//===-- llvm/Support/CFG.h - Process LLVM structures as graphs --*- C++ -*-===// // // This file defines specializations of GraphTraits that allow Function and // BasicBlock graphs to be treated as proper graphs for generic algorithms. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CFG_H #define LLVM_SUPPORT_CFG_H #include "Support/GraphTraits.h" #include "llvm/Function.h" #include "llvm/InstrTypes.h" #include "Support/iterator" //===--------------------------------------------------------------------===// // BasicBlock pred_iterator definition //===--------------------------------------------------------------------===// template // Predecessor Iterator class PredIterator : public bidirectional_iterator<_Ptr, ptrdiff_t> { typedef bidirectional_iterator<_Ptr, ptrdiff_t> super; _Ptr *BB; _USE_iterator It; public: typedef PredIterator<_Ptr,_USE_iterator> _Self; typedef typename super::pointer pointer; inline void advancePastConstants() { // Loop to ignore non terminator uses (for example PHI nodes)... while (It != BB->use_end() && !isa(*It)) ++It; } inline PredIterator(_Ptr *bb) : BB(bb), It(bb->use_begin()) { advancePastConstants(); } inline PredIterator(_Ptr *bb, bool) : BB(bb), It(bb->use_end()) {} inline bool operator==(const _Self& x) const { return It == x.It; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { assert(It != BB->use_end() && "pred_iterator out of range!"); return cast(*It)->getParent(); } inline pointer *operator->() const { return &(operator*()); } inline _Self& operator++() { // Preincrement assert(It != BB->use_end() && "pred_iterator out of range!"); ++It; advancePastConstants(); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --It; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; typedef PredIterator pred_iterator; typedef PredIterator pred_const_iterator; inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); } inline pred_const_iterator pred_begin(const BasicBlock *BB) { return pred_const_iterator(BB); } inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);} inline pred_const_iterator pred_end(const BasicBlock *BB) { return pred_const_iterator(BB, true); } //===--------------------------------------------------------------------===// // BasicBlock succ_iterator definition //===--------------------------------------------------------------------===// template // Successor Iterator class SuccIterator : public bidirectional_iterator<_BB, ptrdiff_t> { const _Term Term; unsigned idx; typedef bidirectional_iterator<_BB, ptrdiff_t> super; public: typedef SuccIterator<_Term, _BB> _Self; typedef typename super::pointer pointer; // TODO: This can be random access iterator, need operator+ and stuff tho inline SuccIterator(_Term T) : Term(T), idx(0) { // begin iterator assert(T && "getTerminator returned null!"); } inline SuccIterator(_Term T, bool) // end iterator : Term(T), idx(Term->getNumSuccessors()) { assert(T && "getTerminator returned null!"); } inline const _Self &operator=(const _Self &I) { assert(Term == I.Term &&"Cannot assign iterators to two different blocks!"); idx = I.idx; return *this; } inline bool operator==(const _Self& x) const { return idx == x.idx; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return Term->getSuccessor(idx); } inline pointer operator->() const { return operator*(); } inline _Self& operator++() { ++idx; return *this; } // Preincrement inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --idx; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; typedef SuccIterator succ_iterator; typedef SuccIterator succ_const_iterator; inline succ_iterator succ_begin(BasicBlock *BB) { return succ_iterator(BB->getTerminator()); } inline succ_const_iterator succ_begin(const BasicBlock *BB) { return succ_const_iterator(BB->getTerminator()); } inline succ_iterator succ_end(BasicBlock *BB) { return succ_iterator(BB->getTerminator(), true); } inline succ_const_iterator succ_end(const BasicBlock *BB) { return succ_const_iterator(BB->getTerminator(), true); } //===--------------------------------------------------------------------===// // GraphTraits specializations for basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... template <> struct GraphTraits { typedef BasicBlock NodeType; typedef succ_iterator ChildIteratorType; static NodeType *getEntryNode(BasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return succ_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return succ_end(N); } }; template <> struct GraphTraits { typedef const BasicBlock NodeType; typedef succ_const_iterator ChildIteratorType; static NodeType *getEntryNode(const BasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return succ_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return succ_end(N); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits > { typedef BasicBlock NodeType; typedef pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return pred_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return pred_end(N); } }; template <> struct GraphTraits > { typedef const BasicBlock NodeType; typedef pred_const_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return pred_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return pred_end(N); } }; //===--------------------------------------------------------------------===// // GraphTraits specializations for function basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... these are the same as the basic block iterators, // except that the root node is implicitly the first node of the function. // template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef Function::iterator nodes_iterator; static nodes_iterator nodes_begin(Function *F) { return F->begin(); } static nodes_iterator nodes_end (Function *F) { return F->end(); } }; template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();} // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef Function::const_iterator nodes_iterator; static nodes_iterator nodes_begin(const Function *F) { return F->begin(); } static nodes_iterator nodes_end (const Function *F) { return F->end(); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits > : public GraphTraits > { static NodeType *getEntryNode(Inverse G) { return &G.Graph->getEntryBlock(); } }; template <> struct GraphTraits > : public GraphTraits > { static NodeType *getEntryNode(Inverse G) { return &G.Graph->getEntryBlock(); } }; #endif