//===- PreSelection.cpp - Specialize LLVM code for target machine ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PreSelection pass which specializes LLVM code for a // target machine, while remaining in legal portable LLVM form and // preserving type information and type safety. This is meant to enable // dataflow optimizations on target-specific operations such as accesses to // constants, globals, and array indexing. // //===----------------------------------------------------------------------===// #include "SparcInternals.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Module.h" #include "llvm/Constants.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/DerivedTypes.h" #include "llvm/Pass.h" #include "Support/CommandLine.h" #include namespace { //===--------------------------------------------------------------------===// // SelectDebugLevel - Allow command line control over debugging. // enum PreSelectDebugLevel_t { PreSelect_NoDebugInfo, PreSelect_PrintOutput, }; // Enable Debug Options to be specified on the command line cl::opt PreSelectDebugLevel("dpreselect", cl::Hidden, cl::desc("debug information for target-dependent pre-selection"), cl::values( clEnumValN(PreSelect_NoDebugInfo, "n", "disable debug output (default)"), clEnumValN(PreSelect_PrintOutput, "y", "print generated machine code"), /* default level = */ PreSelect_NoDebugInfo)); //===--------------------------------------------------------------------===// // class ConstantPoolForModule: // // The pool of constants that must be emitted for a module. // This is a single pool for the entire module and is shared by // all invocations of the PreSelection pass for this module by putting // this as an annotation on the Module object. // A single GlobalVariable is created for each constant in the pool // representing the memory for that constant. // AnnotationID CPFM_AID( AnnotationManager::getID("CodeGen::ConstantPoolForModule")); class ConstantPoolForModule : private Annotation { Module* myModule; std::map gvars; std::map origGVars; ConstantPoolForModule(Module* M); // called only by annotation builder ConstantPoolForModule(); // DO NOT IMPLEMENT void operator=(const ConstantPoolForModule&); // DO NOT IMPLEMENT public: static ConstantPoolForModule& get(Module* M) { ConstantPoolForModule* cpool = (ConstantPoolForModule*) M->getAnnotation(CPFM_AID); if (cpool == NULL) // create a new annotation and add it to the Module M->addAnnotation(cpool = new ConstantPoolForModule(M)); return *cpool; } GlobalVariable* getGlobalForConstant(Constant* CV) { std::map::iterator I = gvars.find(CV); if (I != gvars.end()) return I->second; // global exists so return it return addToConstantPool(CV); // create a new global and return it } GlobalVariable* addToConstantPool(Constant* CV) { GlobalVariable*& GV = gvars[CV]; // handle to global var entry in map if (GV == NULL) { // check if a global constant already existed; otherwise create one std::map::iterator PI = origGVars.find(CV); if (PI != origGVars.end()) GV = PI->second; // put in map else { GV = new GlobalVariable(CV->getType(), true, //put in map GlobalValue::InternalLinkage, CV); myModule->getGlobalList().push_back(GV); // GV owned by module now } } return GV; } }; /* ctor */ ConstantPoolForModule::ConstantPoolForModule(Module* M) : Annotation(CPFM_AID), myModule(M) { // Build reverse map for pre-existing global constants so we can find them for (Module::giterator GI = M->gbegin(), GE = M->gend(); GI != GE; ++GI) if (GI->hasInitializer() && GI->isConstant()) origGVars[GI->getInitializer()] = GI; } //===--------------------------------------------------------------------===// // PreSelection Pass - Specialize LLVM code for the current target machine. // class PreSelection : public BasicBlockPass, public InstVisitor { const TargetMachine ⌖ const TargetInstrInfo &instrInfo; Function* function; GlobalVariable* getGlobalForConstant(Constant* CV) { Module* M = function->getParent(); return ConstantPoolForModule::get(M).getGlobalForConstant(CV); } public: PreSelection (const TargetMachine &T): target(T), instrInfo(T.getInstrInfo()), function(NULL) {} // runOnBasicBlock - apply this pass to each BB bool runOnBasicBlock(BasicBlock &BB) { function = BB.getParent(); this->visit(BB); return true; } bool doFinalization(Function &F) { if (PreSelectDebugLevel >= PreSelect_PrintOutput) std::cerr << "\n\n*** LLVM code after pre-selection for function " << F.getName() << ":\n\n" << F; return false; } // These methods do the actual work of specializing code void visitInstruction(Instruction &I); // common work for every instr. void visitGetElementPtrInst(GetElementPtrInst &I); void visitCallInst(CallInst &I); // Helper functions for visiting operands of every instruction // // visitOperands() works on every operand in [firstOp, lastOp-1]. // If lastOp==0, lastOp defaults to #operands or #incoming Phi values. // // visitOneOperand() does all the work for one operand. // void visitOperands(Instruction &I, int firstOp=0, int lastOp=0); void visitOneOperand(Instruction &I, Value* Op, unsigned opNum, Instruction& insertBefore); }; // Register the pass... RegisterOpt X("preselect", "Specialize LLVM code for a target machine", createPreSelectionPass); } // end anonymous namespace //------------------------------------------------------------------------------ // Helper functions used by methods of class PreSelection //------------------------------------------------------------------------------ // getGlobalAddr(): Put address of a global into a v. register. static GetElementPtrInst* getGlobalAddr(Value* ptr, Instruction& insertBefore) { if (isa(ptr)) ptr = cast(ptr)->getValue(); return (isa(ptr)) ? new GetElementPtrInst(ptr, std::vector(1, ConstantSInt::get(Type::LongTy, 0U)), "addrOfGlobal", &insertBefore) : NULL; } // Wrapper on Constant::classof to use in find_if :-( inline static bool nonConstant(const Use& U) { return ! isa(U); } static Instruction* DecomposeConstantExpr(ConstantExpr* CE, Instruction& insertBefore) { Value *getArg1, *getArg2; switch(CE->getOpcode()) { case Instruction::Cast: getArg1 = CE->getOperand(0); if (ConstantExpr* CEarg = dyn_cast(getArg1)) getArg1 = DecomposeConstantExpr(CEarg, insertBefore); return new CastInst(getArg1, CE->getType(), "constantCast",&insertBefore); case Instruction::GetElementPtr: assert(find_if(CE->op_begin()+1, CE->op_end(),nonConstant) == CE->op_end() && "All indices in ConstantExpr getelementptr must be constant!"); getArg1 = CE->getOperand(0); if (ConstantExpr* CEarg = dyn_cast(getArg1)) getArg1 = DecomposeConstantExpr(CEarg, insertBefore); else if (GetElementPtrInst* gep = getGlobalAddr(getArg1, insertBefore)) getArg1 = gep; return new GetElementPtrInst(getArg1, std::vector(CE->op_begin()+1, CE->op_end()), "constantGEP", &insertBefore); default: // must be a binary operator assert(CE->getOpcode() >= Instruction::BinaryOpsBegin && CE->getOpcode() < Instruction::BinaryOpsEnd && "Unrecognized opcode in ConstantExpr"); getArg1 = CE->getOperand(0); if (ConstantExpr* CEarg = dyn_cast(getArg1)) getArg1 = DecomposeConstantExpr(CEarg, insertBefore); getArg2 = CE->getOperand(1); if (ConstantExpr* CEarg = dyn_cast(getArg2)) getArg2 = DecomposeConstantExpr(CEarg, insertBefore); return BinaryOperator::create((Instruction::BinaryOps) CE->getOpcode(), getArg1, getArg2, "constantBinaryOp", &insertBefore); } } //------------------------------------------------------------------------------ // Instruction visitor methods to perform instruction-specific operations //------------------------------------------------------------------------------ inline void PreSelection::visitOneOperand(Instruction &I, Value* Op, unsigned opNum, Instruction& insertBefore) { assert(&insertBefore != NULL && "Must have instruction to insert before."); if (GetElementPtrInst* gep = getGlobalAddr(Op, insertBefore)) { I.setOperand(opNum, gep); // replace global operand return; // nothing more to do for this op. } Constant* CV = dyn_cast(Op); if (CV == NULL) return; if (ConstantExpr* CE = dyn_cast(CV)) { // load-time constant: factor it out so we optimize as best we can Instruction* computeConst = DecomposeConstantExpr(CE, insertBefore); I.setOperand(opNum, computeConst); // replace expr operand with result } else if (instrInfo.ConstantTypeMustBeLoaded(CV)) { // load address of constant into a register, then load the constant GetElementPtrInst* gep = getGlobalAddr(getGlobalForConstant(CV), insertBefore); LoadInst* ldI = new LoadInst(gep, "loadConst", &insertBefore); I.setOperand(opNum, ldI); // replace operand with copy in v.reg. } else if (instrInfo.ConstantMayNotFitInImmedField(CV, &I)) { // put the constant into a virtual register using a cast CastInst* castI = new CastInst(CV, CV->getType(), "copyConst", &insertBefore); I.setOperand(opNum, castI); // replace operand with copy in v.reg. } } // visitOperands() transforms individual operands of all instructions: // -- Load "large" int constants into a virtual register. What is large // depends on the type of instruction and on the target architecture. // -- For any constants that cannot be put in an immediate field, // load address into virtual register first, and then load the constant. // // firstOp and lastOp can be used to skip leading and trailing operands. // If lastOp is 0, it defaults to #operands or #incoming Phi values. // inline void PreSelection::visitOperands(Instruction &I, int firstOp, int lastOp) { // For any instruction other than PHI, copies go just before the instr. // For a PHI, operand copies must be before the terminator of the // appropriate predecessor basic block. Remaining logic is simple // so just handle PHIs and other instructions separately. // if (PHINode* phi = dyn_cast(&I)) { if (lastOp == 0) lastOp = phi->getNumIncomingValues(); for (unsigned i=firstOp, N=lastOp; i < N; ++i) this->visitOneOperand(I, phi->getIncomingValue(i), phi->getOperandNumForIncomingValue(i), * phi->getIncomingBlock(i)->getTerminator()); } else { if (lastOp == 0) lastOp = I.getNumOperands(); for (unsigned i=firstOp, N=lastOp; i < N; ++i) this->visitOneOperand(I, I.getOperand(i), i, I); } } // Common work for *all* instructions. This needs to be called explicitly // by other visit functions. inline void PreSelection::visitInstruction(Instruction &I) { visitOperands(I); // Perform operand transformations } // GetElementPtr instructions: check if pointer is a global void PreSelection::visitGetElementPtrInst(GetElementPtrInst &I) { Instruction* curI = &I; // Decompose multidimensional array references if (I.getNumIndices() >= 2) { // DecomposeArrayRef() replaces I and deletes it, if successful, // so remember predecessor in order to find the replacement instruction. // Also remember the basic block in case there is no predecessor. Instruction* prevI = I.getPrev(); BasicBlock* bb = I.getParent(); if (DecomposeArrayRef(&I)) // first instr. replacing I curI = cast(prevI? prevI->getNext() : &bb->front()); } // Perform other transformations common to all instructions visitInstruction(*curI); } void PreSelection::visitCallInst(CallInst &I) { // Tell visitOperands to ignore the function name if this is a direct call. visitOperands(I, (/*firstOp=*/ I.getCalledFunction()? 1 : 0)); } //===----------------------------------------------------------------------===// // createPreSelectionPass - Public entrypoint for pre-selection pass // and this file as a whole... // Pass* createPreSelectionPass(TargetMachine &T) { return new PreSelection(T); }