//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ScheduleDAG class, which is used as the common // base class for SelectionDAG-based instruction scheduler. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SCHEDULEDAG_H #define LLVM_CODEGEN_SCHEDULEDAG_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallSet.h" namespace llvm { struct InstrStage; struct SUnit; class MachineConstantPool; class MachineFunction; class MachineModuleInfo; class MachineRegisterInfo; class MachineInstr; class TargetRegisterInfo; class SelectionDAG; class SelectionDAGISel; class TargetInstrInfo; class TargetInstrDesc; class TargetMachine; class TargetRegisterClass; /// HazardRecognizer - This determines whether or not an instruction can be /// issued this cycle, and whether or not a noop needs to be inserted to handle /// the hazard. class HazardRecognizer { public: virtual ~HazardRecognizer(); enum HazardType { NoHazard, // This instruction can be emitted at this cycle. Hazard, // This instruction can't be emitted at this cycle. NoopHazard // This instruction can't be emitted, and needs noops. }; /// getHazardType - Return the hazard type of emitting this node. There are /// three possible results. Either: /// * NoHazard: it is legal to issue this instruction on this cycle. /// * Hazard: issuing this instruction would stall the machine. If some /// other instruction is available, issue it first. /// * NoopHazard: issuing this instruction would break the program. If /// some other instruction can be issued, do so, otherwise issue a noop. virtual HazardType getHazardType(SDNode *Node) { return NoHazard; } /// EmitInstruction - This callback is invoked when an instruction is /// emitted, to advance the hazard state. virtual void EmitInstruction(SDNode *Node) { } /// AdvanceCycle - This callback is invoked when no instructions can be /// issued on this cycle without a hazard. This should increment the /// internal state of the hazard recognizer so that previously "Hazard" /// instructions will now not be hazards. virtual void AdvanceCycle() { } /// EmitNoop - This callback is invoked when a noop was added to the /// instruction stream. virtual void EmitNoop() { } }; /// SDep - Scheduling dependency. It keeps track of dependent nodes, /// cost of the depdenency, etc. struct SDep { SUnit *Dep; // Dependent - either a predecessor or a successor. unsigned Reg; // If non-zero, this dep is a phy register dependency. int Cost; // Cost of the dependency. bool isCtrl : 1; // True iff it's a control dependency. bool isSpecial : 1; // True iff it's a special ctrl dep added during sched. SDep(SUnit *d, unsigned r, int t, bool c, bool s) : Dep(d), Reg(r), Cost(t), isCtrl(c), isSpecial(s) {} }; /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or /// a group of nodes flagged together. struct SUnit { SDNode *Node; // Representative node. SmallVector FlaggedNodes;// All nodes flagged to Node. unsigned InstanceNo; // Instance#. One SDNode can be multiple // SUnit due to cloning. // Preds/Succs - The SUnits before/after us in the graph. The boolean value // is true if the edge is a token chain edge, false if it is a value edge. SmallVector Preds; // All sunit predecessors. SmallVector Succs; // All sunit successors. typedef SmallVector::iterator pred_iterator; typedef SmallVector::iterator succ_iterator; typedef SmallVector::const_iterator const_pred_iterator; typedef SmallVector::const_iterator const_succ_iterator; unsigned NodeNum; // Entry # of node in the node vector. unsigned short Latency; // Node latency. short NumPreds; // # of preds. short NumSuccs; // # of sucss. short NumPredsLeft; // # of preds not scheduled. short NumSuccsLeft; // # of succs not scheduled. bool isTwoAddress : 1; // Is a two-address instruction. bool isCommutable : 1; // Is a commutable instruction. bool hasPhysRegDefs : 1; // Has physreg defs that are being used. bool isPending : 1; // True once pending. bool isAvailable : 1; // True once available. bool isScheduled : 1; // True once scheduled. unsigned CycleBound; // Upper/lower cycle to be scheduled at. unsigned Cycle; // Once scheduled, the cycle of the op. unsigned Depth; // Node depth; unsigned Height; // Node height; const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null. const TargetRegisterClass *CopySrcRC; SUnit(SDNode *node, unsigned nodenum) : Node(node), InstanceNo(0), NodeNum(nodenum), Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0), isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false), isPending(false), isAvailable(false), isScheduled(false), CycleBound(0), Cycle(0), Depth(0), Height(0), CopyDstRC(NULL), CopySrcRC(NULL) {} /// addPred - This adds the specified node as a pred of the current node if /// not already. This returns true if this is a new pred. bool addPred(SUnit *N, bool isCtrl, bool isSpecial, unsigned PhyReg = 0, int Cost = 1) { for (unsigned i = 0, e = Preds.size(); i != e; ++i) if (Preds[i].Dep == N && Preds[i].isCtrl == isCtrl && Preds[i].isSpecial == isSpecial) return false; Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isSpecial)); N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl, isSpecial)); if (!isCtrl) { ++NumPreds; ++N->NumSuccs; } if (!N->isScheduled) ++NumPredsLeft; if (!isScheduled) ++N->NumSuccsLeft; return true; } bool removePred(SUnit *N, bool isCtrl, bool isSpecial) { for (SmallVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) if (I->Dep == N && I->isCtrl == isCtrl && I->isSpecial == isSpecial) { bool FoundSucc = false; for (SmallVector::iterator II = N->Succs.begin(), EE = N->Succs.end(); II != EE; ++II) if (II->Dep == this && II->isCtrl == isCtrl && II->isSpecial == isSpecial) { FoundSucc = true; N->Succs.erase(II); break; } assert(FoundSucc && "Mismatching preds / succs lists!"); Preds.erase(I); if (!isCtrl) { --NumPreds; --N->NumSuccs; } if (!N->isScheduled) --NumPredsLeft; if (!isScheduled) --N->NumSuccsLeft; return true; } return false; } bool isPred(SUnit *N) { for (unsigned i = 0, e = Preds.size(); i != e; ++i) if (Preds[i].Dep == N) return true; return false; } bool isSucc(SUnit *N) { for (unsigned i = 0, e = Succs.size(); i != e; ++i) if (Succs[i].Dep == N) return true; return false; } void dump(const SelectionDAG *G) const; void dumpAll(const SelectionDAG *G) const; }; //===--------------------------------------------------------------------===// /// SchedulingPriorityQueue - This interface is used to plug different /// priorities computation algorithms into the list scheduler. It implements /// the interface of a standard priority queue, where nodes are inserted in /// arbitrary order and returned in priority order. The computation of the /// priority and the representation of the queue are totally up to the /// implementation to decide. /// class SchedulingPriorityQueue { public: virtual ~SchedulingPriorityQueue() {} virtual void initNodes(DenseMap > &SUMap, std::vector &SUnits) = 0; virtual void addNode(const SUnit *SU) = 0; virtual void updateNode(const SUnit *SU) = 0; virtual void releaseState() = 0; virtual unsigned size() const = 0; virtual bool empty() const = 0; virtual void push(SUnit *U) = 0; virtual void push_all(const std::vector &Nodes) = 0; virtual SUnit *pop() = 0; virtual void remove(SUnit *SU) = 0; /// ScheduledNode - As each node is scheduled, this method is invoked. This /// allows the priority function to adjust the priority of node that have /// already been emitted. virtual void ScheduledNode(SUnit *Node) {} virtual void UnscheduledNode(SUnit *Node) {} }; class ScheduleDAG { public: SelectionDAG &DAG; // DAG of the current basic block MachineBasicBlock *BB; // Current basic block const TargetMachine &TM; // Target processor const TargetInstrInfo *TII; // Target instruction information const TargetRegisterInfo *TRI; // Target processor register info MachineFunction *MF; // Machine function MachineRegisterInfo &MRI; // Virtual/real register map MachineConstantPool *ConstPool; // Target constant pool std::vector Sequence; // The schedule. Null SUnit*'s // represent noop instructions. DenseMap > SUnitMap; // SDNode to SUnit mapping (n -> n). std::vector SUnits; // The scheduling units. SmallSet CommuteSet; // Nodes the should be commuted. ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb, const TargetMachine &tm); virtual ~ScheduleDAG() {} /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered /// using 'dot'. /// void viewGraph(); /// Run - perform scheduling. /// MachineBasicBlock *Run(); /// isPassiveNode - Return true if the node is a non-scheduled leaf. /// static bool isPassiveNode(SDNode *Node) { if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; return false; } /// NewSUnit - Creates a new SUnit and return a ptr to it. /// SUnit *NewSUnit(SDNode *N) { SUnits.push_back(SUnit(N, SUnits.size())); return &SUnits.back(); } /// Clone - Creates a clone of the specified SUnit. It does not copy the /// predecessors / successors info nor the temporary scheduling states. SUnit *Clone(SUnit *N); /// BuildSchedUnits - Build SUnits from the selection dag that we are input. /// This SUnit graph is similar to the SelectionDAG, but represents flagged /// together nodes with a single SUnit. void BuildSchedUnits(); /// ComputeLatency - Compute node latency. /// void ComputeLatency(SUnit *SU); /// CalculateDepths, CalculateHeights - Calculate node depth / height. /// void CalculateDepths(); void CalculateHeights(); /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands /// (which do not go into the machine instrs.) static unsigned CountResults(SDNode *Node); /// CountOperands - The inputs to target nodes have any actual inputs first, /// followed by special operands that describe memory references, then an /// optional chain operand, then flag operands. Compute the number of /// actual operands that will go into the resulting MachineInstr. static unsigned CountOperands(SDNode *Node); /// ComputeMemOperandsEnd - Find the index one past the last /// MemOperandSDNode operand static unsigned ComputeMemOperandsEnd(SDNode *Node); /// EmitNode - Generate machine code for an node and needed dependencies. /// VRBaseMap contains, for each already emitted node, the first virtual /// register number for the results of the node. /// void EmitNode(SDNode *Node, unsigned InstNo, DenseMap &VRBaseMap); /// EmitNoop - Emit a noop instruction. /// void EmitNoop(); void EmitCrossRCCopy(SUnit *SU, DenseMap &VRBaseMap); /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an /// implicit physical register output. void EmitCopyFromReg(SDNode *Node, unsigned ResNo, unsigned InstNo, unsigned SrcReg, DenseMap &VRBaseMap); void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI, const TargetInstrDesc &II, DenseMap &VRBaseMap); /// EmitLiveInCopy - Emit a copy for a live in physical register. If the /// physical register has only a single copy use, then coalesced the copy /// if possible. void EmitLiveInCopy(MachineBasicBlock *MBB, MachineBasicBlock::iterator &InsertPos, unsigned VirtReg, unsigned PhysReg, const TargetRegisterClass *RC, DenseMap &CopyRegMap); /// EmitLiveInCopies - If this is the first basic block in the function, /// and if it has live ins that need to be copied into vregs, emit the /// copies into the top of the block. void EmitLiveInCopies(MachineBasicBlock *MBB); void EmitSchedule(); void dumpSchedule() const; /// Schedule - Order nodes according to selected style. /// virtual void Schedule() {} private: /// EmitSubregNode - Generate machine code for subreg nodes. /// void EmitSubregNode(SDNode *Node, DenseMap &VRBaseMap); void AddOperand(MachineInstr *MI, SDOperand Op, unsigned IIOpNum, const TargetInstrDesc *II, DenseMap &VRBaseMap); void AddMemOperand(MachineInstr *MI, const MemOperand &MO); }; /// createBURRListDAGScheduler - This creates a bottom up register usage /// reduction list scheduler. ScheduleDAG* createBURRListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB); /// createTDRRListDAGScheduler - This creates a top down register usage /// reduction list scheduler. ScheduleDAG* createTDRRListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB); /// createTDListDAGScheduler - This creates a top-down list scheduler with /// a hazard recognizer. ScheduleDAG* createTDListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB); /// createDefaultScheduler - This creates an instruction scheduler appropriate /// for the target. ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB); class SUnitIterator : public forward_iterator { SUnit *Node; unsigned Operand; SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {} public: bool operator==(const SUnitIterator& x) const { return Operand == x.Operand; } bool operator!=(const SUnitIterator& x) const { return !operator==(x); } const SUnitIterator &operator=(const SUnitIterator &I) { assert(I.Node == Node && "Cannot assign iterators to two different nodes!"); Operand = I.Operand; return *this; } pointer operator*() const { return Node->Preds[Operand].Dep; } pointer operator->() const { return operator*(); } SUnitIterator& operator++() { // Preincrement ++Operand; return *this; } SUnitIterator operator++(int) { // Postincrement SUnitIterator tmp = *this; ++*this; return tmp; } static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); } static SUnitIterator end (SUnit *N) { return SUnitIterator(N, N->Preds.size()); } unsigned getOperand() const { return Operand; } const SUnit *getNode() const { return Node; } bool isCtrlDep() const { return Node->Preds[Operand].isCtrl; } }; template <> struct GraphTraits { typedef SUnit NodeType; typedef SUnitIterator ChildIteratorType; static inline NodeType *getEntryNode(SUnit *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return SUnitIterator::begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return SUnitIterator::end(N); } }; template <> struct GraphTraits : public GraphTraits { typedef std::vector::iterator nodes_iterator; static nodes_iterator nodes_begin(ScheduleDAG *G) { return G->SUnits.begin(); } static nodes_iterator nodes_end(ScheduleDAG *G) { return G->SUnits.end(); } }; } #endif