//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===// // // The LLVM Compiler Infrastructure // // This file was developed by Evan Cheng and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements bottom-up and top-down register pressure reduction list // schedulers, using standard algorithms. The basic approach uses a priority // queue of available nodes to schedule. One at a time, nodes are taken from // the priority queue (thus in priority order), checked for legality to // schedule, and emitted if legal. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include #include #include "llvm/Support/CommandLine.h" using namespace llvm; static RegisterScheduler burrListDAGScheduler("list-burr", " Bottom-up register reduction list scheduling", createBURRListDAGScheduler); static RegisterScheduler tdrListrDAGScheduler("list-tdrr", " Top-down register reduction list scheduling", createTDRRListDAGScheduler); namespace { //===----------------------------------------------------------------------===// /// ScheduleDAGRRList - The actual register reduction list scheduler /// implementation. This supports both top-down and bottom-up scheduling. /// class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG { private: /// isBottomUp - This is true if the scheduling problem is bottom-up, false if /// it is top-down. bool isBottomUp; /// AvailableQueue - The priority queue to use for the available SUnits. ///a SchedulingPriorityQueue *AvailableQueue; /// LiveRegs / LiveRegDefs - A set of physical registers and their definition /// that are "live". These nodes must be scheduled before any other nodes that /// modifies the registers can be scheduled. SmallSet LiveRegs; std::vector LiveRegDefs; std::vector LiveRegCycles; public: ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb, const TargetMachine &tm, bool isbottomup, SchedulingPriorityQueue *availqueue) : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), AvailableQueue(availqueue) { } ~ScheduleDAGRRList() { delete AvailableQueue; } void Schedule(); private: void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle); void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle); void CapturePred(SUnit *PredSU, SUnit *SU, bool isChain); void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void UnscheduleNodeBottomUp(SUnit *SU); SUnit *BackTrackBottomUp(SUnit*, unsigned, unsigned&, bool&); SUnit *CopyAndMoveSuccessors(SUnit *SU); bool DelayForLiveRegsBottomUp(SUnit *SU, unsigned &CurCycle); void ListScheduleTopDown(); void ListScheduleBottomUp(); void CommuteNodesToReducePressure(); }; } // end anonymous namespace /// Schedule - Schedule the DAG using list scheduling. void ScheduleDAGRRList::Schedule() { DOUT << "********** List Scheduling **********\n"; LiveRegDefs.resize(MRI->getNumRegs(), NULL); LiveRegCycles.resize(MRI->getNumRegs(), 0); // Build scheduling units. BuildSchedUnits(); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(&DAG)); CalculateDepths(); CalculateHeights(); AvailableQueue->initNodes(SUnitMap, SUnits); // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate. if (isBottomUp) ListScheduleBottomUp(); else ListScheduleTopDown(); AvailableQueue->releaseState(); CommuteNodesToReducePressure(); DOUT << "*** Final schedule ***\n"; DEBUG(dumpSchedule()); DOUT << "\n"; // Emit in scheduled order EmitSchedule(); } /// CommuteNodesToReducePressure - If a node is two-address and commutable, and /// it is not the last use of its first operand, add it to the CommuteSet if /// possible. It will be commuted when it is translated to a MI. void ScheduleDAGRRList::CommuteNodesToReducePressure() { SmallPtrSet OperandSeen; for (unsigned i = Sequence.size()-1; i != 0; --i) { // Ignore first node. SUnit *SU = Sequence[i]; if (!SU) continue; if (SU->isCommutable) { unsigned Opc = SU->Node->getTargetOpcode(); unsigned NumRes = TII->getNumDefs(Opc); unsigned NumOps = CountOperands(SU->Node); for (unsigned j = 0; j != NumOps; ++j) { if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) == -1) continue; SDNode *OpN = SU->Node->getOperand(j).Val; SUnit *OpSU = SUnitMap[OpN][SU->InstanceNo]; if (OpSU && OperandSeen.count(OpSU) == 1) { // Ok, so SU is not the last use of OpSU, but SU is two-address so // it will clobber OpSU. Try to commute SU if no other source operands // are live below. bool DoCommute = true; for (unsigned k = 0; k < NumOps; ++k) { if (k != j) { OpN = SU->Node->getOperand(k).Val; OpSU = SUnitMap[OpN][SU->InstanceNo]; if (OpSU && OperandSeen.count(OpSU) == 1) { DoCommute = false; break; } } } if (DoCommute) CommuteSet.insert(SU->Node); } // Only look at the first use&def node for now. break; } } for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (!I->isCtrl) OperandSeen.insert(I->Dep); } } } //===----------------------------------------------------------------------===// // Bottom-Up Scheduling //===----------------------------------------------------------------------===// /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to /// the AvailableQueue if the count reaches zero. Also update its cycle bound. void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle) { // FIXME: the distance between two nodes is not always == the predecessor's // latency. For example, the reader can very well read the register written // by the predecessor later than the issue cycle. It also depends on the // interrupt model (drain vs. freeze). PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency); if (!isChain) --PredSU->NumSuccsLeft; else --PredSU->NumChainSuccsLeft; #ifndef NDEBUG if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) { cerr << "*** List scheduling failed! ***\n"; PredSU->dump(&DAG); cerr << " has been released too many times!\n"; assert(0); } #endif if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) { // EntryToken has to go last! Special case it here. if (PredSU->Node->getOpcode() != ISD::EntryToken) { PredSU->isAvailable = true; AvailableQueue->push(PredSU); } } } /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending /// count of its predecessors. If a predecessor pending count is zero, add it to /// the Available queue. void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(&DAG)); SU->Cycle = CurCycle; AvailableQueue->ScheduledNode(SU); // Bottom up: release predecessors for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { ReleasePred(I->Dep, I->isCtrl, CurCycle); if (I->Cost < 0) { // This is a physical register dependency and it's impossible or // expensive to copy the register. Make sure nothing that can // clobber the register is scheduled between the predecessor and // this node. if (LiveRegs.insert(I->Reg)) { LiveRegDefs[I->Reg] = I->Dep; LiveRegCycles[I->Reg] = CurCycle; } } } // Release all the implicit physical register defs that are live. for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->Cost < 0) { if (LiveRegCycles[I->Reg] == I->Dep->Cycle) { LiveRegs.erase(I->Reg); assert(LiveRegDefs[I->Reg] == SU && "Physical register dependency violated?"); LiveRegDefs[I->Reg] = NULL; LiveRegCycles[I->Reg] = 0; } } } SU->isScheduled = true; } /// CapturePred - This does the opposite of ReleasePred. Since SU is being /// unscheduled, incrcease the succ left count of its predecessors. Remove /// them from AvailableQueue if necessary. void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) { PredSU->CycleBound = 0; for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end(); I != E; ++I) { if (I->Dep == SU) continue; PredSU->CycleBound = std::max(PredSU->CycleBound, I->Dep->Cycle + PredSU->Latency); } if (PredSU->isAvailable) { PredSU->isAvailable = false; if (!PredSU->isPending) AvailableQueue->remove(PredSU); } if (!isChain) ++PredSU->NumSuccsLeft; else ++PredSU->NumChainSuccsLeft; } /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and /// its predecessor states to reflect the change. void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) { DOUT << "*** Unscheduling [" << SU->Cycle << "]: "; DEBUG(SU->dump(&DAG)); AvailableQueue->UnscheduledNode(SU); for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { CapturePred(I->Dep, SU, I->isCtrl); if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg]) { LiveRegs.erase(I->Reg); assert(LiveRegDefs[I->Reg] == I->Dep && "Physical register dependency violated?"); LiveRegDefs[I->Reg] = NULL; LiveRegCycles[I->Reg] = 0; } } for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->Cost < 0) { if (LiveRegs.insert(I->Reg)) { assert(!LiveRegDefs[I->Reg] && "Physical register dependency violated?"); LiveRegDefs[I->Reg] = SU; } if (I->Dep->Cycle < LiveRegCycles[I->Reg]) LiveRegCycles[I->Reg] = I->Dep->Cycle; } } SU->Cycle = 0; SU->isScheduled = false; SU->isAvailable = true; AvailableQueue->push(SU); } /// BackTrackBottomUp - Back track scheduling to a previous cycle specified in /// BTCycle in order to schedule a specific node. Returns the last unscheduled /// SUnit. Also returns if a successor is unscheduled in the process. SUnit *ScheduleDAGRRList::BackTrackBottomUp(SUnit *SU, unsigned BTCycle, unsigned &CurCycle, bool &SuccUnsched) { SuccUnsched = false; SUnit *OldSU = NULL; while (CurCycle > BTCycle) { OldSU = Sequence.back(); Sequence.pop_back(); if (SU->isSucc(OldSU)) SuccUnsched = true; UnscheduleNodeBottomUp(OldSU); --CurCycle; } if (SU->isSucc(OldSU)) { assert(false && "Something is wrong!"); abort(); } return OldSU; } /// isSafeToCopy - True if the SUnit for the given SDNode can safely cloned, /// i.e. the node does not produce a flag, it does not read a flag and it does /// not have an incoming chain. static bool isSafeToCopy(SDNode *N) { for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return false; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { const SDOperand &Op = N->getOperand(i); MVT::ValueType VT = Op.Val->getValueType(Op.ResNo); if (VT == MVT::Other || VT == MVT::Flag) return false; } return true; } /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled /// successors to the newly created node. SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) { SUnit *NewSU = Clone(SU); // New SUnit has the exact same predecessors. for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) if (!I->isSpecial) { NewSU->addPred(I->Dep, I->isCtrl, false, I->Reg, I->Cost); NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1); } // Only copy scheduled successors. Cut them from old node's successor // list and move them over. SmallVector DelDeps; for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isSpecial) continue; NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1); if (I->Dep->isScheduled) { I->Dep->addPred(NewSU, I->isCtrl, false, I->Reg, I->Cost); DelDeps.push_back(I); } } for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { SUnit *Succ = DelDeps[i]->Dep; bool isCtrl = DelDeps[i]->isCtrl; Succ->removePred(SU, isCtrl, false); } AvailableQueue->updateNode(SU); AvailableQueue->addNode(NewSU); return NewSU; } /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay /// scheduling of the given node to satisfy live physical register dependencies. /// If the specific node is the last one that's available to schedule, do /// whatever is necessary (i.e. backtracking or cloning) to make it possible. bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU, unsigned &CurCycle){ if (LiveRegs.empty()) return false; // If this node would clobber any "live" register, then it's not ready. // However, if this is the last "available" node, then we may have to // backtrack. bool MustSched = AvailableQueue->empty(); SmallVector LRegs; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->Cost < 0) { unsigned Reg = I->Reg; if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) LRegs.push_back(Reg); for (const unsigned *Alias = MRI->getAliasSet(Reg); *Alias; ++Alias) if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) LRegs.push_back(*Alias); } } for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) { SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1]; if (!Node->isTargetOpcode()) continue; const TargetInstrDescriptor &TID = TII->get(Node->getTargetOpcode()); if (!TID.ImplicitDefs) continue; for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) { if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) LRegs.push_back(*Reg); for (const unsigned *Alias = MRI->getAliasSet(*Reg); *Alias; ++Alias) if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) LRegs.push_back(*Alias); } } if (MustSched && !LRegs.empty()) { // We have made a mistake by scheduling some nodes too early. Now we must // schedule the current node which will end up clobbering some live // registers that are expensive / impossible to copy. Try unscheduling // up to the point where it's safe to schedule the current node. unsigned LiveCycle = CurCycle; for (unsigned i = 0, e = LRegs.size(); i != e; ++i) { unsigned Reg = LRegs[i]; unsigned LCycle = LiveRegCycles[Reg]; LiveCycle = std::min(LiveCycle, LCycle); } if (SU->CycleBound < LiveCycle) { bool SuccUnsched = false; SUnit *OldSU = BackTrackBottomUp(SU, LiveCycle, CurCycle, SuccUnsched); // Force the current node to be scheduled before the node that // requires the physical reg dep. if (OldSU->isAvailable) { OldSU->isAvailable = false; AvailableQueue->remove(OldSU); } SU->addPred(OldSU, true, true); // If a successor has been unscheduled, then it's not possible to // schedule the current node. return SuccUnsched; } else { // Try duplicating the nodes that produces these "expensive to copy" // values to break the dependency. for (unsigned i = 0, e = LRegs.size(); i != e; ++i) { unsigned Reg = LRegs[i]; SUnit *LRDef = LiveRegDefs[Reg]; if (isSafeToCopy(LRDef->Node)) { SUnit *NewDef = CopyAndMoveSuccessors(LRDef); LiveRegDefs[Reg] = NewDef; NewDef->addPred(SU, true, true); SU->isAvailable = false; AvailableQueue->push(NewDef); } else { assert(false && "Expensive copying is required?"); abort(); } } return true; } } return !LRegs.empty(); } /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up /// schedulers. void ScheduleDAGRRList::ListScheduleBottomUp() { unsigned CurCycle = 0; // Add root to Available queue. SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front(); RootSU->isAvailable = true; AvailableQueue->push(RootSU); // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. SmallVector NotReady; while (!AvailableQueue->empty()) { SUnit *CurSU = AvailableQueue->pop(); while (CurSU) { if (CurSU->CycleBound <= CurCycle) if (!DelayForLiveRegsBottomUp(CurSU, CurCycle)) break; // Verify node is still ready. It may not be in case the // scheduler has backtracked. if (CurSU->isAvailable) { CurSU->isPending = true; NotReady.push_back(CurSU); } CurSU = AvailableQueue->pop(); } // Add the nodes that aren't ready back onto the available list. for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { NotReady[i]->isPending = false; if (NotReady[i]->isAvailable) AvailableQueue->push(NotReady[i]); } NotReady.clear(); if (!CurSU) Sequence.push_back(0); else { ScheduleNodeBottomUp(CurSU, CurCycle); Sequence.push_back(CurSU); } ++CurCycle; } // Add entry node last if (DAG.getEntryNode().Val != DAG.getRoot().Val) { SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front(); Sequence.push_back(Entry); } // Reverse the order if it is bottom up. std::reverse(Sequence.begin(), Sequence.end()); #ifndef NDEBUG // Verify that all SUnits were scheduled. bool AnyNotSched = false; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) { if (!AnyNotSched) cerr << "*** List scheduling failed! ***\n"; SUnits[i].dump(&DAG); cerr << "has not been scheduled!\n"; AnyNotSched = true; } } assert(!AnyNotSched); #endif } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the AvailableQueue if the count reaches zero. Also update its cycle bound. void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle) { // FIXME: the distance between two nodes is not always == the predecessor's // latency. For example, the reader can very well read the register written // by the predecessor later than the issue cycle. It also depends on the // interrupt model (drain vs. freeze). SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency); if (!isChain) --SuccSU->NumPredsLeft; else --SuccSU->NumChainPredsLeft; #ifndef NDEBUG if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) { cerr << "*** List scheduling failed! ***\n"; SuccSU->dump(&DAG); cerr << " has been released too many times!\n"; assert(0); } #endif if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) { SuccSU->isAvailable = true; AvailableQueue->push(SuccSU); } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(&DAG)); SU->Cycle = CurCycle; AvailableQueue->ScheduledNode(SU); // Top down: release successors for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) ReleaseSucc(I->Dep, I->isCtrl, CurCycle); SU->isScheduled = true; } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void ScheduleDAGRRList::ListScheduleTopDown() { unsigned CurCycle = 0; SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front(); // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) { AvailableQueue->push(&SUnits[i]); SUnits[i].isAvailable = true; } } // Emit the entry node first. ScheduleNodeTopDown(Entry, CurCycle); Sequence.push_back(Entry); ++CurCycle; // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. std::vector NotReady; while (!AvailableQueue->empty()) { SUnit *CurSU = AvailableQueue->pop(); while (CurSU && CurSU->CycleBound > CurCycle) { NotReady.push_back(CurSU); CurSU = AvailableQueue->pop(); } // Add the nodes that aren't ready back onto the available list. AvailableQueue->push_all(NotReady); NotReady.clear(); if (!CurSU) Sequence.push_back(0); else { ScheduleNodeTopDown(CurSU, CurCycle); Sequence.push_back(CurSU); } CurCycle++; } #ifndef NDEBUG // Verify that all SUnits were scheduled. bool AnyNotSched = false; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { if (!SUnits[i].isScheduled) { if (!AnyNotSched) cerr << "*** List scheduling failed! ***\n"; SUnits[i].dump(&DAG); cerr << "has not been scheduled!\n"; AnyNotSched = true; } } assert(!AnyNotSched); #endif } //===----------------------------------------------------------------------===// // RegReductionPriorityQueue Implementation //===----------------------------------------------------------------------===// // // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers // to reduce register pressure. // namespace { template class RegReductionPriorityQueue; /// Sorting functions for the Available queue. struct bu_ls_rr_sort : public std::binary_function { RegReductionPriorityQueue *SPQ; bu_ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {} bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; struct td_ls_rr_sort : public std::binary_function { RegReductionPriorityQueue *SPQ; td_ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {} td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; } // end anonymous namespace static inline bool isCopyFromLiveIn(const SUnit *SU) { SDNode *N = SU->Node; return N->getOpcode() == ISD::CopyFromReg && N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag; } namespace { template class VISIBILITY_HIDDEN RegReductionPriorityQueue : public SchedulingPriorityQueue { std::priority_queue, SF> Queue; public: RegReductionPriorityQueue() : Queue(SF(this)) {} virtual void initNodes(DenseMap > &sumap, std::vector &sunits) {} virtual void addNode(const SUnit *SU) {} virtual void updateNode(const SUnit *SU) {} virtual void releaseState() {} virtual unsigned getNodePriority(const SUnit *SU) const { return 0; } unsigned size() const { return Queue.size(); } bool empty() const { return Queue.empty(); } void push(SUnit *U) { Queue.push(U); } void push_all(const std::vector &Nodes) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) Queue.push(Nodes[i]); } SUnit *pop() { if (empty()) return NULL; SUnit *V = Queue.top(); Queue.pop(); return V; } /// remove - This is a really inefficient way to remove a node from a /// priority queue. We should roll our own heap to make this better or /// something. void remove(SUnit *SU) { std::vector Temp; assert(!Queue.empty() && "Not in queue!"); while (Queue.top() != SU) { Temp.push_back(Queue.top()); Queue.pop(); assert(!Queue.empty() && "Not in queue!"); } // Remove the node from the PQ. Queue.pop(); // Add all the other nodes back. for (unsigned i = 0, e = Temp.size(); i != e; ++i) Queue.push(Temp[i]); } }; template class VISIBILITY_HIDDEN BURegReductionPriorityQueue : public RegReductionPriorityQueue { // SUnitMap SDNode to SUnit mapping (n -> n). DenseMap > *SUnitMap; // SUnits - The SUnits for the current graph. const std::vector *SUnits; // SethiUllmanNumbers - The SethiUllman number for each node. std::vector SethiUllmanNumbers; const TargetInstrInfo *TII; public: explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii) : TII(tii) {} void initNodes(DenseMap > &sumap, std::vector &sunits) { SUnitMap = &sumap; SUnits = &sunits; // Add pseudo dependency edges for two-address nodes. AddPseudoTwoAddrDeps(); // Calculate node priorities. CalculateSethiUllmanNumbers(); } void addNode(const SUnit *SU) { SethiUllmanNumbers.resize(SUnits->size(), 0); CalcNodeSethiUllmanNumber(SU); } void updateNode(const SUnit *SU) { SethiUllmanNumbers[SU->NodeNum] = 0; CalcNodeSethiUllmanNumber(SU); } void releaseState() { SUnits = 0; SethiUllmanNumbers.clear(); } unsigned getNodePriority(const SUnit *SU) const { assert(SU->NodeNum < SethiUllmanNumbers.size()); unsigned Opc = SU->Node->getOpcode(); if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU)) // CopyFromReg should be close to its def because it restricts // allocation choices. But if it is a livein then perhaps we want it // closer to its uses so it can be coalesced. return 0xffff; else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) // CopyToReg should be close to its uses to facilitate coalescing and // avoid spilling. return 0; else if (SU->NumSuccs == 0) // If SU does not have a use, i.e. it doesn't produce a value that would // be consumed (e.g. store), then it terminates a chain of computation. // Give it a large SethiUllman number so it will be scheduled right // before its predecessors that it doesn't lengthen their live ranges. return 0xffff; else if (SU->NumPreds == 0) // If SU does not have a def, schedule it close to its uses because it // does not lengthen any live ranges. return 0; else return SethiUllmanNumbers[SU->NodeNum]; } private: bool canClobber(SUnit *SU, SUnit *Op); void AddPseudoTwoAddrDeps(); void CalculateSethiUllmanNumbers(); unsigned CalcNodeSethiUllmanNumber(const SUnit *SU); }; template class VISIBILITY_HIDDEN TDRegReductionPriorityQueue : public RegReductionPriorityQueue { // SUnitMap SDNode to SUnit mapping (n -> n). DenseMap > *SUnitMap; // SUnits - The SUnits for the current graph. const std::vector *SUnits; // SethiUllmanNumbers - The SethiUllman number for each node. std::vector SethiUllmanNumbers; public: TDRegReductionPriorityQueue() {} void initNodes(DenseMap > &sumap, std::vector &sunits) { SUnitMap = &sumap; SUnits = &sunits; // Calculate node priorities. CalculateSethiUllmanNumbers(); } void addNode(const SUnit *SU) { SethiUllmanNumbers.resize(SUnits->size(), 0); CalcNodeSethiUllmanNumber(SU); } void updateNode(const SUnit *SU) { SethiUllmanNumbers[SU->NodeNum] = 0; CalcNodeSethiUllmanNumber(SU); } void releaseState() { SUnits = 0; SethiUllmanNumbers.clear(); } unsigned getNodePriority(const SUnit *SU) const { assert(SU->NodeNum < SethiUllmanNumbers.size()); return SethiUllmanNumbers[SU->NodeNum]; } private: void CalculateSethiUllmanNumbers(); unsigned CalcNodeSethiUllmanNumber(const SUnit *SU); }; } /// closestSucc - Returns the scheduled cycle of the successor which is /// closet to the current cycle. static unsigned closestSucc(const SUnit *SU) { unsigned MaxCycle = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { unsigned Cycle = I->Dep->Cycle; // If there are bunch of CopyToRegs stacked up, they should be considered // to be at the same position. if (I->Dep->Node->getOpcode() == ISD::CopyToReg) Cycle = closestSucc(I->Dep)+1; if (Cycle > MaxCycle) MaxCycle = Cycle; } return MaxCycle; } /// calcMaxScratches - Returns an cost estimate of the worse case requirement /// for scratch registers. Live-in operands and live-out results don't count /// since they are "fixed". static unsigned calcMaxScratches(const SUnit *SU) { unsigned Scratches = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain preds if (I->Dep->Node->getOpcode() != ISD::CopyFromReg) Scratches++; } for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain succs if (I->Dep->Node->getOpcode() != ISD::CopyToReg) Scratches += 10; } return Scratches; } // Bottom up bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { // There used to be a special tie breaker here that looked for // two-address instructions and preferred the instruction with a // def&use operand. The special case triggered diagnostics when // _GLIBCXX_DEBUG was enabled because it broke the strict weak // ordering that priority_queue requires. It didn't help much anyway // because AddPseudoTwoAddrDeps already covers many of the cases // where it would have applied. In addition, it's counter-intuitive // that a tie breaker would be the first thing attempted. There's a // "real" tie breaker below that is the operation of last resort. // The fact that the "special tie breaker" would trigger when there // wasn't otherwise a tie is what broke the strict weak ordering // constraint. unsigned LPriority = SPQ->getNodePriority(left); unsigned RPriority = SPQ->getNodePriority(right); if (LPriority > RPriority) return true; else if (LPriority == RPriority) { // Try schedule def + use closer when Sethi-Ullman numbers are the same. // e.g. // t1 = op t2, c1 // t3 = op t4, c2 // // and the following instructions are both ready. // t2 = op c3 // t4 = op c4 // // Then schedule t2 = op first. // i.e. // t4 = op c4 // t2 = op c3 // t1 = op t2, c1 // t3 = op t4, c2 // // This creates more short live intervals. unsigned LDist = closestSucc(left); unsigned RDist = closestSucc(right); if (LDist < RDist) return true; else if (LDist == RDist) { // Intuitively, it's good to push down instructions whose results are // liveout so their long live ranges won't conflict with other values // which are needed inside the BB. Further prioritize liveout instructions // by the number of operands which are calculated within the BB. unsigned LScratch = calcMaxScratches(left); unsigned RScratch = calcMaxScratches(right); if (LScratch > RScratch) return true; else if (LScratch == RScratch) if (left->Height > right->Height) return true; else if (left->Height == right->Height) if (left->Depth < right->Depth) return true; else if (left->Depth == right->Depth) if (left->CycleBound > right->CycleBound) return true; } } return false; } // FIXME: This is probably too slow! static void isReachable(SUnit *SU, SUnit *TargetSU, SmallPtrSet &Visited, bool &Reached) { if (Reached) return; if (SU == TargetSU) { Reached = true; return; } if (!Visited.insert(SU)) return; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) isReachable(I->Dep, TargetSU, Visited, Reached); } static bool isReachable(SUnit *SU, SUnit *TargetSU) { SmallPtrSet Visited; bool Reached = false; isReachable(SU, TargetSU, Visited, Reached); return Reached; } template bool BURegReductionPriorityQueue::canClobber(SUnit *SU, SUnit *Op) { if (SU->isTwoAddress) { unsigned Opc = SU->Node->getTargetOpcode(); unsigned NumRes = TII->getNumDefs(Opc); unsigned NumOps = ScheduleDAG::CountOperands(SU->Node); for (unsigned i = 0; i != NumOps; ++i) { if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) { SDNode *DU = SU->Node->getOperand(i).Val; if (Op == (*SUnitMap)[DU][SU->InstanceNo]) return true; } } } return false; } /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses /// it as a def&use operand. Add a pseudo control edge from it to the other /// node (if it won't create a cycle) so the two-address one will be scheduled /// first (lower in the schedule). template void BURegReductionPriorityQueue::AddPseudoTwoAddrDeps() { for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { SUnit *SU = (SUnit *)&((*SUnits)[i]); if (!SU->isTwoAddress) continue; SDNode *Node = SU->Node; if (!Node->isTargetOpcode()) continue; unsigned Opc = Node->getTargetOpcode(); unsigned NumRes = TII->getNumDefs(Opc); unsigned NumOps = ScheduleDAG::CountOperands(Node); for (unsigned j = 0; j != NumOps; ++j) { if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) { SDNode *DU = SU->Node->getOperand(j).Val; SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo]; if (!DUSU) continue; for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end(); I != E; ++I) { if (I->isCtrl) continue; SUnit *SuccSU = I->Dep; // Don't constraint nodes with implicit defs. It can create cycles // plus it may increase register pressures. if (SuccSU == SU || SuccSU->hasImplicitDefs) continue; // Be conservative. Ignore if nodes aren't at the same depth. if (SuccSU->Depth != SU->Depth) continue; if ((!canClobber(SuccSU, DUSU) || (!SU->isCommutable && SuccSU->isCommutable)) && !isReachable(SuccSU, SU)) { DOUT << "Adding an edge from SU # " << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n"; SU->addPred(SuccSU, true, true); } } } } } } /// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. /// Smaller number is the higher priority. template unsigned BURegReductionPriorityQueue:: CalcNodeSethiUllmanNumber(const SUnit *SU) { unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; if (SethiUllmanNumber != 0) return SethiUllmanNumber; unsigned Extra = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain preds SUnit *PredSU = I->Dep; unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU); if (PredSethiUllman > SethiUllmanNumber) { SethiUllmanNumber = PredSethiUllman; Extra = 0; } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl) ++Extra; } SethiUllmanNumber += Extra; if (SethiUllmanNumber == 0) SethiUllmanNumber = 1; return SethiUllmanNumber; } /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all /// scheduling units. template void BURegReductionPriorityQueue::CalculateSethiUllmanNumbers() { SethiUllmanNumbers.assign(SUnits->size(), 0); for (unsigned i = 0, e = SUnits->size(); i != e; ++i) CalcNodeSethiUllmanNumber(&(*SUnits)[i]); } static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) { unsigned Sum = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { SUnit *SuccSU = I->Dep; for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) { SUnit *PredSU = II->Dep; if (!PredSU->isScheduled) ++Sum; } } return Sum; } // Top down bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { unsigned LPriority = SPQ->getNodePriority(left); unsigned RPriority = SPQ->getNodePriority(right); bool LIsTarget = left->Node->isTargetOpcode(); bool RIsTarget = right->Node->isTargetOpcode(); bool LIsFloater = LIsTarget && left->NumPreds == 0; bool RIsFloater = RIsTarget && right->NumPreds == 0; unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0; unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0; if (left->NumSuccs == 0 && right->NumSuccs != 0) return false; else if (left->NumSuccs != 0 && right->NumSuccs == 0) return true; // Special tie breaker: if two nodes share a operand, the one that use it // as a def&use operand is preferred. if (LIsTarget && RIsTarget) { if (left->isTwoAddress && !right->isTwoAddress) { SDNode *DUNode = left->Node->getOperand(0).Val; if (DUNode->isOperand(right->Node)) RBonus += 2; } if (!left->isTwoAddress && right->isTwoAddress) { SDNode *DUNode = right->Node->getOperand(0).Val; if (DUNode->isOperand(left->Node)) LBonus += 2; } } if (LIsFloater) LBonus -= 2; if (RIsFloater) RBonus -= 2; if (left->NumSuccs == 1) LBonus += 2; if (right->NumSuccs == 1) RBonus += 2; if (LPriority+LBonus < RPriority+RBonus) return true; else if (LPriority == RPriority) if (left->Depth < right->Depth) return true; else if (left->Depth == right->Depth) if (left->NumSuccsLeft > right->NumSuccsLeft) return true; else if (left->NumSuccsLeft == right->NumSuccsLeft) if (left->CycleBound > right->CycleBound) return true; return false; } /// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. /// Smaller number is the higher priority. template unsigned TDRegReductionPriorityQueue:: CalcNodeSethiUllmanNumber(const SUnit *SU) { unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; if (SethiUllmanNumber != 0) return SethiUllmanNumber; unsigned Opc = SU->Node->getOpcode(); if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) SethiUllmanNumber = 0xffff; else if (SU->NumSuccsLeft == 0) // If SU does not have a use, i.e. it doesn't produce a value that would // be consumed (e.g. store), then it terminates a chain of computation. // Give it a small SethiUllman number so it will be scheduled right before // its predecessors that it doesn't lengthen their live ranges. SethiUllmanNumber = 0; else if (SU->NumPredsLeft == 0 && (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU))) SethiUllmanNumber = 0xffff; else { int Extra = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain preds SUnit *PredSU = I->Dep; unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU); if (PredSethiUllman > SethiUllmanNumber) { SethiUllmanNumber = PredSethiUllman; Extra = 0; } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl) ++Extra; } SethiUllmanNumber += Extra; } return SethiUllmanNumber; } /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all /// scheduling units. template void TDRegReductionPriorityQueue::CalculateSethiUllmanNumbers() { SethiUllmanNumbers.assign(SUnits->size(), 0); for (unsigned i = 0, e = SUnits->size(); i != e; ++i) CalcNodeSethiUllmanNumber(&(*SUnits)[i]); } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB) { const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo(); return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, new BURegReductionPriorityQueue(TII)); } llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB) { return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false, new TDRegReductionPriorityQueue()); }