//===-- LTOModule.cpp - LLVM Link Time Optimizer --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "LTOModule.h" #include "llvm/Constants.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/Triple.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/Support/SystemUtils.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Host.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/SubtargetFeature.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Target/TargetSelect.h" using namespace llvm; bool LTOModule::isBitcodeFile(const void *mem, size_t length) { return llvm::sys::IdentifyFileType((char*)mem, length) == llvm::sys::Bitcode_FileType; } bool LTOModule::isBitcodeFile(const char *path) { return llvm::sys::Path(path).isBitcodeFile(); } bool LTOModule::isBitcodeFileForTarget(const void *mem, size_t length, const char *triplePrefix) { MemoryBuffer *buffer = makeBuffer(mem, length); if (!buffer) return false; return isTargetMatch(buffer, triplePrefix); } bool LTOModule::isBitcodeFileForTarget(const char *path, const char *triplePrefix) { MemoryBuffer *buffer = MemoryBuffer::getFile(path); if (buffer == NULL) return false; return isTargetMatch(buffer, triplePrefix); } // Takes ownership of buffer. bool LTOModule::isTargetMatch(MemoryBuffer *buffer, const char *triplePrefix) { std::string Triple = getBitcodeTargetTriple(buffer, getGlobalContext()); delete buffer; return (strncmp(Triple.c_str(), triplePrefix, strlen(triplePrefix)) == 0); } LTOModule::LTOModule(Module *m, TargetMachine *t) : _module(m), _target(t), _symbolsParsed(false) { } LTOModule *LTOModule::makeLTOModule(const char *path, std::string &errMsg) { OwningPtr buffer(MemoryBuffer::getFile(path, &errMsg)); if (!buffer) return NULL; return makeLTOModule(buffer.get(), errMsg); } /// makeBuffer - Create a MemoryBuffer from a memory range. MemoryBuffer /// requires the byte past end of the buffer to be a zero. We might get lucky /// and already be that way, otherwise make a copy. Also if next byte is on a /// different page, don't assume it is readable. MemoryBuffer *LTOModule::makeBuffer(const void *mem, size_t length) { const char *startPtr = (char*)mem; const char *endPtr = startPtr+length; if (((uintptr_t)endPtr & (sys::Process::GetPageSize()-1)) == 0 || *endPtr != 0) return MemoryBuffer::getMemBufferCopy(StringRef(startPtr, length)); return MemoryBuffer::getMemBuffer(StringRef(startPtr, length)); } LTOModule *LTOModule::makeLTOModule(const void *mem, size_t length, std::string &errMsg) { OwningPtr buffer(makeBuffer(mem, length)); if (!buffer) return NULL; return makeLTOModule(buffer.get(), errMsg); } LTOModule *LTOModule::makeLTOModule(MemoryBuffer *buffer, std::string &errMsg) { InitializeAllTargets(); // parse bitcode buffer OwningPtr m(ParseBitcodeFile(buffer, getGlobalContext(), &errMsg)); if (!m) return NULL; std::string Triple = m->getTargetTriple(); if (Triple.empty()) Triple = sys::getHostTriple(); // find machine architecture for this module const Target *march = TargetRegistry::lookupTarget(Triple, errMsg); if (!march) return NULL; // construct LTModule, hand over ownership of module and target SubtargetFeatures Features; Features.getDefaultSubtargetFeatures("" /* cpu */, llvm::Triple(Triple)); std::string FeatureStr = Features.getString(); TargetMachine *target = march->createTargetMachine(Triple, FeatureStr); return new LTOModule(m.take(), target); } const char *LTOModule::getTargetTriple() { return _module->getTargetTriple().c_str(); } void LTOModule::setTargetTriple(const char *triple) { _module->setTargetTriple(triple); } void LTOModule::addDefinedFunctionSymbol(Function *f, Mangler &mangler) { // add to list of defined symbols addDefinedSymbol(f, mangler, true); // add external symbols referenced by this function. for (Function::iterator b = f->begin(); b != f->end(); ++b) { for (BasicBlock::iterator i = b->begin(); i != b->end(); ++i) { for (unsigned count = 0, total = i->getNumOperands(); count != total; ++count) { findExternalRefs(i->getOperand(count), mangler); } } } } // Get string that data pointer points to. bool LTOModule::objcClassNameFromExpression(Constant *c, std::string &name) { if (ConstantExpr *ce = dyn_cast(c)) { Constant *op = ce->getOperand(0); if (GlobalVariable *gvn = dyn_cast(op)) { Constant *cn = gvn->getInitializer(); if (ConstantArray *ca = dyn_cast(cn)) { if (ca->isCString()) { name = ".objc_class_name_" + ca->getAsString(); return true; } } } } return false; } // Parse i386/ppc ObjC class data structure. void LTOModule::addObjCClass(GlobalVariable *clgv) { if (ConstantStruct *c = dyn_cast(clgv->getInitializer())) { // second slot in __OBJC,__class is pointer to superclass name std::string superclassName; if (objcClassNameFromExpression(c->getOperand(1), superclassName)) { NameAndAttributes info; if (_undefines.find(superclassName.c_str()) == _undefines.end()) { const char *symbolName = ::strdup(superclassName.c_str()); info.name = symbolName; info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; // string is owned by _undefines _undefines[info.name] = info; } } // third slot in __OBJC,__class is pointer to class name std::string className; if (objcClassNameFromExpression(c->getOperand(2), className)) { const char *symbolName = ::strdup(className.c_str()); NameAndAttributes info; info.name = symbolName; info.attributes = (lto_symbol_attributes) (LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | LTO_SYMBOL_SCOPE_DEFAULT); _symbols.push_back(info); _defines[info.name] = 1; } } } // Parse i386/ppc ObjC category data structure. void LTOModule::addObjCCategory(GlobalVariable *clgv) { if (ConstantStruct *c = dyn_cast(clgv->getInitializer())) { // second slot in __OBJC,__category is pointer to target class name std::string targetclassName; if (objcClassNameFromExpression(c->getOperand(1), targetclassName)) { NameAndAttributes info; if (_undefines.find(targetclassName.c_str()) == _undefines.end()) { const char *symbolName = ::strdup(targetclassName.c_str()); info.name = symbolName; info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; // string is owned by _undefines _undefines[info.name] = info; } } } } // Parse i386/ppc ObjC class list data structure. void LTOModule::addObjCClassRef(GlobalVariable *clgv) { std::string targetclassName; if (objcClassNameFromExpression(clgv->getInitializer(), targetclassName)) { NameAndAttributes info; if (_undefines.find(targetclassName.c_str()) == _undefines.end()) { const char *symbolName = ::strdup(targetclassName.c_str()); info.name = symbolName; info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; // string is owned by _undefines _undefines[info.name] = info; } } } void LTOModule::addDefinedDataSymbol(GlobalValue *v, Mangler &mangler) { // Add to list of defined symbols. addDefinedSymbol(v, mangler, false); // Special case i386/ppc ObjC data structures in magic sections: // The issue is that the old ObjC object format did some strange // contortions to avoid real linker symbols. For instance, the // ObjC class data structure is allocated statically in the executable // that defines that class. That data structures contains a pointer to // its superclass. But instead of just initializing that part of the // struct to the address of its superclass, and letting the static and // dynamic linkers do the rest, the runtime works by having that field // instead point to a C-string that is the name of the superclass. // At runtime the objc initialization updates that pointer and sets // it to point to the actual super class. As far as the linker // knows it is just a pointer to a string. But then someone wanted the // linker to issue errors at build time if the superclass was not found. // So they figured out a way in mach-o object format to use an absolute // symbols (.objc_class_name_Foo = 0) and a floating reference // (.reference .objc_class_name_Bar) to cause the linker into erroring when // a class was missing. // The following synthesizes the implicit .objc_* symbols for the linker // from the ObjC data structures generated by the front end. if (v->hasSection() /* && isTargetDarwin */) { // special case if this data blob is an ObjC class definition if (v->getSection().compare(0, 15, "__OBJC,__class,") == 0) { if (GlobalVariable *gv = dyn_cast(v)) { addObjCClass(gv); } } // special case if this data blob is an ObjC category definition else if (v->getSection().compare(0, 18, "__OBJC,__category,") == 0) { if (GlobalVariable *gv = dyn_cast(v)) { addObjCCategory(gv); } } // special case if this data blob is the list of referenced classes else if (v->getSection().compare(0, 18, "__OBJC,__cls_refs,") == 0) { if (GlobalVariable *gv = dyn_cast(v)) { addObjCClassRef(gv); } } } // add external symbols referenced by this data. for (unsigned count = 0, total = v->getNumOperands(); count != total; ++count) { findExternalRefs(v->getOperand(count), mangler); } } void LTOModule::addDefinedSymbol(GlobalValue *def, Mangler &mangler, bool isFunction) { // ignore all llvm.* symbols if (def->getName().startswith("llvm.")) return; // string is owned by _defines const char *symbolName = ::strdup(mangler.getNameWithPrefix(def).c_str()); // set alignment part log2() can have rounding errors uint32_t align = def->getAlignment(); uint32_t attr = align ? CountTrailingZeros_32(def->getAlignment()) : 0; // set permissions part if (isFunction) attr |= LTO_SYMBOL_PERMISSIONS_CODE; else { GlobalVariable *gv = dyn_cast(def); if (gv && gv->isConstant()) attr |= LTO_SYMBOL_PERMISSIONS_RODATA; else attr |= LTO_SYMBOL_PERMISSIONS_DATA; } // set definition part if (def->hasWeakLinkage() || def->hasLinkOnceLinkage() || def->hasLinkerPrivateWeakLinkage() || def->hasLinkerPrivateWeakDefAutoLinkage()) attr |= LTO_SYMBOL_DEFINITION_WEAK; else if (def->hasCommonLinkage()) attr |= LTO_SYMBOL_DEFINITION_TENTATIVE; else attr |= LTO_SYMBOL_DEFINITION_REGULAR; // set scope part if (def->hasHiddenVisibility()) attr |= LTO_SYMBOL_SCOPE_HIDDEN; else if (def->hasProtectedVisibility()) attr |= LTO_SYMBOL_SCOPE_PROTECTED; else if (def->hasExternalLinkage() || def->hasWeakLinkage() || def->hasLinkOnceLinkage() || def->hasCommonLinkage() || def->hasLinkerPrivateWeakLinkage()) attr |= LTO_SYMBOL_SCOPE_DEFAULT; else if (def->hasLinkerPrivateWeakDefAutoLinkage()) attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN; else attr |= LTO_SYMBOL_SCOPE_INTERNAL; // add to table of symbols NameAndAttributes info; info.name = symbolName; info.attributes = (lto_symbol_attributes)attr; _symbols.push_back(info); _defines[info.name] = 1; } void LTOModule::addAsmGlobalSymbol(const char *name) { // only add new define if not already defined if (_defines.count(name)) return; // string is owned by _defines const char *symbolName = ::strdup(name); uint32_t attr = LTO_SYMBOL_DEFINITION_REGULAR; attr |= LTO_SYMBOL_SCOPE_DEFAULT; NameAndAttributes info; info.name = symbolName; info.attributes = (lto_symbol_attributes)attr; _symbols.push_back(info); _defines[info.name] = 1; } void LTOModule::addPotentialUndefinedSymbol(GlobalValue *decl, Mangler &mangler) { // ignore all llvm.* symbols if (decl->getName().startswith("llvm.")) return; // ignore all aliases if (isa(decl)) return; std::string name = mangler.getNameWithPrefix(decl); // we already have the symbol if (_undefines.find(name) != _undefines.end()) return; NameAndAttributes info; // string is owned by _undefines info.name = ::strdup(name.c_str()); if (decl->hasExternalWeakLinkage()) info.attributes = LTO_SYMBOL_DEFINITION_WEAKUNDEF; else info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED; _undefines[name] = info; } // Find external symbols referenced by VALUE. This is a recursive function. void LTOModule::findExternalRefs(Value *value, Mangler &mangler) { if (GlobalValue *gv = dyn_cast(value)) { if (!gv->hasExternalLinkage()) addPotentialUndefinedSymbol(gv, mangler); // If this is a variable definition, do not recursively process // initializer. It might contain a reference to this variable // and cause an infinite loop. The initializer will be // processed in addDefinedDataSymbol(). return; } // GlobalValue, even with InternalLinkage type, may have operands with // ExternalLinkage type. Do not ignore these operands. if (Constant *c = dyn_cast(value)) { // Handle ConstantExpr, ConstantStruct, ConstantArry etc. for (unsigned i = 0, e = c->getNumOperands(); i != e; ++i) findExternalRefs(c->getOperand(i), mangler); } } void LTOModule::lazyParseSymbols() { if (_symbolsParsed) return; _symbolsParsed = true; // Use mangler to add GlobalPrefix to names to match linker names. MCContext Context(*_target->getMCAsmInfo()); Mangler mangler(Context, *_target->getTargetData()); // add functions for (Module::iterator f = _module->begin(); f != _module->end(); ++f) { if (f->isDeclaration()) addPotentialUndefinedSymbol(f, mangler); else addDefinedFunctionSymbol(f, mangler); } // add data for (Module::global_iterator v = _module->global_begin(), e = _module->global_end(); v != e; ++v) { if (v->isDeclaration()) addPotentialUndefinedSymbol(v, mangler); else addDefinedDataSymbol(v, mangler); } // add asm globals const std::string &inlineAsm = _module->getModuleInlineAsm(); const std::string glbl = ".globl"; std::string asmSymbolName; std::string::size_type pos = inlineAsm.find(glbl, 0); while (pos != std::string::npos) { // eat .globl pos = pos + 6; // skip white space between .globl and symbol name std::string::size_type pbegin = inlineAsm.find_first_not_of(' ', pos); if (pbegin == std::string::npos) break; // find end-of-line std::string::size_type pend = inlineAsm.find_first_of('\n', pbegin); if (pend == std::string::npos) break; asmSymbolName.assign(inlineAsm, pbegin, pend - pbegin); addAsmGlobalSymbol(asmSymbolName.c_str()); // search next .globl pos = inlineAsm.find(glbl, pend); } // add aliases for (Module::alias_iterator i = _module->alias_begin(), e = _module->alias_end(); i != e; ++i) { if (i->isDeclaration()) addPotentialUndefinedSymbol(i, mangler); else addDefinedDataSymbol(i, mangler); } // make symbols for all undefines for (StringMap::iterator it=_undefines.begin(); it != _undefines.end(); ++it) { // if this symbol also has a definition, then don't make an undefine // because it is a tentative definition if (_defines.count(it->getKey()) == 0) { NameAndAttributes info = it->getValue(); _symbols.push_back(info); } } } uint32_t LTOModule::getSymbolCount() { lazyParseSymbols(); return _symbols.size(); } lto_symbol_attributes LTOModule::getSymbolAttributes(uint32_t index) { lazyParseSymbols(); if (index < _symbols.size()) return _symbols[index].attributes; else return lto_symbol_attributes(0); } const char *LTOModule::getSymbolName(uint32_t index) { lazyParseSymbols(); if (index < _symbols.size()) return _symbols[index].name; else return NULL; }