//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declarations of classes that represent "derived // types". These are things like "arrays of x" or "structure of x, y, z" or // "method returning x taking (y,z) as parameters", etc... // // The implementations of these classes live in the Type.cpp file. // //===----------------------------------------------------------------------===// #ifndef LLVM_DERIVED_TYPES_H #define LLVM_DERIVED_TYPES_H #include "llvm/Type.h" namespace llvm { class Value; template class TypeMap; class FunctionValType; class ArrayValType; class StructValType; class PointerValType; class VectorValType; class IntegerValType; class APInt; class ParamAttrsList; class DerivedType : public Type { friend class Type; protected: explicit DerivedType(TypeID id) : Type(id) {} /// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type /// that the current type has transitioned from being abstract to being /// concrete. /// void notifyUsesThatTypeBecameConcrete(); /// dropAllTypeUses - When this (abstract) type is resolved to be equal to /// another (more concrete) type, we must eliminate all references to other /// types, to avoid some circular reference problems. /// void dropAllTypeUses(); public: //===--------------------------------------------------------------------===// // Abstract Type handling methods - These types have special lifetimes, which // are managed by (add|remove)AbstractTypeUser. See comments in // AbstractTypeUser.h for more information. /// refineAbstractTypeTo - This function is used to when it is discovered that /// the 'this' abstract type is actually equivalent to the NewType specified. /// This causes all users of 'this' to switch to reference the more concrete /// type NewType and for 'this' to be deleted. /// void refineAbstractTypeTo(const Type *NewType); void dump() const { Type::dump(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const DerivedType *T) { return true; } static inline bool classof(const Type *T) { return T->isDerivedType(); } }; /// Class to represent integer types. Note that this class is also used to /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and /// Int64Ty. /// @brief Integer representation type class IntegerType : public DerivedType { protected: explicit IntegerType(unsigned NumBits) : DerivedType(IntegerTyID) { setSubclassData(NumBits); } friend class TypeMap; public: /// This enum is just used to hold constants we need for IntegerType. enum { MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified ///< Note that bit width is stored in the Type classes SubclassData field ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits. }; /// This static method is the primary way of constructing an IntegerType. /// If an IntegerType with the same NumBits value was previously instantiated, /// that instance will be returned. Otherwise a new one will be created. Only /// one instance with a given NumBits value is ever created. /// @brief Get or create an IntegerType instance. static const IntegerType* get(unsigned NumBits); /// @brief Get the number of bits in this IntegerType unsigned getBitWidth() const { return getSubclassData(); } /// getBitMask - Return a bitmask with ones set for all of the bits /// that can be set by an unsigned version of this type. This is 0xFF for /// sbyte/ubyte, 0xFFFF for shorts, etc. uint64_t getBitMask() const { return ~uint64_t(0UL) >> (64-getBitWidth()); } /// getSignBit - Return a uint64_t with just the most significant bit set (the /// sign bit, if the value is treated as a signed number). uint64_t getSignBit() const { return 1ULL << (getBitWidth()-1); } /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. /// @returns a bit mask with ones set for all the bits of this type. /// @brief Get a bit mask for this type. APInt getMask() const; /// This method determines if the width of this IntegerType is a power-of-2 /// in terms of 8 bit bytes. /// @returns true if this is a power-of-2 byte width. /// @brief Is this a power-of-2 byte-width IntegerType ? bool isPowerOf2ByteWidth() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const IntegerType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == IntegerTyID; } }; /// FunctionType - Class to represent function types /// class FunctionType : public DerivedType { friend class TypeMap; bool isVarArgs; ParamAttrsList *ParamAttrs; FunctionType(const FunctionType &); // Do not implement const FunctionType &operator=(const FunctionType &); // Do not implement FunctionType(const Type *Result, const std::vector &Params, bool IsVarArgs, ParamAttrsList *Attrs = 0); public: virtual ~FunctionType(); /// FunctionType::get - This static method is the primary way of constructing /// a FunctionType. /// static FunctionType *get( const Type *Result, ///< The result type const std::vector &Params, ///< The types of the parameters bool isVarArg, ///< Whether this is a variable argument length function ParamAttrsList *Attrs = 0 ///< Indicates the parameter attributes to use, if any. The 0th entry ///< in the list refers to the return type. Parameters are numbered ///< starting at 1. This argument must be on the heap and FunctionType ///< owns it after its passed here. ); inline bool isVarArg() const { return isVarArgs; } inline const Type *getReturnType() const { return ContainedTys[0]; } typedef Type::subtype_iterator param_iterator; param_iterator param_begin() const { return ContainedTys + 1; } param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } // Parameter type accessors... const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } /// getNumParams - Return the number of fixed parameters this function type /// requires. This does not consider varargs. /// unsigned getNumParams() const { return NumContainedTys - 1; } bool isStructReturn() const; /// The parameter attributes for the \p ith parameter are returned. The 0th /// parameter refers to the return type of the function. /// @returns The ParameterAttributes for the \p ith parameter. /// @brief Get the attributes for a parameter const ParamAttrsList *getParamAttrs() const { return ParamAttrs; } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FunctionType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == FunctionTyID; } }; /// CompositeType - Common super class of ArrayType, StructType, PointerType /// and VectorType class CompositeType : public DerivedType { protected: inline explicit CompositeType(TypeID id) : DerivedType(id) { } public: /// getTypeAtIndex - Given an index value into the type, return the type of /// the element. /// virtual const Type *getTypeAtIndex(const Value *V) const = 0; virtual bool indexValid(const Value *V) const = 0; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const CompositeType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID || T->getTypeID() == StructTyID || T->getTypeID() == PointerTyID || T->getTypeID() == VectorTyID; } }; /// StructType - Class to represent struct types /// class StructType : public CompositeType { friend class TypeMap; StructType(const StructType &); // Do not implement const StructType &operator=(const StructType &); // Do not implement StructType(const std::vector &Types, bool isPacked); public: /// StructType::get - This static method is the primary way to create a /// StructType. /// static StructType *get(const std::vector &Params, bool isPacked=false); // Iterator access to the elements typedef Type::subtype_iterator element_iterator; element_iterator element_begin() const { return ContainedTys; } element_iterator element_end() const { return &ContainedTys[NumContainedTys];} // Random access to the elements unsigned getNumElements() const { return NumContainedTys; } const Type *getElementType(unsigned N) const { assert(N < NumContainedTys && "Element number out of range!"); return ContainedTys[N]; } /// getTypeAtIndex - Given an index value into the type, return the type of /// the element. For a structure type, this must be a constant value... /// virtual const Type *getTypeAtIndex(const Value *V) const ; virtual bool indexValid(const Value *V) const; // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const StructType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == StructTyID; } bool isPacked() const { return getSubclassData(); } }; /// SequentialType - This is the superclass of the array, pointer and packed /// type classes. All of these represent "arrays" in memory. The array type /// represents a specifically sized array, pointer types are unsized/unknown /// size arrays, vector types represent specifically sized arrays that /// allow for use of SIMD instructions. SequentialType holds the common /// features of all, which stem from the fact that all three lay their /// components out in memory identically. /// class SequentialType : public CompositeType { PATypeHandle ContainedType; ///< Storage for the single contained type SequentialType(const SequentialType &); // Do not implement! const SequentialType &operator=(const SequentialType &); // Do not implement! protected: SequentialType(TypeID TID, const Type *ElType) : CompositeType(TID), ContainedType(ElType, this) { ContainedTys = &ContainedType; NumContainedTys = 1; } public: inline const Type *getElementType() const { return ContainedTys[0]; } virtual bool indexValid(const Value *V) const; /// getTypeAtIndex - Given an index value into the type, return the type of /// the element. For sequential types, there is only one subtype... /// virtual const Type *getTypeAtIndex(const Value *V) const { return ContainedTys[0]; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SequentialType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID || T->getTypeID() == PointerTyID || T->getTypeID() == VectorTyID; } }; /// ArrayType - Class to represent array types /// class ArrayType : public SequentialType { friend class TypeMap; uint64_t NumElements; ArrayType(const ArrayType &); // Do not implement const ArrayType &operator=(const ArrayType &); // Do not implement ArrayType(const Type *ElType, uint64_t NumEl); public: /// ArrayType::get - This static method is the primary way to construct an /// ArrayType /// static ArrayType *get(const Type *ElementType, uint64_t NumElements); inline uint64_t getNumElements() const { return NumElements; } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ArrayType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == ArrayTyID; } }; /// VectorType - Class to represent vector types /// class VectorType : public SequentialType { friend class TypeMap; unsigned NumElements; VectorType(const VectorType &); // Do not implement const VectorType &operator=(const VectorType &); // Do not implement VectorType(const Type *ElType, unsigned NumEl); public: /// VectorType::get - This static method is the primary way to construct an /// VectorType /// static VectorType *get(const Type *ElementType, unsigned NumElements); /// @brief Return the number of elements in the Vector type. inline unsigned getNumElements() const { return NumElements; } /// @brief Return the number of bits in the Vector type. inline unsigned getBitWidth() const { return NumElements *getElementType()->getPrimitiveSizeInBits(); } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const VectorType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == VectorTyID; } }; /// PointerType - Class to represent pointers /// class PointerType : public SequentialType { friend class TypeMap; PointerType(const PointerType &); // Do not implement const PointerType &operator=(const PointerType &); // Do not implement explicit PointerType(const Type *ElType); public: /// PointerType::get - This is the only way to construct a new pointer type. static PointerType *get(const Type *ElementType); // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Implement support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const PointerType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == PointerTyID; } }; /// OpaqueType - Class to represent abstract types /// class OpaqueType : public DerivedType { OpaqueType(const OpaqueType &); // DO NOT IMPLEMENT const OpaqueType &operator=(const OpaqueType &); // DO NOT IMPLEMENT OpaqueType(); public: /// OpaqueType::get - Static factory method for the OpaqueType class... /// static OpaqueType *get() { return new OpaqueType(); // All opaque types are distinct } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { abort(); // FIXME: this is not really an AbstractTypeUser! } virtual void typeBecameConcrete(const DerivedType *AbsTy) { abort(); // FIXME: this is not really an AbstractTypeUser! } // Implement support for type inquiry through isa, cast, and dyn_cast: static inline bool classof(const OpaqueType *T) { return true; } static inline bool classof(const Type *T) { return T->getTypeID() == OpaqueTyID; } }; } // End llvm namespace #endif