//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the SparcV8 instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// class InstV8 : Instruction { // SparcV8 instruction baseline field bits<32> Inst; let Namespace = "V8"; bits<2> op; let Inst{31-30} = op; // Top two bits are the 'op' field // Bit attributes specific to SparcV8 instructions bit isPasi = 0; // Does this instruction affect an alternate addr space? bit isPrivileged = 0; // Is this a privileged instruction? } include "SparcV8InstrFormats.td" //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// // Pseudo instructions. class PseudoInstV8 : InstV8 { let Name = nm; } def PHI : PseudoInstV8<"PHI">; def ADJCALLSTACKDOWN : PseudoInstV8<"ADJCALLSTACKDOWN">; def ADJCALLSTACKUP : PseudoInstV8<"ADJCALLSTACKUP">; def IMPLICIT_USE : PseudoInstV8<"IMPLICIT_USE">; def IMPLICIT_DEF : PseudoInstV8<"IMPLICIT_DEF">; def FpMOVD : PseudoInstV8<"FpMOVD">; // pseudo 64-bit double move // Section A.3 - Synthetic Instructions, p. 85 // special cases of JMPL: let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in { let rd = I7.Num, rs1 = G0.Num, simm13 = 8 in def RET : F3_2<2, 0b111000, "ret">; let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in def RETL: F3_2<2, 0b111000, "retl">; } // CMP is a special case of SUBCC where destination is ignored, by setting it to // %g0 (hardwired zero). // FIXME: should keep track of the fact that it defs the integer condition codes let rd = 0 in def CMPri: F3_2<2, 0b010100, "cmp">; // Section B.1 - Load Integer Instructions, p. 90 def LDSB: F3_2<3, 0b001001, "ldsb">; def LDSH: F3_2<3, 0b001010, "ldsh">; def LDUB: F3_2<3, 0b000001, "ldub">; def LDUH: F3_2<3, 0b000010, "lduh">; def LD : F3_2<3, 0b000000, "ld">; def LDD : F3_2<3, 0b000011, "ldd">; // Section B.2 - Load Floating-point Instructions, p. 92 def LDFrr : F3_1<3, 0b100000, "ld">; def LDFri : F3_2<3, 0b100000, "ld">; def LDDFrr : F3_1<3, 0b100011, "ldd">; def LDDFri : F3_2<3, 0b100011, "ldd">; def LDFSRrr: F3_1<3, 0b100001, "ld">; def LDFSRri: F3_2<3, 0b100001, "ld">; // Section B.4 - Store Integer Instructions, p. 95 def STB : F3_2<3, 0b000101, "stb">; def STH : F3_2<3, 0b000110, "sth">; def ST : F3_2<3, 0b000100, "st">; def STD : F3_2<3, 0b000111, "std">; // Section B.5 - Store Floating-point Instructions, p. 97 def STFrr : F3_1<3, 0b100100, "st">; def STFri : F3_2<3, 0b100100, "st">; def STDFrr : F3_1<3, 0b100111, "std">; def STDFri : F3_2<3, 0b100111, "std">; def STFSRrr : F3_1<3, 0b100101, "st">; def STFSRri : F3_2<3, 0b100101, "st">; def STDFQrr : F3_1<3, 0b100110, "std">; def STDFQri : F3_2<3, 0b100110, "std">; // Section B.9 - SETHI Instruction, p. 104 def SETHIi: F2_1<0b100, "sethi">; // Section B.10 - NOP Instruction, p. 105 // (It's a special case of SETHI) let rd = 0, imm22 = 0 in def NOP : F2_1<0b100, "nop">; // Section B.11 - Logical Instructions, p. 106 def ANDrr : F3_1<2, 0b000001, "and">; def ANDri : F3_2<2, 0b000001, "and">; def ORrr : F3_1<2, 0b000010, "or">; def ORri : F3_2<2, 0b000010, "or">; def XORrr : F3_1<2, 0b000011, "xor">; def XORri : F3_2<2, 0b000011, "xor">; // Section B.12 - Shift Instructions, p. 107 def SLLrr : F3_1<2, 0b100101, "sll">; def SLLri : F3_2<2, 0b100101, "sll">; def SRLrr : F3_1<2, 0b100110, "srl">; def SRLri : F3_2<2, 0b100110, "srl">; def SRArr : F3_1<2, 0b100111, "sra">; def SRAri : F3_2<2, 0b100111, "sra">; // Section B.13 - Add Instructions, p. 108 def ADDrr : F3_1<2, 0b000000, "add">; def ADDri : F3_2<2, 0b000000, "add">; // Section B.15 - Subtract Instructions, p. 110 def SUBrr : F3_1<2, 0b000100, "sub">; def SUBCCrr : F3_1<2, 0b010100, "subcc">; def SUBCCri : F3_2<2, 0b010100, "subcc">; // Section B.18 - Multiply Instructions, p. 113 def UMULrr : F3_1<2, 0b001010, "umul">; def SMULrr : F3_1<2, 0b001011, "smul">; // Section B.19 - Divide Instructions, p. 115 def UDIVrr : F3_1<2, 0b001110, "udiv">; def UDIVri : F3_2<2, 0b001110, "udiv">; def SDIVrr : F3_1<2, 0b001111, "sdiv">; def SDIVri : F3_2<2, 0b001111, "sdiv">; def UDIVCCrr : F3_1<2, 0b011110, "udivcc">; def UDIVCCri : F3_2<2, 0b011110, "udivcc">; def SDIVCCrr : F3_1<2, 0b011111, "sdivcc">; def SDIVCCri : F3_2<2, 0b011111, "sdivcc">; // Section B.20 - SAVE and RESTORE, p. 117 def SAVErr : F3_1<2, 0b111100, "save">; // save r, r, r def SAVEri : F3_2<2, 0b111100, "save">; // save r, i, r def RESTORErr : F3_1<2, 0b111101, "restore">; // restore r, r, r def RESTOREri : F3_2<2, 0b111101, "restore">; // restore r, i, r // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 // conditional branch class: class BranchV8 cc, string nm> : F2_2 { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; } let isBarrier = 1 in def BA : BranchV8<0b1000, "ba">; def BN : BranchV8<0b0000, "bn">; def BNE : BranchV8<0b1001, "bne">; def BE : BranchV8<0b0001, "be">; def BG : BranchV8<0b1010, "bg">; def BLE : BranchV8<0b0010, "ble">; def BGE : BranchV8<0b1011, "bge">; def BL : BranchV8<0b0011, "bl">; def BGU : BranchV8<0b1100, "bgu">; def BLEU : BranchV8<0b0100, "bleu">; def BCC : BranchV8<0b1101, "bcc">; def BCS : BranchV8<0b0101, "bcs">; // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 // floating-point conditional branch class: class FPBranchV8 cc, string nm> : F2_2 { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; } def FBA : FPBranchV8<0b1000, "fba">; def FBN : FPBranchV8<0b0000, "fbn">; def FBU : FPBranchV8<0b0111, "fbu">; def FBG : FPBranchV8<0b0110, "fbg">; def FBUG : FPBranchV8<0b0101, "fbug">; def FBL : FPBranchV8<0b0100, "fbl">; def FBUL : FPBranchV8<0b0011, "fbul">; def FBLG : FPBranchV8<0b0010, "fblg">; def FBNE : FPBranchV8<0b0001, "fbne">; def FBE : FPBranchV8<0b1001, "fbe">; def FBUE : FPBranchV8<0b1010, "fbue">; def FBGE : FPBranchV8<0b1011, "fbge">; def FBUGE: FPBranchV8<0b1100, "fbuge">; def FBLE : FPBranchV8<0b1101, "fble">; def FBULE: FPBranchV8<0b1110, "fbule">; def FBO : FPBranchV8<0b1111, "fbo">; // Section B.24 - Call and Link Instruction, p. 125 // This is the only Format 1 instruction let Uses = [O0, O1, O2, O3, O4, O5], Defs = [O0, O1, O2, O3, O4, O5], hasDelaySlot = 1, isCall = 1 in { // pc-relative call: def CALL : InstV8 { bits<30> disp; let op = 1; let Inst{29-0} = disp; let Name = "call"; } // indirect call: def JMPLrr : F3_1<2, 0b111000, "jmpl">; // jmpl [rs1+rs2], rd } // Section B.29 - Write State Register Instructions def WRrr : F3_1<2, 0b110000, "wr">; // wr rs1, rs2, rd def WRri : F3_2<2, 0b110000, "wr">; // wr rs1, imm, rd // Convert Integer to Floating-point Instructions, p. 141 def FITOS : F3_3<2, 0b110100, 0b011000100, "fitos">; def FITOD : F3_3<2, 0b110100, 0b011001000, "fitod">; // Convert Floating-point to Integer Instructions, p. 142 def FSTOI : F3_3<2, 0b110100, 0b011010001, "fstoi">; def FDTOI : F3_3<2, 0b110100, 0b011010010, "fdtoi">; // Convert between Floating-point Formats Instructions, p. 143 def FSTOD : F3_3<2, 0b110100, 0b011001001, "fstod">; def FDTOS : F3_3<2, 0b110100, 0b011000110, "fdtos">; // Floating-point Move Instructions, p. 144 def FMOVS : F3_3<2, 0b110100, 0b000000001, "fmovs">; def FNEGS : F3_3<2, 0b110100, 0b000000101, "fnegs">; def FABSS : F3_3<2, 0b110100, 0b000001001, "fabss">; // Floating-point Add and Subtract Instructions, p. 146 def FADDS : F3_3<2, 0b110100, 0b001000001, "fadds">; def FADDD : F3_3<2, 0b110100, 0b001000010, "faddd">; def FSUBS : F3_3<2, 0b110100, 0b001000101, "fsubs">; def FSUBD : F3_3<2, 0b110100, 0b001000110, "fsubd">; // Floating-point Multiply and Divide Instructions, p. 147 def FMULS : F3_3<2, 0b110100, 0b001001001, "fmuls">; def FMULD : F3_3<2, 0b110100, 0b001001010, "fmuld">; def FSMULD : F3_3<2, 0b110100, 0b001101001, "fsmuld">; def FDIVS : F3_3<2, 0b110100, 0b001001101, "fdivs">; def FDIVD : F3_3<2, 0b110100, 0b001001110, "fdivd">; // Floating-point Compare Instructions, p. 148 // Note: the 2nd template arg is different for these guys. // Note 2: the result of a FCMP is not available until the 2nd cycle // after the instr is retired, but there is no interlock. This behavior // is modelled as a delay slot. let hasDelaySlot = 1 in { def FCMPS : F3_3<2, 0b110101, 0b001010001, "fcmps">; def FCMPD : F3_3<2, 0b110101, 0b001010010, "fcmpd">; def FCMPES : F3_3<2, 0b110101, 0b001010101, "fcmpes">; def FCMPED : F3_3<2, 0b110101, 0b001010110, "fcmped">; }