//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LowerSwitch transformation rewrites switch instructions with a sequence // of branches, which allows targets to get away with not implementing the // switch instruction until it is convenient. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include using namespace llvm; #define DEBUG_TYPE "lower-switch" namespace { struct IntRange { int64_t Low, High; }; // Return true iff R is covered by Ranges. static bool IsInRanges(const IntRange &R, const std::vector &Ranges) { // Note: Ranges must be sorted, non-overlapping and non-adjacent. // Find the first range whose High field is >= R.High, // then check if the Low field is <= R.Low. If so, we // have a Range that covers R. auto I = std::lower_bound( Ranges.begin(), Ranges.end(), R, [](const IntRange &A, const IntRange &B) { return A.High < B.High; }); return I != Ranges.end() && I->Low <= R.Low; } /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch /// instructions. class LowerSwitch : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid LowerSwitch() : FunctionPass(ID) { initializeLowerSwitchPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { // This is a cluster of orthogonal Transforms AU.addPreserved(); AU.addPreservedID(LowerInvokePassID); } struct CaseRange { ConstantInt* Low; ConstantInt* High; BasicBlock* BB; CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) : Low(low), High(high), BB(bb) {} }; typedef std::vector CaseVector; typedef std::vector::iterator CaseItr; private: void processSwitchInst(SwitchInst *SI); BasicBlock *switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, ConstantInt *UpperBound, Value *Val, BasicBlock *Predecessor, BasicBlock *OrigBlock, BasicBlock *Default, const std::vector &UnreachableRanges); BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock, BasicBlock *Default); unsigned Clusterify(CaseVector &Cases, SwitchInst *SI); }; /// The comparison function for sorting the switch case values in the vector. /// WARNING: Case ranges should be disjoint! struct CaseCmp { bool operator () (const LowerSwitch::CaseRange& C1, const LowerSwitch::CaseRange& C2) { const ConstantInt* CI1 = cast(C1.Low); const ConstantInt* CI2 = cast(C2.High); return CI1->getValue().slt(CI2->getValue()); } }; } char LowerSwitch::ID = 0; INITIALIZE_PASS(LowerSwitch, "lowerswitch", "Lower SwitchInst's to branches", false, false) // Publicly exposed interface to pass... char &llvm::LowerSwitchID = LowerSwitch::ID; // createLowerSwitchPass - Interface to this file... FunctionPass *llvm::createLowerSwitchPass() { return new LowerSwitch(); } bool LowerSwitch::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks if (SwitchInst *SI = dyn_cast(Cur->getTerminator())) { Changed = true; processSwitchInst(SI); } } return Changed; } // operator<< - Used for debugging purposes. // static raw_ostream& operator<<(raw_ostream &O, const LowerSwitch::CaseVector &C) LLVM_ATTRIBUTE_USED; static raw_ostream& operator<<(raw_ostream &O, const LowerSwitch::CaseVector &C) { O << "["; for (LowerSwitch::CaseVector::const_iterator B = C.begin(), E = C.end(); B != E; ) { O << *B->Low << " -" << *B->High; if (++B != E) O << ", "; } return O << "]"; } // \brief Update the first occurrence of the "switch statement" BB in the PHI // node with the "new" BB. The other occurrences will: // // 1) Be updated by subsequent calls to this function. Switch statements may // have more than one outcoming edge into the same BB if they all have the same // value. When the switch statement is converted these incoming edges are now // coming from multiple BBs. // 2) Removed if subsequent incoming values now share the same case, i.e., // multiple outcome edges are condensed into one. This is necessary to keep the // number of phi values equal to the number of branches to SuccBB. static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, unsigned NumMergedCases) { for (BasicBlock::iterator I = SuccBB->begin(), IE = SuccBB->getFirstNonPHI(); I != IE; ++I) { PHINode *PN = cast(I); // Only update the first occurence. unsigned Idx = 0, E = PN->getNumIncomingValues(); unsigned LocalNumMergedCases = NumMergedCases; for (; Idx != E; ++Idx) { if (PN->getIncomingBlock(Idx) == OrigBB) { PN->setIncomingBlock(Idx, NewBB); break; } } // Remove additional occurences coming from condensed cases and keep the // number of incoming values equal to the number of branches to SuccBB. SmallVector Indices; for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) if (PN->getIncomingBlock(Idx) == OrigBB) { Indices.push_back(Idx); LocalNumMergedCases--; } // Remove incoming values in the reverse order to prevent invalidating // *successive* index. for (auto III = Indices.rbegin(), IIE = Indices.rend(); III != IIE; ++III) PN->removeIncomingValue(*III); } } // switchConvert - Convert the switch statement into a binary lookup of // the case values. The function recursively builds this tree. // LowerBound and UpperBound are used to keep track of the bounds for Val // that have already been checked by a block emitted by one of the previous // calls to switchConvert in the call stack. BasicBlock * LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, ConstantInt *UpperBound, Value *Val, BasicBlock *Predecessor, BasicBlock *OrigBlock, BasicBlock *Default, const std::vector &UnreachableRanges) { unsigned Size = End - Begin; if (Size == 1) { // Check if the Case Range is perfectly squeezed in between // already checked Upper and Lower bounds. If it is then we can avoid // emitting the code that checks if the value actually falls in the range // because the bounds already tell us so. if (Begin->Low == LowerBound && Begin->High == UpperBound) { unsigned NumMergedCases = 0; if (LowerBound && UpperBound) NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue(); fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); return Begin->BB; } return newLeafBlock(*Begin, Val, OrigBlock, Default); } unsigned Mid = Size / 2; std::vector LHS(Begin, Begin + Mid); DEBUG(dbgs() << "LHS: " << LHS << "\n"); std::vector RHS(Begin + Mid, End); DEBUG(dbgs() << "RHS: " << RHS << "\n"); CaseRange &Pivot = *(Begin + Mid); DEBUG(dbgs() << "Pivot ==> " << Pivot.Low->getValue() << " -" << Pivot.High->getValue() << "\n"); // NewLowerBound here should never be the integer minimal value. // This is because it is computed from a case range that is never // the smallest, so there is always a case range that has at least // a smaller value. ConstantInt *NewLowerBound = Pivot.Low; // Because NewLowerBound is never the smallest representable integer // it is safe here to subtract one. ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), NewLowerBound->getValue() - 1); if (!UnreachableRanges.empty()) { // Check if the gap between LHS's highest and NewLowerBound is unreachable. int64_t GapLow = LHS.back().High->getSExtValue() + 1; int64_t GapHigh = NewLowerBound->getSExtValue() - 1; IntRange Gap = { GapLow, GapHigh }; if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) NewUpperBound = LHS.back().High; } DEBUG(dbgs() << "LHS Bounds ==> "; if (LowerBound) { dbgs() << LowerBound->getSExtValue(); } else { dbgs() << "NONE"; } dbgs() << " - " << NewUpperBound->getSExtValue() << "\n"; dbgs() << "RHS Bounds ==> "; dbgs() << NewLowerBound->getSExtValue() << " - "; if (UpperBound) { dbgs() << UpperBound->getSExtValue() << "\n"; } else { dbgs() << "NONE\n"; }); // Create a new node that checks if the value is < pivot. Go to the // left branch if it is and right branch if not. Function* F = OrigBlock->getParent(); BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot"); BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, NewNode, OrigBlock, Default, UnreachableRanges); BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, NewNode, OrigBlock, Default, UnreachableRanges); Function::iterator FI = OrigBlock; F->getBasicBlockList().insert(++FI, NewNode); NewNode->getInstList().push_back(Comp); BranchInst::Create(LBranch, RBranch, Comp, NewNode); return NewNode; } // newLeafBlock - Create a new leaf block for the binary lookup tree. It // checks if the switch's value == the case's value. If not, then it // jumps to the default branch. At this point in the tree, the value // can't be another valid case value, so the jump to the "default" branch // is warranted. // BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default) { Function* F = OrigBlock->getParent(); BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); Function::iterator FI = OrigBlock; F->getBasicBlockList().insert(++FI, NewLeaf); // Emit comparison ICmpInst* Comp = nullptr; if (Leaf.Low == Leaf.High) { // Make the seteq instruction... Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); } else { // Make range comparison if (Leaf.Low->isMinValue(true /*isSigned*/)) { // Val >= Min && Val <= Hi --> Val <= Hi Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, "SwitchLeaf"); } else if (Leaf.Low->isZero()) { // Val >= 0 && Val <= Hi --> Val <=u Hi Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, "SwitchLeaf"); } else { // Emit V-Lo <=u Hi-Lo Constant* NegLo = ConstantExpr::getNeg(Leaf.Low); Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo, Val->getName()+".off", NewLeaf); Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, "SwitchLeaf"); } } // Make the conditional branch... BasicBlock* Succ = Leaf.BB; BranchInst::Create(Succ, Default, Comp, NewLeaf); // If there were any PHI nodes in this successor, rewrite one entry // from OrigBlock to come from NewLeaf. for (BasicBlock::iterator I = Succ->begin(); isa(I); ++I) { PHINode* PN = cast(I); // Remove all but one incoming entries from the cluster uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue(); for (uint64_t j = 0; j < Range; ++j) { PN->removeIncomingValue(OrigBlock); } int BlockIdx = PN->getBasicBlockIndex(OrigBlock); assert(BlockIdx != -1 && "Switch didn't go to this successor??"); PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); } return NewLeaf; } // Clusterify - Transform simple list of Cases into list of CaseRange's unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) { unsigned numCmps = 0; // Start with "simple" cases for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(), i.getCaseSuccessor())); std::sort(Cases.begin(), Cases.end(), CaseCmp()); // Merge case into clusters if (Cases.size()>=2) for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); J != Cases.end();) { int64_t nextValue = J->Low->getSExtValue(); int64_t currentValue = I->High->getSExtValue(); BasicBlock* nextBB = J->BB; BasicBlock* currentBB = I->BB; // If the two neighboring cases go to the same destination, merge them // into a single case. if ((nextValue-currentValue==1) && (currentBB == nextBB)) { I->High = J->High; J = Cases.erase(J); } else { I = J++; } } for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { if (I->Low != I->High) // A range counts double, since it requires two compares. ++numCmps; } return numCmps; } // processSwitchInst - Replace the specified switch instruction with a sequence // of chained if-then insts in a balanced binary search. // void LowerSwitch::processSwitchInst(SwitchInst *SI) { BasicBlock *CurBlock = SI->getParent(); BasicBlock *OrigBlock = CurBlock; Function *F = CurBlock->getParent(); Value *Val = SI->getCondition(); // The value we are switching on... BasicBlock* Default = SI->getDefaultDest(); // If there is only the default destination, just branch. if (!SI->getNumCases()) { BranchInst::Create(Default, CurBlock); SI->eraseFromParent(); return; } // Prepare cases vector. CaseVector Cases; unsigned numCmps = Clusterify(Cases, SI); DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() << ". Total compares: " << numCmps << "\n"); DEBUG(dbgs() << "Cases: " << Cases << "\n"); (void)numCmps; ConstantInt *LowerBound = nullptr; ConstantInt *UpperBound = nullptr; std::vector UnreachableRanges; if (isa(Default->getFirstNonPHIOrDbg())) { // Make the bounds tightly fitted around the case value range, becase we // know that the value passed to the switch must be exactly one of the case // values. assert(!Cases.empty()); LowerBound = Cases.front().Low; UpperBound = Cases.back().High; DenseMap Popularity; unsigned MaxPop = 0; BasicBlock *PopSucc = nullptr; IntRange R = { INT64_MIN, INT64_MAX }; UnreachableRanges.push_back(R); for (const auto &I : Cases) { int64_t Low = I.Low->getSExtValue(); int64_t High = I.High->getSExtValue(); IntRange &LastRange = UnreachableRanges.back(); if (LastRange.Low == Low) { // There is nothing left of the previous range. UnreachableRanges.pop_back(); } else { // Terminate the previous range. assert(Low > LastRange.Low); LastRange.High = Low - 1; } if (High != INT64_MAX) { IntRange R = { High + 1, INT64_MAX }; UnreachableRanges.push_back(R); } // Count popularity. int64_t N = High - Low + 1; unsigned &Pop = Popularity[I.BB]; if ((Pop += N) > MaxPop) { MaxPop = Pop; PopSucc = I.BB; } } #ifndef NDEBUG /* UnreachableRanges should be sorted and the ranges non-adjacent. */ for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); I != E; ++I) { assert(I->Low <= I->High); auto Next = I + 1; if (Next != E) { assert(Next->Low > I->High); } } #endif // Use the most popular block as the new default, reducing the number of // cases. assert(MaxPop > 0 && PopSucc); Default = PopSucc; for (CaseItr I = Cases.begin(); I != Cases.end();) { if (I->BB == PopSucc) I = Cases.erase(I); else ++I; } // If there are no cases left, just branch. if (Cases.empty()) { BranchInst::Create(Default, CurBlock); SI->eraseFromParent(); return; } } // Create a new, empty default block so that the new hierarchy of // if-then statements go to this and the PHI nodes are happy. BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); F->getBasicBlockList().insert(Default, NewDefault); BranchInst::Create(Default, NewDefault); // If there is an entry in any PHI nodes for the default edge, make sure // to update them as well. for (BasicBlock::iterator I = Default->begin(); isa(I); ++I) { PHINode *PN = cast(I); int BlockIdx = PN->getBasicBlockIndex(OrigBlock); assert(BlockIdx != -1 && "Switch didn't go to this successor??"); PN->setIncomingBlock((unsigned)BlockIdx, NewDefault); } BasicBlock *SwitchBlock = switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, OrigBlock, OrigBlock, NewDefault, UnreachableRanges); // Branch to our shiny new if-then stuff... BranchInst::Create(SwitchBlock, OrigBlock); // We are now done with the switch instruction, delete it. BasicBlock *OldDefault = SI->getDefaultDest(); CurBlock->getInstList().erase(SI); // If the Default block has no more predecessors just remove it. if (pred_begin(OldDefault) == pred_end(OldDefault)) DeleteDeadBlock(OldDefault); }