//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Custom DAG lowering for SI // //===----------------------------------------------------------------------===// #ifdef _MSC_VER // Provide M_PI. #define _USE_MATH_DEFINES #include #endif #include "SIISelLowering.h" #include "AMDGPU.h" #include "AMDGPUIntrinsicInfo.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/IR/Function.h" #include "llvm/ADT/SmallString.h" using namespace llvm; SITargetLowering::SITargetLowering(TargetMachine &TM) : AMDGPUTargetLowering(TM) { addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass); addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass); addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass); addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass); addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass); addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); computeRegisterProperties(); // Condition Codes setCondCodeAction(ISD::SETONE, MVT::f32, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETUGE, MVT::f32, Expand); setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); setCondCodeAction(ISD::SETULE, MVT::f32, Expand); setCondCodeAction(ISD::SETULT, MVT::f32, Expand); setCondCodeAction(ISD::SETONE, MVT::f64, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); setCondCodeAction(ISD::SETUGE, MVT::f64, Expand); setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); setCondCodeAction(ISD::SETULE, MVT::f64, Expand); setCondCodeAction(ISD::SETULT, MVT::f64, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); setOperationAction(ISD::ADD, MVT::i32, Legal); setOperationAction(ISD::ADDC, MVT::i32, Legal); setOperationAction(ISD::ADDE, MVT::i32, Legal); setOperationAction(ISD::SUBC, MVT::i32, Legal); setOperationAction(ISD::SUBE, MVT::i32, Legal); setOperationAction(ISD::FSIN, MVT::f32, Custom); setOperationAction(ISD::FCOS, MVT::f32, Custom); // We need to custom lower vector stores from local memory setOperationAction(ISD::LOAD, MVT::v4i32, Custom); setOperationAction(ISD::LOAD, MVT::v8i32, Custom); setOperationAction(ISD::LOAD, MVT::v16i32, Custom); setOperationAction(ISD::STORE, MVT::v8i32, Custom); setOperationAction(ISD::STORE, MVT::v16i32, Custom); setOperationAction(ISD::STORE, MVT::i1, Custom); setOperationAction(ISD::STORE, MVT::i32, Custom); setOperationAction(ISD::STORE, MVT::v2i32, Custom); setOperationAction(ISD::STORE, MVT::v4i32, Custom); setOperationAction(ISD::SELECT, MVT::f32, Promote); AddPromotedToType(ISD::SELECT, MVT::f32, MVT::i32); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f64, Promote); AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); setOperationAction(ISD::SETCC, MVT::v2i1, Expand); setOperationAction(ISD::SETCC, MVT::v4i1, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom); setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom); setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, Expand); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom); setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom); setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::i32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); setTruncStoreAction(MVT::i32, MVT::i8, Custom); setTruncStoreAction(MVT::i32, MVT::i16, Custom); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::i64, MVT::i32, Expand); setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); setOperationAction(ISD::LOAD, MVT::i1, Custom); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::FrameIndex, MVT::i32, Custom); // These should use UDIVREM, so set them to expand setOperationAction(ISD::UDIV, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // We only support LOAD/STORE and vector manipulation ops for vectors // with > 4 elements. MVT VecTypes[] = { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32 }; setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); setOperationAction(ISD::SELECT, MVT::i1, Promote); for (MVT VT : VecTypes) { for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { switch(Op) { case ISD::LOAD: case ISD::STORE: case ISD::BUILD_VECTOR: case ISD::BITCAST: case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: case ISD::INSERT_SUBVECTOR: case ISD::EXTRACT_SUBVECTOR: break; case ISD::CONCAT_VECTORS: setOperationAction(Op, VT, Custom); break; default: setOperationAction(Op, VT, Expand); break; } } } for (int I = MVT::v1f64; I <= MVT::v8f64; ++I) { MVT::SimpleValueType VT = static_cast(I); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); } if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); } setOperationAction(ISD::FDIV, MVT::f32, Custom); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::FSUB); setTargetDAGCombine(ISD::SELECT_CC); setTargetDAGCombine(ISD::SETCC); setTargetDAGCombine(ISD::UINT_TO_FP); // All memory operations. Some folding on the pointer operand is done to help // matching the constant offsets in the addressing modes. setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::ATOMIC_LOAD); setTargetDAGCombine(ISD::ATOMIC_STORE); setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); setTargetDAGCombine(ISD::ATOMIC_SWAP); setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); setSchedulingPreference(Sched::RegPressure); } //===----------------------------------------------------------------------===// // TargetLowering queries //===----------------------------------------------------------------------===// // FIXME: This really needs an address space argument. The immediate offset // size is different for different sets of memory instruction sets. // The single offset DS instructions have a 16-bit unsigned byte offset. // // MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r + // r + i with addr64. 32-bit has more addressing mode options. Depending on the // resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i). // // SMRD instructions have an 8-bit, dword offset. // bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // No global is ever allowed as a base. if (AM.BaseGV) return false; // Allow a 16-bit unsigned immediate field, since this is what DS instructions // use. if (!isUInt<16>(AM.BaseOffs)) return false; // Only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. return false; // Otherwise we have r+r or r+i. break; case 2: if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. return false; // Allow 2*r as r+r. break; default: // Don't allow n * r return false; } return true; } bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, unsigned Align, bool *IsFast) const { if (IsFast) *IsFast = false; // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, // which isn't a simple VT. if (!VT.isSimple() || VT == MVT::Other) return false; // XXX - CI changes say "Support for unaligned memory accesses" but I don't // see what for specifically. The wording everywhere else seems to be the // same. // XXX - The only mention I see of this in the ISA manual is for LDS direct // reads the "byte address and must be dword aligned". Is it also true for the // normal loads and stores? if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) { // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte // aligned, 8 byte access in a single operation using ds_read2/write2_b32 // with adjacent offsets. return Align % 4 == 0; } // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the // byte-address are ignored, thus forcing Dword alignment. // This applies to private, global, and constant memory. if (IsFast) *IsFast = true; return VT.bitsGT(MVT::i32); } EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { // FIXME: Should account for address space here. // The default fallback uses the private pointer size as a guess for a type to // use. Make sure we switch these to 64-bit accesses. if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global return MVT::v4i32; if (Size >= 8 && DstAlign >= 4) return MVT::v2i32; // Use the default. return MVT::Other; } TargetLoweringBase::LegalizeTypeAction SITargetLowering::getPreferredVectorAction(EVT VT) const { if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) return TypeSplitVector; return TargetLoweringBase::getPreferredVectorAction(VT); } bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); return TII->isInlineConstant(Imm); } SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT, SDLoc SL, SDValue Chain, unsigned Offset, bool Signed) const { const DataLayout *DL = getDataLayout(); MachineFunction &MF = DAG.getMachineFunction(); const SIRegisterInfo *TRI = static_cast(Subtarget->getRegisterInfo()); unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR); Type *Ty = VT.getTypeForEVT(*DAG.getContext()); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, MRI.getLiveInVirtReg(InputPtrReg), MVT::i64); SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr, DAG.getConstant(Offset, MVT::i64)); SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS)); MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD, VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT, false, // isVolatile true, // isNonTemporal true, // isInvariant DL->getABITypeAlignment(Ty)); // Alignment } SDValue SITargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { const TargetMachine &TM = getTargetMachine(); const SIRegisterInfo *TRI = static_cast(TM.getSubtargetImpl()->getRegisterInfo()); MachineFunction &MF = DAG.getMachineFunction(); FunctionType *FType = MF.getFunction()->getFunctionType(); SIMachineFunctionInfo *Info = MF.getInfo(); assert(CallConv == CallingConv::C); SmallVector Splits; BitVector Skipped(Ins.size()); for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) { const ISD::InputArg &Arg = Ins[i]; // First check if it's a PS input addr if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() && !Arg.Flags.isByVal()) { assert((PSInputNum <= 15) && "Too many PS inputs!"); if (!Arg.Used) { // We can savely skip PS inputs Skipped.set(i); ++PSInputNum; continue; } Info->PSInputAddr |= 1 << PSInputNum++; } // Second split vertices into their elements if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) { ISD::InputArg NewArg = Arg; NewArg.Flags.setSplit(); NewArg.VT = Arg.VT.getVectorElementType(); // We REALLY want the ORIGINAL number of vertex elements here, e.g. a // three or five element vertex only needs three or five registers, // NOT four or eigth. Type *ParamType = FType->getParamType(Arg.OrigArgIndex); unsigned NumElements = ParamType->getVectorNumElements(); for (unsigned j = 0; j != NumElements; ++j) { Splits.push_back(NewArg); NewArg.PartOffset += NewArg.VT.getStoreSize(); } } else if (Info->getShaderType() != ShaderType::COMPUTE) { Splits.push_back(Arg); } } SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); // At least one interpolation mode must be enabled or else the GPU will hang. if (Info->getShaderType() == ShaderType::PIXEL && (Info->PSInputAddr & 0x7F) == 0) { Info->PSInputAddr |= 1; CCInfo.AllocateReg(AMDGPU::VGPR0); CCInfo.AllocateReg(AMDGPU::VGPR1); } // The pointer to the list of arguments is stored in SGPR0, SGPR1 // The pointer to the scratch buffer is stored in SGPR2, SGPR3 if (Info->getShaderType() == ShaderType::COMPUTE) { Info->NumUserSGPRs = 4; unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR); unsigned InputPtrRegLo = TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0); unsigned InputPtrRegHi = TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1); unsigned ScratchPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR); unsigned ScratchPtrRegLo = TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0); unsigned ScratchPtrRegHi = TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1); CCInfo.AllocateReg(InputPtrRegLo); CCInfo.AllocateReg(InputPtrRegHi); CCInfo.AllocateReg(ScratchPtrRegLo); CCInfo.AllocateReg(ScratchPtrRegHi); MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass); MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass); } if (Info->getShaderType() == ShaderType::COMPUTE) { getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins, Splits); } AnalyzeFormalArguments(CCInfo, Splits); for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { const ISD::InputArg &Arg = Ins[i]; if (Skipped[i]) { InVals.push_back(DAG.getUNDEF(Arg.VT)); continue; } CCValAssign &VA = ArgLocs[ArgIdx++]; EVT VT = VA.getLocVT(); if (VA.isMemLoc()) { VT = Ins[i].VT; EVT MemVT = Splits[i].VT; // The first 36 bytes of the input buffer contains information about // thread group and global sizes. SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(), 36 + VA.getLocMemOffset(), Ins[i].Flags.isSExt()); const PointerType *ParamTy = dyn_cast(FType->getParamType(Ins[i].OrigArgIndex)); if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { // On SI local pointers are just offsets into LDS, so they are always // less than 16-bits. On CI and newer they could potentially be // real pointers, so we can't guarantee their size. Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, DAG.getValueType(MVT::i16)); } InVals.push_back(Arg); continue; } assert(VA.isRegLoc() && "Parameter must be in a register!"); unsigned Reg = VA.getLocReg(); if (VT == MVT::i64) { // For now assume it is a pointer Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, &AMDGPU::SReg_64RegClass); Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass); InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT)); continue; } const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); Reg = MF.addLiveIn(Reg, RC); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); if (Arg.VT.isVector()) { // Build a vector from the registers Type *ParamType = FType->getParamType(Arg.OrigArgIndex); unsigned NumElements = ParamType->getVectorNumElements(); SmallVector Regs; Regs.push_back(Val); for (unsigned j = 1; j != NumElements; ++j) { Reg = ArgLocs[ArgIdx++].getLocReg(); Reg = MF.addLiveIn(Reg, RC); Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT)); } // Fill up the missing vector elements NumElements = Arg.VT.getVectorNumElements() - NumElements; for (unsigned j = 0; j != NumElements; ++j) Regs.push_back(DAG.getUNDEF(VT)); InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs)); continue; } InVals.push_back(Val); } return Chain; } MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( MachineInstr * MI, MachineBasicBlock * BB) const { MachineBasicBlock::iterator I = *MI; const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); switch (MI->getOpcode()) { default: return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); case AMDGPU::BRANCH: return BB; case AMDGPU::SI_ADDR64_RSRC: { unsigned SuperReg = MI->getOperand(0).getReg(); unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass); unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass); unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo) .addOperand(MI->getOperand(1)); BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo) .addImm(0); BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi) .addImm(AMDGPU::RSRC_DATA_FORMAT >> 32); BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi) .addReg(SubRegHiLo) .addImm(AMDGPU::sub0) .addReg(SubRegHiHi) .addImm(AMDGPU::sub1); BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg) .addReg(SubRegLo) .addImm(AMDGPU::sub0_sub1) .addReg(SubRegHi) .addImm(AMDGPU::sub2_sub3); MI->eraseFromParent(); break; } case AMDGPU::SI_BUFFER_RSRC: { unsigned SuperReg = MI->getOperand(0).getReg(); unsigned Args[4]; for (unsigned i = 0, e = 4; i < e; ++i) { MachineOperand &Arg = MI->getOperand(i + 1); if (Arg.isReg()) { Args[i] = Arg.getReg(); continue; } assert(Arg.isImm()); unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), Reg) .addImm(Arg.getImm()); Args[i] = Reg; } BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg) .addReg(Args[0]) .addImm(AMDGPU::sub0) .addReg(Args[1]) .addImm(AMDGPU::sub1) .addReg(Args[2]) .addImm(AMDGPU::sub2) .addReg(Args[3]) .addImm(AMDGPU::sub3); MI->eraseFromParent(); break; } case AMDGPU::V_SUB_F64: { unsigned DestReg = MI->getOperand(0).getReg(); BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64), DestReg) .addImm(0) // SRC0 modifiers .addReg(MI->getOperand(1).getReg()) .addImm(1) // SRC1 modifiers .addReg(MI->getOperand(2).getReg()) .addImm(0) // CLAMP .addImm(0); // OMOD MI->eraseFromParent(); break; } case AMDGPU::SI_RegisterStorePseudo: { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); MachineInstrBuilder MIB = BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore), Reg); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) MIB.addOperand(MI->getOperand(i)); MI->eraseFromParent(); break; } case AMDGPU::FCLAMP_SI: { const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); DebugLoc DL = MI->getDebugLoc(); unsigned DestReg = MI->getOperand(0).getReg(); BuildMI(*BB, I, DL, TII->get(AMDGPU::V_ADD_F32_e64), DestReg) .addImm(0) // SRC0 modifiers .addOperand(MI->getOperand(1)) .addImm(0) // SRC1 modifiers .addImm(0) // SRC1 .addImm(1) // CLAMP .addImm(0); // OMOD MI->eraseFromParent(); } } return BB; } EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { if (!VT.isVector()) { return MVT::i1; } return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); } MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const { return MVT::i32; } bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: return false; /* There is V_MAD_F32 for f32 */ case MVT::f64: return true; default: break; } return false; } //===----------------------------------------------------------------------===// // Custom DAG Lowering Operations //===----------------------------------------------------------------------===// SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::LOAD: { SDValue Result = LowerLOAD(Op, DAG); assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) && "Load should return a value and a chain"); return Result; } case ISD::FSIN: case ISD::FCOS: return LowerTrig(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::FDIV: return LowerFDIV(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::GlobalAddress: { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); return LowerGlobalAddress(MFI, Op, DAG); } case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); } return SDValue(); } /// \brief Helper function for LowerBRCOND static SDNode *findUser(SDValue Value, unsigned Opcode) { SDNode *Parent = Value.getNode(); for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); I != E; ++I) { if (I.getUse().get() != Value) continue; if (I->getOpcode() == Opcode) return *I; } return nullptr; } SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const { FrameIndexSDNode *FINode = cast(Op); unsigned FrameIndex = FINode->getIndex(); return DAG.getTargetFrameIndex(FrameIndex, MVT::i32); } /// This transforms the control flow intrinsics to get the branch destination as /// last parameter, also switches branch target with BR if the need arise SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, SelectionDAG &DAG) const { SDLoc DL(BRCOND); SDNode *Intr = BRCOND.getOperand(1).getNode(); SDValue Target = BRCOND.getOperand(2); SDNode *BR = nullptr; if (Intr->getOpcode() == ISD::SETCC) { // As long as we negate the condition everything is fine SDNode *SetCC = Intr; assert(SetCC->getConstantOperandVal(1) == 1); assert(cast(SetCC->getOperand(2).getNode())->get() == ISD::SETNE); Intr = SetCC->getOperand(0).getNode(); } else { // Get the target from BR if we don't negate the condition BR = findUser(BRCOND, ISD::BR); Target = BR->getOperand(1); } assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN); // Build the result and SmallVector Res; for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i) Res.push_back(Intr->getValueType(i)); // operands of the new intrinsic call SmallVector Ops; Ops.push_back(BRCOND.getOperand(0)); for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i) Ops.push_back(Intr->getOperand(i)); Ops.push_back(Target); // build the new intrinsic call SDNode *Result = DAG.getNode( Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, DAG.getVTList(Res), Ops).getNode(); if (BR) { // Give the branch instruction our target SDValue Ops[] = { BR->getOperand(0), BRCOND.getOperand(2) }; SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); BR = NewBR.getNode(); } SDValue Chain = SDValue(Result, Result->getNumValues() - 1); // Copy the intrinsic results to registers for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); if (!CopyToReg) continue; Chain = DAG.getCopyToReg( Chain, DL, CopyToReg->getOperand(1), SDValue(Result, i - 1), SDValue()); DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); } // Remove the old intrinsic from the chain DAG.ReplaceAllUsesOfValueWith( SDValue(Intr, Intr->getNumValues() - 1), Intr->getOperand(0)); return Chain; } SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GSD = cast(Op); if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); SDLoc DL(GSD); const GlobalValue *GV = GSD->getGlobal(); MVT PtrVT = getPointerTy(GSD->getAddressSpace()); SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT); SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32); SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr, DAG.getConstant(0, MVT::i32)); SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr, DAG.getConstant(1, MVT::i32)); SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue), PtrLo, GA); SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue), PtrHi, DAG.getConstant(0, MVT::i32), SDValue(Lo.getNode(), 1)); return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); } SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); const SIRegisterInfo *TRI = static_cast(MF.getSubtarget().getRegisterInfo()); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned IntrinsicID = cast(Op.getOperand(0))->getZExtValue(); switch (IntrinsicID) { case Intrinsic::r600_read_ngroups_x: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_X, false); case Intrinsic::r600_read_ngroups_y: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Y, false); case Intrinsic::r600_read_ngroups_z: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Z, false); case Intrinsic::r600_read_global_size_x: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_X, false); case Intrinsic::r600_read_global_size_y: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Y, false); case Intrinsic::r600_read_global_size_z: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Z, false); case Intrinsic::r600_read_local_size_x: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::LOCAL_SIZE_X, false); case Intrinsic::r600_read_local_size_y: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::LOCAL_SIZE_Y, false); case Intrinsic::r600_read_local_size_z: return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::LOCAL_SIZE_Z, false); case Intrinsic::r600_read_tgid_x: return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT); case Intrinsic::r600_read_tgid_y: return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT); case Intrinsic::r600_read_tgid_z: return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT); case Intrinsic::r600_read_tidig_x: return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT); case Intrinsic::r600_read_tidig_y: return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT); case Intrinsic::r600_read_tidig_z: return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass, TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT); case AMDGPUIntrinsic::SI_load_const: { SDValue Ops[] = { Op.getOperand(1), Op.getOperand(2) }; MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, VT.getStoreSize(), 4); return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL, Op->getVTList(), Ops, VT, MMO); } case AMDGPUIntrinsic::SI_sample: return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG); case AMDGPUIntrinsic::SI_sampleb: return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG); case AMDGPUIntrinsic::SI_sampled: return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG); case AMDGPUIntrinsic::SI_samplel: return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG); case AMDGPUIntrinsic::SI_vs_load_input: return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); } } SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SDValue Chain = Op.getOperand(0); unsigned IntrinsicID = cast(Op.getOperand(1))->getZExtValue(); switch (IntrinsicID) { case AMDGPUIntrinsic::SI_tbuffer_store: { SDLoc DL(Op); SDValue Ops[] = { Chain, Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), Op.getOperand(5), Op.getOperand(6), Op.getOperand(7), Op.getOperand(8), Op.getOperand(9), Op.getOperand(10), Op.getOperand(11), Op.getOperand(12), Op.getOperand(13), Op.getOperand(14) }; EVT VT = Op.getOperand(3).getValueType(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOStore, VT.getStoreSize(), 4); return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL, Op->getVTList(), Ops, VT, MMO); } default: return SDValue(); } } SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); LoadSDNode *Load = cast(Op); if (Op.getValueType().isVector()) { assert(Op.getValueType().getVectorElementType() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."); unsigned NumElements = Op.getValueType().getVectorNumElements(); assert(NumElements != 2 && "v2 loads are supported for all address spaces."); switch (Load->getAddressSpace()) { default: break; case AMDGPUAS::GLOBAL_ADDRESS: case AMDGPUAS::PRIVATE_ADDRESS: // v4 loads are supported for private and global memory. if (NumElements <= 4) break; // fall-through case AMDGPUAS::LOCAL_ADDRESS: return ScalarizeVectorLoad(Op, DAG); } } return AMDGPUTargetLowering::LowerLOAD(Op, DAG); } SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode, const SDValue &Op, SelectionDAG &DAG) const { return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); } SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType() != MVT::i64) return SDValue(); SDLoc DL(Op); SDValue Cond = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, MVT::i32); SDValue One = DAG.getConstant(1, MVT::i32); SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi); return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res); } // Catch division cases where we can use shortcuts with rcp and rsq // instructions. SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); EVT VT = Op.getValueType(); bool Unsafe = DAG.getTarget().Options.UnsafeFPMath; if (const ConstantFPSDNode *CLHS = dyn_cast(LHS)) { if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) && CLHS->isExactlyValue(1.0)) { // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to // the CI documentation has a worst case error of 1 ulp. // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to // use it as long as we aren't trying to use denormals. // 1.0 / sqrt(x) -> rsq(x) // // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP // error seems really high at 2^29 ULP. if (RHS.getOpcode() == ISD::FSQRT) return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); // 1.0 / x -> rcp(x) return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); } } if (Unsafe) { // Turn into multiply by the reciprocal. // x / y -> x * (1.0 / y) SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip); } return SDValue(); } SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { SDValue FastLowered = LowerFastFDIV(Op, DAG); if (FastLowered.getNode()) return FastLowered; // This uses v_rcp_f32 which does not handle denormals. Let this hit a // selection error for now rather than do something incorrect. if (Subtarget->hasFP32Denormals()) return SDValue(); SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); const APFloat K0Val(BitsToFloat(0x6f800000)); const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32); const APFloat K1Val(BitsToFloat(0x2f800000)); const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32); const SDValue One = DAG.getTargetConstantFP(1.0, MVT::f32); EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32); SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); } SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { return SDValue(); } SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT == MVT::f32) return LowerFDIV32(Op, DAG); if (VT == MVT::f64) return LowerFDIV64(Op, DAG); llvm_unreachable("Unexpected type for fdiv"); } SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); StoreSDNode *Store = cast(Op); EVT VT = Store->getMemoryVT(); // These stores are legal. if (Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && VT.isVector() && VT.getVectorNumElements() == 2 && VT.getVectorElementType() == MVT::i32) return SDValue(); if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { if (VT.isVector() && VT.getVectorNumElements() > 4) return ScalarizeVectorStore(Op, DAG); return SDValue(); } SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG); if (Ret.getNode()) return Ret; if (VT.isVector() && VT.getVectorNumElements() >= 8) return ScalarizeVectorStore(Op, DAG); if (VT == MVT::i1) return DAG.getTruncStore(Store->getChain(), DL, DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), Store->getBasePtr(), MVT::i1, Store->getMemOperand()); return SDValue(); } SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDValue Arg = Op.getOperand(0); SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT, DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg, DAG.getConstantFP(0.5 / M_PI, VT))); switch (Op.getOpcode()) { case ISD::FCOS: return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart); case ISD::FSIN: return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart); default: llvm_unreachable("Wrong trig opcode"); } } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, DAGCombinerInfo &DCI) { EVT VT = N->getValueType(0); EVT ScalarVT = VT.getScalarType(); if (ScalarVT != MVT::f32) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue Src = N->getOperand(0); EVT SrcVT = Src.getValueType(); // TODO: We could try to match extracting the higher bytes, which would be // easier if i8 vectors weren't promoted to i32 vectors, particularly after // types are legalized. v4i8 -> v4f32 is probably the only case to worry // about in practice. if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) { if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); DCI.AddToWorklist(Cvt.getNode()); return Cvt; } } // We are primarily trying to catch operations on illegal vector types // before they are expanded. // For scalars, we can use the more flexible method of checking masked bits // after legalization. if (!DCI.isBeforeLegalize() || !SrcVT.isVector() || SrcVT.getVectorElementType() != MVT::i8) { return SDValue(); } assert(DCI.isBeforeLegalize() && "Unexpected legal type"); // Weird sized vectors are a pain to handle, but we know 3 is really the same // size as 4. unsigned NElts = SrcVT.getVectorNumElements(); if (!SrcVT.isSimple() && NElts != 3) return SDValue(); // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to // prevent a mess from expanding to v4i32 and repacking. if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) { EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT); EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT); EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts); LoadSDNode *Load = cast(Src); SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT, Load->getChain(), Load->getBasePtr(), LoadVT, Load->getMemOperand()); // Make sure successors of the original load stay after it by updating // them to use the new Chain. DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1)); SmallVector Elts; if (RegVT.isVector()) DAG.ExtractVectorElements(NewLoad, Elts); else Elts.push_back(NewLoad); SmallVector Ops; unsigned EltIdx = 0; for (SDValue Elt : Elts) { unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx); for (unsigned I = 0; I < ComponentsInElt; ++I) { unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I; SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt); DCI.AddToWorklist(Cvt.getNode()); Ops.push_back(Cvt); } ++EltIdx; } assert(Ops.size() == NElts); return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops); } return SDValue(); } // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) // This is a variant of // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), // // The normal DAG combiner will do this, but only if the add has one use since // that would increase the number of instructions. // // This prevents us from seeing a constant offset that can be folded into a // memory instruction's addressing mode. If we know the resulting add offset of // a pointer can be folded into an addressing offset, we can replace the pointer // operand with the add of new constant offset. This eliminates one of the uses, // and may allow the remaining use to also be simplified. // SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, unsigned AddrSpace, DAGCombinerInfo &DCI) const { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (N0.getOpcode() != ISD::ADD) return SDValue(); const ConstantSDNode *CN1 = dyn_cast(N1); if (!CN1) return SDValue(); const ConstantSDNode *CAdd = dyn_cast(N0.getOperand(1)); if (!CAdd) return SDValue(); const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); // If the resulting offset is too large, we can't fold it into the addressing // mode offset. APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); if (!TII->canFoldOffset(Offset.getZExtValue(), AddrSpace)) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); EVT VT = N->getValueType(0); SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); SDValue COffset = DAG.getConstant(Offset, MVT::i32); return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset); } SDValue SITargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); switch (N->getOpcode()) { default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); case ISD::SETCC: { SDValue Arg0 = N->getOperand(0); SDValue Arg1 = N->getOperand(1); SDValue CC = N->getOperand(2); ConstantSDNode * C = nullptr; ISD::CondCode CCOp = dyn_cast(CC)->get(); // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne) if (VT == MVT::i1 && Arg0.getOpcode() == ISD::SIGN_EXTEND && Arg0.getOperand(0).getValueType() == MVT::i1 && (C = dyn_cast(Arg1)) && C->isNullValue() && CCOp == ISD::SETNE) { return SimplifySetCC(VT, Arg0.getOperand(0), DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL); } break; } case AMDGPUISD::CVT_F32_UBYTE0: case AMDGPUISD::CVT_F32_UBYTE1: case AMDGPUISD::CVT_F32_UBYTE2: case AMDGPUISD::CVT_F32_UBYTE3: { unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; SDValue Src = N->getOperand(0); APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(Src, Demanded) || TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) { DCI.CommitTargetLoweringOpt(TLO); } break; } case ISD::UINT_TO_FP: { return performUCharToFloatCombine(N, DCI); case ISD::FADD: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; EVT VT = N->getValueType(0); if (VT != MVT::f32) break; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // These should really be instruction patterns, but writing patterns with // source modiifiers is a pain. // fadd (fadd (a, a), b) -> mad 2.0, a, b if (LHS.getOpcode() == ISD::FADD) { SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { const SDValue Two = DAG.getTargetConstantFP(2.0, MVT::f32); return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, RHS); } } // fadd (b, fadd (a, a)) -> mad 2.0, a, b if (RHS.getOpcode() == ISD::FADD) { SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { const SDValue Two = DAG.getTargetConstantFP(2.0, MVT::f32); return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, LHS); } } break; } case ISD::FSUB: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; EVT VT = N->getValueType(0); // Try to get the fneg to fold into the source modifier. This undoes generic // DAG combines and folds them into the mad. if (VT == MVT::f32) { SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() == ISD::FMUL) { // (fsub (fmul a, b), c) -> mad a, b, (fneg c) SDValue A = LHS.getOperand(0); SDValue B = LHS.getOperand(1); SDValue C = DAG.getNode(ISD::FNEG, DL, VT, RHS); return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C); } if (RHS.getOpcode() == ISD::FMUL) { // (fsub c, (fmul a, b)) -> mad (fneg a), b, c SDValue A = DAG.getNode(ISD::FNEG, DL, VT, RHS.getOperand(0)); SDValue B = RHS.getOperand(1); SDValue C = LHS; return DAG.getNode(AMDGPUISD::MAD, DL, VT, A, B, C); } if (LHS.getOpcode() == ISD::FADD) { // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { const SDValue Two = DAG.getTargetConstantFP(2.0, MVT::f32); SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS); return DAG.getNode(AMDGPUISD::MAD, DL, VT, Two, A, NegRHS); } } if (RHS.getOpcode() == ISD::FADD) { // (fsub c, (fadd a, a)) -> mad -2.0, a, c SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { const SDValue NegTwo = DAG.getTargetConstantFP(-2.0, MVT::f32); return DAG.getNode(AMDGPUISD::MAD, DL, VT, NegTwo, A, LHS); } } } break; } } case ISD::LOAD: case ISD::STORE: case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: case ISD::ATOMIC_CMP_SWAP: case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics. if (DCI.isBeforeLegalize()) break; MemSDNode *MemNode = cast(N); SDValue Ptr = MemNode->getBasePtr(); // TODO: We could also do this for multiplies. unsigned AS = MemNode->getAddressSpace(); if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) { SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI); if (NewPtr) { SmallVector NewOps; for (unsigned I = 0, E = MemNode->getNumOperands(); I != E; ++I) NewOps.push_back(MemNode->getOperand(I)); NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0); } } break; } } return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); } /// \brief Test if RegClass is one of the VSrc classes static bool isVSrc(unsigned RegClass) { switch(RegClass) { default: return false; case AMDGPU::VSrc_32RegClassID: case AMDGPU::VCSrc_32RegClassID: case AMDGPU::VSrc_64RegClassID: case AMDGPU::VCSrc_64RegClassID: return true; } } /// \brief Test if RegClass is one of the SSrc classes static bool isSSrc(unsigned RegClass) { return AMDGPU::SSrc_32RegClassID == RegClass || AMDGPU::SSrc_64RegClassID == RegClass; } /// \brief Analyze the possible immediate value Op /// /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate /// and the immediate value if it's a literal immediate int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const { union { int32_t I; float F; } Imm; if (const ConstantSDNode *Node = dyn_cast(N)) { if (Node->getZExtValue() >> 32) { return -1; } Imm.I = Node->getSExtValue(); } else if (const ConstantFPSDNode *Node = dyn_cast(N)) { if (N->getValueType(0) != MVT::f32) return -1; Imm.F = Node->getValueAPF().convertToFloat(); } else return -1; // It isn't an immediate if ((Imm.I >= -16 && Imm.I <= 64) || Imm.F == 0.5f || Imm.F == -0.5f || Imm.F == 1.0f || Imm.F == -1.0f || Imm.F == 2.0f || Imm.F == -2.0f || Imm.F == 4.0f || Imm.F == -4.0f) return 0; // It's an inline immediate return Imm.I; // It's a literal immediate } /// \brief Try to fold an immediate directly into an instruction bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate, bool &ScalarSlotUsed) const { MachineSDNode *Mov = dyn_cast(Operand); const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); if (!Mov || !TII->isMov(Mov->getMachineOpcode())) return false; const SDValue &Op = Mov->getOperand(0); int32_t Value = analyzeImmediate(Op.getNode()); if (Value == -1) { // Not an immediate at all return false; } else if (Value == 0) { // Inline immediates can always be fold Operand = Op; return true; } else if (Value == Immediate) { // Already fold literal immediate Operand = Op; return true; } else if (!ScalarSlotUsed && !Immediate) { // Fold this literal immediate ScalarSlotUsed = true; Immediate = Value; Operand = Op; return true; } return false; } const TargetRegisterClass *SITargetLowering::getRegClassForNode( SelectionDAG &DAG, const SDValue &Op) const { const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); const SIRegisterInfo &TRI = TII->getRegisterInfo(); if (!Op->isMachineOpcode()) { switch(Op->getOpcode()) { case ISD::CopyFromReg: { MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); unsigned Reg = cast(Op->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { return MRI.getRegClass(Reg); } return TRI.getPhysRegClass(Reg); } default: return nullptr; } } const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode()); int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass; if (OpClassID != -1) { return TRI.getRegClass(OpClassID); } switch(Op.getMachineOpcode()) { case AMDGPU::COPY_TO_REGCLASS: // Operand 1 is the register class id for COPY_TO_REGCLASS instructions. OpClassID = cast(Op->getOperand(1))->getZExtValue(); // If the COPY_TO_REGCLASS instruction is copying to a VSrc register // class, then the register class for the value could be either a // VReg or and SReg. In order to get a more accurate if (isVSrc(OpClassID)) return getRegClassForNode(DAG, Op.getOperand(0)); return TRI.getRegClass(OpClassID); case AMDGPU::EXTRACT_SUBREG: { int SubIdx = cast(Op.getOperand(1))->getZExtValue(); const TargetRegisterClass *SuperClass = getRegClassForNode(DAG, Op.getOperand(0)); return TRI.getSubClassWithSubReg(SuperClass, SubIdx); } case AMDGPU::REG_SEQUENCE: // Operand 0 is the register class id for REG_SEQUENCE instructions. return TRI.getRegClass( cast(Op.getOperand(0))->getZExtValue()); default: return getRegClassFor(Op.getSimpleValueType()); } } /// \brief Does "Op" fit into register class "RegClass" ? bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op, unsigned RegClass) const { const TargetRegisterInfo *TRI = getTargetMachine().getSubtargetImpl()->getRegisterInfo(); const TargetRegisterClass *RC = getRegClassForNode(DAG, Op); if (!RC) { return false; } return TRI->getRegClass(RegClass)->hasSubClassEq(RC); } /// \returns true if \p Node's operands are different from the SDValue list /// \p Ops static bool isNodeChanged(const SDNode *Node, const std::vector &Ops) { for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) { if (Ops[i].getNode() != Node->getOperand(i).getNode()) { return true; } } return false; } /// TODO: This needs to be removed. It's current primary purpose is to fold /// immediates into operands when legal. The legalization parts are redundant /// with SIInstrInfo::legalizeOperands which is called in a post-isel hook. SDNode *SITargetLowering::legalizeOperands(MachineSDNode *Node, SelectionDAG &DAG) const { // Original encoding (either e32 or e64) int Opcode = Node->getMachineOpcode(); const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); const MCInstrDesc *Desc = &TII->get(Opcode); unsigned NumDefs = Desc->getNumDefs(); unsigned NumOps = Desc->getNumOperands(); // Commuted opcode if available int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1; const MCInstrDesc *DescRev = OpcodeRev == -1 ? nullptr : &TII->get(OpcodeRev); assert(!DescRev || DescRev->getNumDefs() == NumDefs); assert(!DescRev || DescRev->getNumOperands() == NumOps); int32_t Immediate = Desc->getSize() == 4 ? 0 : -1; bool HaveVSrc = false, HaveSSrc = false; // First figure out what we already have in this instruction. for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs; i != e && Op < NumOps; ++i, ++Op) { unsigned RegClass = Desc->OpInfo[Op].RegClass; if (isVSrc(RegClass)) HaveVSrc = true; else if (isSSrc(RegClass)) HaveSSrc = true; else continue; int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode()); if (Imm != -1 && Imm != 0) { // Literal immediate Immediate = Imm; } } // If we neither have VSrc nor SSrc, it makes no sense to continue. if (!HaveVSrc && !HaveSSrc) return Node; // No scalar allowed when we have both VSrc and SSrc bool ScalarSlotUsed = HaveVSrc && HaveSSrc; // If this instruction has an implicit use of VCC, then it can't use the // constant bus. for (unsigned i = 0, e = Desc->getNumImplicitUses(); i != e; ++i) { if (Desc->ImplicitUses[i] == AMDGPU::VCC) { ScalarSlotUsed = true; break; } } // Second go over the operands and try to fold them std::vector Ops; for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs; i != e && Op < NumOps; ++i, ++Op) { const SDValue &Operand = Node->getOperand(i); Ops.push_back(Operand); // Already folded immediate? if (isa(Operand.getNode()) || isa(Operand.getNode())) continue; // Is this a VSrc or SSrc operand? unsigned RegClass = Desc->OpInfo[Op].RegClass; if (isVSrc(RegClass) || isSSrc(RegClass)) { // Try to fold the immediates. If this ends up with multiple constant bus // uses, it will be legalized later. foldImm(Ops[i], Immediate, ScalarSlotUsed); continue; } if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) { unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass; assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass)); // Test if it makes sense to swap operands if (foldImm(Ops[1], Immediate, ScalarSlotUsed) || (!fitsRegClass(DAG, Ops[1], RegClass) && fitsRegClass(DAG, Ops[1], OtherRegClass))) { // Swap commutable operands std::swap(Ops[0], Ops[1]); Desc = DescRev; DescRev = nullptr; continue; } } } // Add optional chain and glue for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i) Ops.push_back(Node->getOperand(i)); // Nodes that have a glue result are not CSE'd by getMachineNode(), so in // this case a brand new node is always be created, even if the operands // are the same as before. So, manually check if anything has been changed. if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) { return Node; } // Create a complete new instruction return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops); } /// \brief Helper function for adjustWritemask static unsigned SubIdx2Lane(unsigned Idx) { switch (Idx) { default: return 0; case AMDGPU::sub0: return 0; case AMDGPU::sub1: return 1; case AMDGPU::sub2: return 2; case AMDGPU::sub3: return 3; } } /// \brief Adjust the writemask of MIMG instructions void SITargetLowering::adjustWritemask(MachineSDNode *&Node, SelectionDAG &DAG) const { SDNode *Users[4] = { }; unsigned Lane = 0; unsigned OldDmask = Node->getConstantOperandVal(0); unsigned NewDmask = 0; // Try to figure out the used register components for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); I != E; ++I) { // Abort if we can't understand the usage if (!I->isMachineOpcode() || I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) return; // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used. // Note that subregs are packed, i.e. Lane==0 is the first bit set // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit // set, etc. Lane = SubIdx2Lane(I->getConstantOperandVal(1)); // Set which texture component corresponds to the lane. unsigned Comp; for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) { assert(Dmask); Comp = countTrailingZeros(Dmask); Dmask &= ~(1 << Comp); } // Abort if we have more than one user per component if (Users[Lane]) return; Users[Lane] = *I; NewDmask |= 1 << Comp; } // Abort if there's no change if (NewDmask == OldDmask) return; // Adjust the writemask in the node std::vector Ops; Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32)); for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(Node->getOperand(i)); Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops); // If we only got one lane, replace it with a copy // (if NewDmask has only one bit set...) if (NewDmask && (NewDmask & (NewDmask-1)) == 0) { SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32); SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(), Users[Lane]->getValueType(0), SDValue(Node, 0), RC); DAG.ReplaceAllUsesWith(Users[Lane], Copy); return; } // Update the users of the node with the new indices for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { SDNode *User = Users[i]; if (!User) continue; SDValue Op = DAG.getTargetConstant(Idx, MVT::i32); DAG.UpdateNodeOperands(User, User->getOperand(0), Op); switch (Idx) { default: break; case AMDGPU::sub0: Idx = AMDGPU::sub1; break; case AMDGPU::sub1: Idx = AMDGPU::sub2; break; case AMDGPU::sub2: Idx = AMDGPU::sub3; break; } } } /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG) /// with frame index operands. /// LLVM assumes that inputs are to these instructions are registers. void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const { SmallVector Ops; for (unsigned i = 0; i < Node->getNumOperands(); ++i) { if (!isa(Node->getOperand(i))) { Ops.push_back(Node->getOperand(i)); continue; } SDLoc DL(Node); Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, Node->getOperand(i).getValueType(), Node->getOperand(i)), 0)); } DAG.UpdateNodeOperands(Node, Ops); } /// \brief Fold the instructions after selecting them. SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, SelectionDAG &DAG) const { const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); Node = AdjustRegClass(Node, DAG); if (TII->isMIMG(Node->getMachineOpcode())) adjustWritemask(Node, DAG); if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG) { legalizeTargetIndependentNode(Node, DAG); return Node; } return legalizeOperands(Node, DAG); } /// \brief Assign the register class depending on the number of /// bits set in the writemask void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const { const SIInstrInfo *TII = static_cast( getTargetMachine().getSubtargetImpl()->getInstrInfo()); TII->legalizeOperands(MI); if (TII->isMIMG(MI->getOpcode())) { unsigned VReg = MI->getOperand(0).getReg(); unsigned Writemask = MI->getOperand(1).getImm(); unsigned BitsSet = 0; for (unsigned i = 0; i < 4; ++i) BitsSet += Writemask & (1 << i) ? 1 : 0; const TargetRegisterClass *RC; switch (BitsSet) { default: return; case 1: RC = &AMDGPU::VReg_32RegClass; break; case 2: RC = &AMDGPU::VReg_64RegClass; break; case 3: RC = &AMDGPU::VReg_96RegClass; break; } unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet); MI->setDesc(TII->get(NewOpcode)); MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); MRI.setRegClass(VReg, RC); return; } // Replace unused atomics with the no return version. int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode()); if (NoRetAtomicOp != -1) { if (!Node->hasAnyUseOfValue(0)) { MI->setDesc(TII->get(NoRetAtomicOp)); MI->RemoveOperand(0); } return; } } MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N, SelectionDAG &DAG) const { SDLoc DL(N); unsigned NewOpcode = N->getMachineOpcode(); switch (N->getMachineOpcode()) { default: return N; case AMDGPU::S_LOAD_DWORD_IMM: NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64; // Fall-through case AMDGPU::S_LOAD_DWORDX2_SGPR: if (NewOpcode == N->getMachineOpcode()) { NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64; } // Fall-through case AMDGPU::S_LOAD_DWORDX4_IMM: case AMDGPU::S_LOAD_DWORDX4_SGPR: { if (NewOpcode == N->getMachineOpcode()) { NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64; } if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) { return N; } ConstantSDNode *Offset = cast(N->getOperand(1)); MachineSDNode *RSrc = DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::i128, DAG.getConstant(0, MVT::i64)); SmallVector Ops; Ops.push_back(SDValue(RSrc, 0)); Ops.push_back(N->getOperand(0)); Ops.push_back(DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32)); // Copy remaining operands so we keep any chain and glue nodes that follow // the normal operands. for (unsigned I = 2, E = N->getNumOperands(); I != E; ++I) Ops.push_back(N->getOperand(I)); return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops); } } } SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, unsigned Reg, EVT VT) const { SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT); return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), cast(VReg)->getReg(), VT); }