//===- MipsInstrInfo.h - Mips Instruction Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef MIPSINSTRUCTIONINFO_H #define MIPSINSTRUCTIONINFO_H #include "Mips.h" #include "llvm/Target/TargetInstrInfo.h" #include "MipsRegisterInfo.h" namespace llvm { namespace Mips { // Mips Branch Codes enum FPBranchCode { BRANCH_F, BRANCH_T, BRANCH_FL, BRANCH_TL, BRANCH_INVALID }; // Mips Condition Codes enum CondCode { // To be used with float branch True FCOND_F, FCOND_UN, FCOND_EQ, FCOND_UEQ, FCOND_OLT, FCOND_ULT, FCOND_OLE, FCOND_ULE, FCOND_SF, FCOND_NGLE, FCOND_SEQ, FCOND_NGL, FCOND_LT, FCOND_NGE, FCOND_LE, FCOND_NGT, // To be used with float branch False // This conditions have the same mnemonic as the // above ones, but are used with a branch False; FCOND_T, FCOND_OR, FCOND_NEQ, FCOND_OGL, FCOND_UGE, FCOND_OGE, FCOND_UGT, FCOND_OGT, FCOND_ST, FCOND_GLE, FCOND_SNE, FCOND_GL, FCOND_NLT, FCOND_GE, FCOND_NLE, FCOND_GT, // Only integer conditions COND_E, COND_GZ, COND_GEZ, COND_LZ, COND_LEZ, COND_NE, COND_INVALID }; // Turn condition code into conditional branch opcode. unsigned GetCondBranchFromCond(CondCode CC); /// GetOppositeBranchCondition - Return the inverse of the specified cond, /// e.g. turning COND_E to COND_NE. CondCode GetOppositeBranchCondition(Mips::CondCode CC); /// MipsCCToString - Map each FP condition code to its string inline static const char *MipsFCCToString(Mips::CondCode CC) { switch (CC) { default: assert(0 && "Unknown condition code"); case FCOND_F: case FCOND_T: return "f"; case FCOND_UN: case FCOND_OR: return "un"; case FCOND_EQ: case FCOND_NEQ: return "eq"; case FCOND_UEQ: case FCOND_OGL: return "ueq"; case FCOND_OLT: case FCOND_UGE: return "olt"; case FCOND_ULT: case FCOND_OGE: return "ult"; case FCOND_OLE: case FCOND_UGT: return "ole"; case FCOND_ULE: case FCOND_OGT: return "ule"; case FCOND_SF: case FCOND_ST: return "sf"; case FCOND_NGLE: case FCOND_GLE: return "ngle"; case FCOND_SEQ: case FCOND_SNE: return "seq"; case FCOND_NGL: case FCOND_GL: return "ngl"; case FCOND_LT: case FCOND_NLT: return "lt"; case FCOND_NGE: case FCOND_GE: return "ge"; case FCOND_LE: case FCOND_NLE: return "nle"; case FCOND_NGT: case FCOND_GT: return "gt"; } } } class MipsInstrInfo : public TargetInstrInfoImpl { MipsTargetMachine &TM; const MipsRegisterInfo RI; public: explicit MipsInstrInfo(MipsTargetMachine &TM); /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As /// such, whenever a client has an instance of instruction info, it should /// always be able to get register info as well (through this method). /// virtual const MipsRegisterInfo &getRegisterInfo() const { return RI; } /// Return true if the instruction is a register to register move and /// leave the source and dest operands in the passed parameters. /// virtual bool isMoveInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg) const; /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const; /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const; /// Branch Analysis virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond) const; virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond) const; virtual bool copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const; virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC) const; virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const; virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC) const; virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const; virtual MachineInstr* foldMemoryOperand(MachineFunction &MF, MachineInstr* MI, SmallVectorImpl &Ops, int FrameIndex) const; virtual MachineInstr* foldMemoryOperand(MachineFunction &MF, MachineInstr* MI, SmallVectorImpl &Ops, MachineInstr* LoadMI) const { return 0; } virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const; virtual bool ReverseBranchCondition(SmallVectorImpl &Cond) const; /// Insert nop instruction when hazard condition is found virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const; }; } #endif