then attempting non-local elimination if that fails. bool GVN::processLoad(LoadInst *L, SmallVectorImpl &toErase) { if (L->isVolatile()) return false; Value* pointer = L->getPointerOperand(); // ... to a pointer that has been loaded from before... MemDepResult dep = MD->getDependency(L); // If the value isn't available, don't do anything! if (dep.isClobber()) { DEBUG( // fast print dep, using operator<< on instruction would be too slow DOUT << "GVN: load "; WriteAsOperand(*DOUT.stream(), L); Instruction *I = dep.getInst(); DOUT << " is clobbered by " << *I; ); return false; } // If it is defined in another block, try harder. if (dep.isNonLocal()) return processNonLocalLoad(L, toErase); Instruction *DepInst = dep.getInst(); if (StoreInst *DepSI = dyn_cast(DepInst)) { // Only forward substitute stores to loads of the same type. // FIXME: Could do better! if (DepSI->getPointerOperand()->getType() != pointer->getType()) return false; // Remove it! L->replaceAllUsesWith(DepSI->getOperand(0)); if (isa(DepSI->getOperand(0)->getType())) MD->invalidateCachedPointerInfo(DepSI->getOperand(0)); toErase.push_back(L); NumGVNLoad++; return true; } if (LoadInst *DepLI = dyn_cast(DepInst)) { // Only forward substitute stores to loads of the same type. // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian. if (DepLI->getType() != L->getType()) return false; // Remove it! L->replaceAllUsesWith(DepLI); if (isa(DepLI->getType())) MD->invalidateCachedPointerInfo(DepLI); toErase.push_back(L); NumGVNLoad++; return true; } // If this load really doesn't depend on anything, then we must be loading an // undef value. This can happen when loading for a fresh allocation with no // intervening stores, for example. if (isa(DepInst)) { L->replaceAllUsesWith(Context->getUndef(L->getType())); toErase.push_back(L); NumGVNLoad++; return true; } return false; } Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) { DenseMap::iterator I = localAvail.find(BB); if (I == localAvail.end()) return 0; ValueNumberScope* locals = I->second; while (locals) { DenseMap::iterator I = locals->table.find(num); if (I != locals->table.end()) return I->second; else locals = locals->parent; } return 0; } /// AttemptRedundancyElimination - If the "fast path" of redundancy elimination /// by inheritance from the dominator fails, see if we can perform phi /// construction to eliminate the redundancy. Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) { BasicBlock* BaseBlock = orig->getParent(); SmallPtrSet Visited; SmallVector Stack; Stack.push_back(BaseBlock); DenseMap Results; // Walk backwards through our predecessors, looking for instances of the // value number we're looking for. Instances are recorded in the Results // map, which is then used to perform phi construction. while (!Stack.empty()) { BasicBlock* Current = Stack.back(); Stack.pop_back(); // If we've walked all the way to a proper dominator, then give up. Cases // where the instance is in the dominator will have been caught by the fast // path, and any cases that require phi construction further than this are // probably not worth it anyways. Note that this is a SIGNIFICANT compile // time improvement. if (DT->properlyDominates(Current, orig->getParent())) return 0; DenseMap::iterator LA = localAvail.find(Current); if (LA == localAvail.end()) return 0; DenseMap::iterator V = LA->second->table.find(valno); if (V != LA->second->table.end()) { // Found an instance, record it. Results.insert(std::make_pair(Current, V->second)); continue; } // If we reach the beginning of the function, then give up. if (pred_begin(Current) == pred_end(Current)) return 0; for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current); PI != PE; ++PI) if (Visited.insert(*PI)) Stack.push_back(*PI); } // If we didn't find instances, give up. Otherwise, perform phi construction. if (Results.size() == 0) return 0; else return GetValueForBlock(BaseBlock, orig, Results, true); } /// processInstruction - When calculating availability, handle an instruction /// by inserting it into the appropriate sets bool GVN::processInstruction(Instruction *I, SmallVectorImpl &toErase) { if (LoadInst* L = dyn_cast(I)) { bool changed = processLoad(L, toErase); if (!changed) { unsigned num = VN.lookup_or_add(L); localAvail[I->getParent()]->table.insert(std::make_pair(num, L)); } return changed; } uint32_t nextNum = VN.getNextUnusedValueNumber(); unsigned num = VN.lookup_or_add(I); if (BranchInst* BI = dyn_cast(I)) { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); if (!BI->isConditional() || isa(BI->getCondition())) return false; Value* branchCond = BI->getCondition(); uint32_t condVN = VN.lookup_or_add(branchCond); BasicBlock* trueSucc = BI->getSuccessor(0); BasicBlock* falseSucc = BI->getSuccessor(1); if (trueSucc->getSinglePredecessor()) localAvail[trueSucc]->table[condVN] = Context->getConstantIntTrue(); if (falseSucc->getSinglePredecessor()) localAvail[falseSucc]->table[condVN] = Context->getConstantIntFalse(); return false; // Allocations are always uniquely numbered, so we can save time and memory // by fast failing them. } else if (isa(I) || isa(I)) { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); return false; } // Collapse PHI nodes if (PHINode* p = dyn_cast(I)) { Value* constVal = CollapsePhi(p); if (constVal) { for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end(); PI != PE; ++PI) PI->second.erase(p); p->replaceAllUsesWith(constVal); if (isa(constVal->getType())) MD->invalidateCachedPointerInfo(constVal); VN.erase(p); toErase.push_back(p); } else { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); } // If the number we were assigned was a brand new VN, then we don't // need to do a lookup to see if the number already exists // somewhere in the domtree: it can't! } else if (num == nextNum) { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); // Perform fast-path value-number based elimination of values inherited from // dominators. } else if (Value* repl = lookupNumber(I->getParent(), num)) { // Remove it! VN.erase(I); I->replaceAllUsesWith(repl); if (isa(repl->getType())) MD->invalidateCachedPointerInfo(repl); toErase.push_back(I); return true; #if 0 // Perform slow-pathvalue-number based elimination with phi construction. } else if (Value* repl = AttemptRedundancyElimination(I, num)) { // Remove it! VN.erase(I); I->replaceAllUsesWith(repl); if (isa(repl->getType())) MD->invalidateCachedPointerInfo(repl); toErase.push_back(I); return true; #endif } else { localAvail[I->getParent()]->table.insert(std::make_pair(num, I)); } return false; } /// runOnFunction - This is the main transformation entry point for a function. bool GVN::runOnFunction(Function& F) { MD = &getAnalysis(); DT = &getAnalysis(); VN.setAliasAnalysis(&getAnalysis()); VN.setMemDep(MD); VN.setDomTree(DT); bool changed = false; bool shouldContinue = true; // Merge unconditional branches, allowing PRE to catch more // optimization opportunities. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { BasicBlock* BB = FI; ++FI; bool removedBlock = MergeBlockIntoPredecessor(BB, this); if (removedBlock) NumGVNBlocks++; changed |= removedBlock; } unsigned Iteration = 0; while (shouldContinue) { DEBUG(cerr << "GVN iteration: " << Iteration << "\n"); shouldContinue = iterateOnFunction(F); changed |= shouldContinue; ++Iteration; } if (EnablePRE) { bool PREChanged = true; while (PREChanged) { PREChanged = performPRE(F); changed |= PREChanged; } } // FIXME: Should perform GVN again after PRE does something. PRE can move // computations into blocks where they become fully redundant. Note that // we can't do this until PRE's critical edge splitting updates memdep. // Actually, when this happens, we should just fully integrate PRE into GVN. cleanupGlobalSets(); return changed; } bool GVN::processBlock(BasicBlock* BB) { // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and // incrementing BI before processing an instruction). SmallVector toErase; bool changed_function = false; for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { changed_function |= processInstruction(BI, toErase); if (toErase.empty()) { ++BI; continue; } // If we need some instructions deleted, do it now. NumGVNInstr += toErase.size(); // Avoid iterator invalidation. bool AtStart = BI == BB->begin(); if (!AtStart) --BI; for (SmallVector::iterator I = toErase.begin(), E = toErase.end(); I != E; ++I) { DEBUG(cerr << "GVN removed: " << **I); MD->removeInstruction(*I); (*I)->eraseFromParent(); DEBUG(verifyRemoved(*I)); } toErase.clear(); if (AtStart) BI = BB->begin(); else ++BI; } return changed_function; } /// performPRE - Perform a purely local form of PRE that looks for diamond /// control flow patterns and attempts to perform simple PRE at the join point. bool GVN::performPRE(Function& F) { bool Changed = false; SmallVector, 4> toSplit; DenseMap predMap; for (df_iterator DI = df_begin(&F.getEntryBlock()), DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { BasicBlock* CurrentBlock = *DI; // Nothing to PRE in the entry block. if (CurrentBlock == &F.getEntryBlock()) continue; for (BasicBlock::iterator BI = CurrentBlock->begin(), BE = CurrentBlock->end(); BI != BE; ) { Instruction *CurInst = BI++; if (isa(CurInst) || isa(CurInst) || isa(CurInst) || (CurInst->getType() == Type::VoidTy) || CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || isa(CurInst)) continue; uint32_t valno = VN.lookup(CurInst); // Look for the predecessors for PRE opportunities. We're // only trying to solve the basic diamond case, where // a value is computed in the successor and one predecessor, // but not the other. We also explicitly disallow cases // where the successor is its own predecessor, because they're // more complicated to get right. unsigned numWith = 0; unsigned numWithout = 0; BasicBlock* PREPred = 0; predMap.clear(); for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock); PI != PE; ++PI) { // We're not interested in PRE where the block is its // own predecessor, on in blocks with predecessors // that are not reachable. if (*PI == CurrentBlock) { numWithout = 2; break; } else if (!localAvail.count(*PI)) { numWithout = 2; break; } DenseMap::iterator predV = localAvail[*PI]->table.find(valno); if (predV == localAvail[*PI]->table.end()) { PREPred = *PI; numWithout++; } else if (predV->second == CurInst) { numWithout = 2; } else { predMap[*PI] = predV->second; numWith++; } } // Don't do PRE when it might increase code size, i.e. when // we would need to insert instructions in more than one pred. if (numWithout != 1 || numWith == 0) continue; // We can't do PRE safely on a critical edge, so instead we schedule // the edge to be split and perform the PRE the next time we iterate // on the function. unsigned succNum = 0; for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors(); i != e; ++i) if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) { succNum = i; break; } if (isCriticalEdge(PREPred->getTerminator(), succNum)) { toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum)); continue; } // Instantiate the expression the in predecessor that lacked it. // Because we are going top-down through the block, all value numbers // will be available in the predecessor by the time we need them. Any // that weren't original present will have been instantiated earlier // in this loop. Instruction* PREInstr = CurInst->clone(*Context); bool success = true; for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) { Value *Op = PREInstr->getOperand(i); if (isa(Op) || isa(Op) || isa(Op)) continue; if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) { PREInstr->setOperand(i, V); } else { success = false; break; } } // Fail out if we encounter an operand that is not available in // the PRE predecessor. This is typically because of loads which // are not value numbered precisely. if (!success) { delete PREInstr; DEBUG(verifyRemoved(PREInstr)); continue; } PREInstr->insertBefore(PREPred->getTerminator()); PREInstr->setName(CurInst->getName() + ".pre"); predMap[PREPred] = PREInstr; VN.add(PREInstr, valno); NumGVNPRE++; // Update the availability map to include the new instruction. localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr)); // Create a PHI to make the value available in this block. PHINode* Phi = PHINode::Create(CurInst->getType(), CurInst->getName() + ".pre-phi", CurrentBlock->begin()); for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock); PI != PE; ++PI) Phi->addIncoming(predMap[*PI], *PI); VN.add(Phi, valno); localAvail[CurrentBlock]->table[valno] = Phi; CurInst->replaceAllUsesWith(Phi); if (isa(Phi->getType())) MD->invalidateCachedPointerInfo(Phi); VN.erase(CurInst); DEBUG(cerr << "GVN PRE removed: " << *CurInst); MD->removeInstruction(CurInst); CurInst->eraseFromParent(); DEBUG(verifyRemoved(CurInst)); Changed = true; } } for (SmallVector, 4>::iterator I = toSplit.begin(), E = toSplit.end(); I != E; ++I) SplitCriticalEdge(I->first, I->second, this); return Changed || toSplit.size(); } /// iterateOnFunction - Executes one iteration of GVN bool GVN::iterateOnFunction(Function &F) { cleanupGlobalSets(); for (df_iterator DI = df_begin(DT->getRootNode()), DE = df_end(DT->getRootNode()); DI != DE; ++DI) { if (DI->getIDom()) localAvail[DI->getBlock()] = new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]); else localAvail[DI->getBlock()] = new ValueNumberScope(0); } // Top-down walk of the dominator tree bool changed = false; #if 0 // Needed for value numbering with phi construction to work. ReversePostOrderTraversal RPOT(&F); for (ReversePostOrderTraversal::rpo_iterator RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) changed |= processBlock(*RI); #else for (df_iterator DI = df_begin(DT->getRootNode()), DE = df_end(DT->getRootNode()); DI != DE; ++DI) changed |= processBlock(DI->getBlock()); #endif return changed; } void GVN::cleanupGlobalSets() { VN.clear(); phiMap.clear(); for (DenseMap::iterator I = localAvail.begin(), E = localAvail.end(); I != E; ++I) delete I->second; localAvail.clear(); } /// verifyRemoved - Verify that the specified instruction does not occur in our /// internal data structures. void GVN::verifyRemoved(const Instruction *Inst) const { VN.verifyRemoved(Inst); // Walk through the PHI map to make sure the instruction isn't hiding in there // somewhere. for (PhiMapType::iterator I = phiMap.begin(), E = phiMap.end(); I != E; ++I) { assert(I->first != Inst && "Inst is still a key in PHI map!"); for (SmallPtrSet::iterator II = I->second.begin(), IE = I->second.end(); II != IE; ++II) { assert(*II != Inst && "Inst is still a value in PHI map!"); } } // Walk through the value number scope to make sure the instruction isn't // ferreted away in it. for (DenseMap::iterator I = localAvail.begin(), E = localAvail.end(); I != E; ++I) { const ValueNumberScope *VNS = I->second; while (VNS) { for (DenseMap::iterator II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) { assert(II->second != Inst && "Inst still in value numbering scope!"); } VNS = VNS->parent; } } }