//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMSubtarget.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Target/TargetAsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" using namespace llvm; // The shift types for register controlled shifts in arm memory addressing enum ShiftType { Lsl, Lsr, Asr, Ror, Rrx }; namespace { struct ARMOperand; class ARMAsmParser : public TargetAsmParser { MCAsmParser &Parser; TargetMachine &TM; private: MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } ARMOperand *MaybeParseRegister(bool ParseWriteBack); ARMOperand *ParseRegisterList(); ARMOperand *ParseMemory(); bool ParseMemoryOffsetReg(bool &Negative, bool &OffsetRegShifted, enum ShiftType &ShiftType, const MCExpr *&ShiftAmount, const MCExpr *&Offset, bool &OffsetIsReg, int &OffsetRegNum, SMLoc &E); bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E); ARMOperand *ParseOperand(); bool ParseDirectiveWord(unsigned Size, SMLoc L); bool ParseDirectiveThumb(SMLoc L); bool ParseDirectiveThumbFunc(SMLoc L); bool ParseDirectiveCode(SMLoc L); bool ParseDirectiveSyntax(SMLoc L); bool MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out); /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "ARMGenAsmMatcher.inc" /// } public: ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM) : TargetAsmParser(T), Parser(_Parser), TM(_TM) {} virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands); virtual bool ParseDirective(AsmToken DirectiveID); }; } // end anonymous namespace namespace { /// ARMOperand - Instances of this class represent a parsed ARM machine /// instruction. struct ARMOperand : public MCParsedAsmOperand { public: enum KindTy { CondCode, Immediate, Memory, Register, Token } Kind; SMLoc StartLoc, EndLoc; union { struct { ARMCC::CondCodes Val; } CC; struct { const char *Data; unsigned Length; } Tok; struct { unsigned RegNum; bool Writeback; } Reg; struct { const MCExpr *Val; } Imm; // This is for all forms of ARM address expressions struct { unsigned BaseRegNum; unsigned OffsetRegNum; // used when OffsetIsReg is true const MCExpr *Offset; // used when OffsetIsReg is false const MCExpr *ShiftAmount; // used when OffsetRegShifted is true enum ShiftType ShiftType; // used when OffsetRegShifted is true unsigned OffsetRegShifted : 1, // only used when OffsetIsReg is true Preindexed : 1, Postindexed : 1, OffsetIsReg : 1, Negative : 1, // only used when OffsetIsReg is true Writeback : 1; } Mem; }; ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() { Kind = o.Kind; StartLoc = o.StartLoc; EndLoc = o.EndLoc; switch (Kind) { case CondCode: CC = o.CC; break; case Token: Tok = o.Tok; break; case Register: Reg = o.Reg; break; case Immediate: Imm = o.Imm; break; case Memory: Mem = o.Mem; break; } } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const { return EndLoc; } ARMCC::CondCodes getCondCode() const { assert(Kind == CondCode && "Invalid access!"); return CC.Val; } StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const { assert(Kind == Register && "Invalid access!"); return Reg.RegNum; } const MCExpr *getImm() const { assert(Kind == Immediate && "Invalid access!"); return Imm.Val; } bool isCondCode() const { return Kind == CondCode; } bool isImm() const { return Kind == Immediate; } bool isReg() const { return Kind == Register; } bool isToken() const { return Kind == Token; } bool isMemory() const { return Kind == Memory; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (Expr == 0) Inst.addOperand(MCOperand::CreateImm(0)); else if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); // FIXME: What belongs here? Inst.addOperand(MCOperand::CreateReg(0)); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } bool isMemMode5() const { if (!isMemory() || Mem.OffsetIsReg || Mem.OffsetRegShifted || Mem.Preindexed || Mem.Negative || Mem.Postindexed || Mem.Writeback) return false; return true; } void addMemMode5Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && isMemMode5() && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(Mem.BaseRegNum)); assert(!Mem.OffsetIsReg && "invalid mode 5 operand"); addExpr(Inst, Mem.Offset); } virtual void dump(raw_ostream &OS) const; static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) { ARMOperand *Op = new ARMOperand(CondCode); Op->CC.Val = CC; Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateToken(StringRef Str, SMLoc S) { ARMOperand *Op = new ARMOperand(Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static ARMOperand *CreateReg(unsigned RegNum, bool Writeback, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(Register); Op->Reg.RegNum = RegNum; Op->Reg.Writeback = Writeback; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg, const MCExpr *Offset, unsigned OffsetRegNum, bool OffsetRegShifted, enum ShiftType ShiftType, const MCExpr *ShiftAmount, bool Preindexed, bool Postindexed, bool Negative, bool Writeback, SMLoc S, SMLoc E) { ARMOperand *Op = new ARMOperand(Memory); Op->Mem.BaseRegNum = BaseRegNum; Op->Mem.OffsetIsReg = OffsetIsReg; Op->Mem.Offset = Offset; Op->Mem.OffsetRegNum = OffsetRegNum; Op->Mem.OffsetRegShifted = OffsetRegShifted; Op->Mem.ShiftType = ShiftType; Op->Mem.ShiftAmount = ShiftAmount; Op->Mem.Preindexed = Preindexed; Op->Mem.Postindexed = Postindexed; Op->Mem.Negative = Negative; Op->Mem.Writeback = Writeback; Op->StartLoc = S; Op->EndLoc = E; return Op; } private: ARMOperand(KindTy K) : Kind(K) {} }; } // end anonymous namespace. void ARMOperand::dump(raw_ostream &OS) const { switch (Kind) { case CondCode: OS << ARMCondCodeToString(getCondCode()); break; case Immediate: getImm()->print(OS); break; case Memory: OS << ""; break; case Register: OS << ""; break; case Token: OS << "'" << getToken() << "'"; break; } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } /// Try to parse a register name. The token must be an Identifier when called, /// and if it is a register name the token is eaten and a Reg operand is created /// and returned. Otherwise return null. /// /// TODO this is likely to change to allow different register types and or to /// parse for a specific register type. ARMOperand *ARMAsmParser::MaybeParseRegister(bool ParseWriteBack) { SMLoc S, E; const AsmToken &Tok = Parser.getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); // FIXME: Validate register for the current architecture; we have to do // validation later, so maybe there is no need for this here. int RegNum; RegNum = MatchRegisterName(Tok.getString()); if (RegNum == -1) return 0; S = Tok.getLoc(); Parser.Lex(); // Eat identifier token. E = Parser.getTok().getLoc(); bool Writeback = false; if (ParseWriteBack) { const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { E = ExclaimTok.getLoc(); Writeback = true; Parser.Lex(); // Eat exclaim token } } return ARMOperand::CreateReg(RegNum, Writeback, S, E); } /// Parse a register list, return it if successful else return null. The first /// token must be a '{' when called. ARMOperand *ARMAsmParser::ParseRegisterList() { SMLoc S, E; assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not an Left Curly Brace"); S = Parser.getTok().getLoc(); Parser.Lex(); // Eat left curly brace token. const AsmToken &RegTok = Parser.getTok(); SMLoc RegLoc = RegTok.getLoc(); if (RegTok.isNot(AsmToken::Identifier)) { Error(RegLoc, "register expected"); return 0; } int RegNum = MatchRegisterName(RegTok.getString()); if (RegNum == -1) { Error(RegLoc, "register expected"); return 0; } Parser.Lex(); // Eat identifier token. unsigned RegList = 1 << RegNum; int HighRegNum = RegNum; // TODO ranges like "{Rn-Rm}" while (Parser.getTok().is(AsmToken::Comma)) { Parser.Lex(); // Eat comma token. const AsmToken &RegTok = Parser.getTok(); SMLoc RegLoc = RegTok.getLoc(); if (RegTok.isNot(AsmToken::Identifier)) { Error(RegLoc, "register expected"); return 0; } int RegNum = MatchRegisterName(RegTok.getString()); if (RegNum == -1) { Error(RegLoc, "register expected"); return 0; } if (RegList & (1 << RegNum)) Warning(RegLoc, "register duplicated in register list"); else if (RegNum <= HighRegNum) Warning(RegLoc, "register not in ascending order in register list"); RegList |= 1 << RegNum; HighRegNum = RegNum; Parser.Lex(); // Eat identifier token. } const AsmToken &RCurlyTok = Parser.getTok(); if (RCurlyTok.isNot(AsmToken::RCurly)) { Error(RCurlyTok.getLoc(), "'}' expected"); return 0; } E = RCurlyTok.getLoc(); Parser.Lex(); // Eat left curly brace token. // FIXME: Need to return an operand! Error(E, "FIXME: register list parsing not implemented"); return 0; } /// Parse an arm memory expression, return false if successful else return true /// or an error. The first token must be a '[' when called. /// TODO Only preindexing and postindexing addressing are started, unindexed /// with option, etc are still to do. ARMOperand *ARMAsmParser::ParseMemory() { SMLoc S, E; assert(Parser.getTok().is(AsmToken::LBrac) && "Token is not an Left Bracket"); S = Parser.getTok().getLoc(); Parser.Lex(); // Eat left bracket token. const AsmToken &BaseRegTok = Parser.getTok(); if (BaseRegTok.isNot(AsmToken::Identifier)) { Error(BaseRegTok.getLoc(), "register expected"); return 0; } int BaseRegNum = 0; if (ARMOperand *Op = MaybeParseRegister(false)) { BaseRegNum = Op->getReg(); delete Op; } else { Error(BaseRegTok.getLoc(), "register expected"); return 0; } bool Preindexed = false; bool Postindexed = false; bool OffsetIsReg = false; bool Negative = false; bool Writeback = false; // First look for preindexed address forms, that is after the "[Rn" we now // have to see if the next token is a comma. const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Comma)) { Preindexed = true; Parser.Lex(); // Eat comma token. int OffsetRegNum; bool OffsetRegShifted; enum ShiftType ShiftType; const MCExpr *ShiftAmount; const MCExpr *Offset; if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount, Offset, OffsetIsReg, OffsetRegNum, E)) return 0; const AsmToken &RBracTok = Parser.getTok(); if (RBracTok.isNot(AsmToken::RBrac)) { Error(RBracTok.getLoc(), "']' expected"); return 0; } E = RBracTok.getLoc(); Parser.Lex(); // Eat right bracket token. const AsmToken &ExclaimTok = Parser.getTok(); if (ExclaimTok.is(AsmToken::Exclaim)) { E = ExclaimTok.getLoc(); Writeback = true; Parser.Lex(); // Eat exclaim token } return ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum, OffsetRegShifted, ShiftType, ShiftAmount, Preindexed, Postindexed, Negative, Writeback, S, E); } // The "[Rn" we have so far was not followed by a comma. else if (Tok.is(AsmToken::RBrac)) { // This is a post indexing addressing forms, that is a ']' follows after // the "[Rn". Postindexed = true; Writeback = true; E = Tok.getLoc(); Parser.Lex(); // Eat right bracket token. int OffsetRegNum = 0; bool OffsetRegShifted = false; enum ShiftType ShiftType; const MCExpr *ShiftAmount; const MCExpr *Offset = 0; const AsmToken &NextTok = Parser.getTok(); if (NextTok.isNot(AsmToken::EndOfStatement)) { if (NextTok.isNot(AsmToken::Comma)) { Error(NextTok.getLoc(), "',' expected"); return 0; } Parser.Lex(); // Eat comma token. if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount, Offset, OffsetIsReg, OffsetRegNum, E)) return 0; } return ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum, OffsetRegShifted, ShiftType, ShiftAmount, Preindexed, Postindexed, Negative, Writeback, S, E); } return 0; } /// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn]," /// we will parse the following (were +/- means that a plus or minus is /// optional): /// +/-Rm /// +/-Rm, shift /// #offset /// we return false on success or an error otherwise. bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative, bool &OffsetRegShifted, enum ShiftType &ShiftType, const MCExpr *&ShiftAmount, const MCExpr *&Offset, bool &OffsetIsReg, int &OffsetRegNum, SMLoc &E) { Negative = false; OffsetRegShifted = false; OffsetIsReg = false; OffsetRegNum = -1; const AsmToken &NextTok = Parser.getTok(); E = NextTok.getLoc(); if (NextTok.is(AsmToken::Plus)) Parser.Lex(); // Eat plus token. else if (NextTok.is(AsmToken::Minus)) { Negative = true; Parser.Lex(); // Eat minus token } // See if there is a register following the "[Rn," or "[Rn]," we have so far. const AsmToken &OffsetRegTok = Parser.getTok(); if (OffsetRegTok.is(AsmToken::Identifier)) { if (ARMOperand *Op = MaybeParseRegister(false)) { OffsetIsReg = true; E = Op->getEndLoc(); OffsetRegNum = Op->getReg(); delete Op; } } // If we parsed a register as the offset then their can be a shift after that if (OffsetRegNum != -1) { // Look for a comma then a shift const AsmToken &Tok = Parser.getTok(); if (Tok.is(AsmToken::Comma)) { Parser.Lex(); // Eat comma token. const AsmToken &Tok = Parser.getTok(); if (ParseShift(ShiftType, ShiftAmount, E)) return Error(Tok.getLoc(), "shift expected"); OffsetRegShifted = true; } } else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm" // Look for #offset following the "[Rn," or "[Rn]," const AsmToken &HashTok = Parser.getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. if (getParser().ParseExpression(Offset)) return true; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); } return false; } /// ParseShift as one of these two: /// ( lsl | lsr | asr | ror ) , # shift_amount /// rrx /// and returns true if it parses a shift otherwise it returns false. bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return true; StringRef ShiftName = Tok.getString(); if (ShiftName == "lsl" || ShiftName == "LSL") St = Lsl; else if (ShiftName == "lsr" || ShiftName == "LSR") St = Lsr; else if (ShiftName == "asr" || ShiftName == "ASR") St = Asr; else if (ShiftName == "ror" || ShiftName == "ROR") St = Ror; else if (ShiftName == "rrx" || ShiftName == "RRX") St = Rrx; else return true; Parser.Lex(); // Eat shift type token. // Rrx stands alone. if (St == Rrx) return false; // Otherwise, there must be a '#' and a shift amount. const AsmToken &HashTok = Parser.getTok(); if (HashTok.isNot(AsmToken::Hash)) return Error(HashTok.getLoc(), "'#' expected"); Parser.Lex(); // Eat hash token. if (getParser().ParseExpression(ShiftAmount)) return true; return false; } /// Parse a arm instruction operand. For now this parses the operand regardless /// of the mnemonic. ARMOperand *ARMAsmParser::ParseOperand() { SMLoc S, E; switch (getLexer().getKind()) { case AsmToken::Identifier: if (ARMOperand *Op = MaybeParseRegister(true)) return Op; // This was not a register so parse other operands that start with an // identifier (like labels) as expressions and create them as immediates. const MCExpr *IdVal; S = Parser.getTok().getLoc(); if (getParser().ParseExpression(IdVal)) return 0; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); return ARMOperand::CreateImm(IdVal, S, E); case AsmToken::LBrac: return ParseMemory(); case AsmToken::LCurly: return ParseRegisterList(); case AsmToken::Hash: // #42 -> immediate. // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate S = Parser.getTok().getLoc(); Parser.Lex(); const MCExpr *ImmVal; if (getParser().ParseExpression(ImmVal)) return 0; E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); return ARMOperand::CreateImm(ImmVal, S, E); default: Error(Parser.getTok().getLoc(), "unexpected token in operand"); return 0; } } /// Parse an arm instruction mnemonic followed by its operands. bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands) { // Create the leading tokens for the mnemonic, split by '.' characters. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); // Determine the predicate, if any. // // FIXME: We need a way to check whether a prefix supports predication, // otherwise we will end up with an ambiguity for instructions that happen to // end with a predicate name. unsigned CC = StringSwitch(Head.substr(Head.size()-2)) .Case("eq", ARMCC::EQ) .Case("ne", ARMCC::NE) .Case("hs", ARMCC::HS) .Case("lo", ARMCC::LO) .Case("mi", ARMCC::MI) .Case("pl", ARMCC::PL) .Case("vs", ARMCC::VS) .Case("vc", ARMCC::VC) .Case("hi", ARMCC::HI) .Case("ls", ARMCC::LS) .Case("ge", ARMCC::GE) .Case("lt", ARMCC::LT) .Case("gt", ARMCC::GT) .Case("le", ARMCC::LE) .Case("al", ARMCC::AL) .Default(~0U); if (CC != ~0U) Head = Head.slice(0, Head.size() - 2); else CC = ARMCC::AL; Operands.push_back(ARMOperand::CreateToken(Head, NameLoc)); Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), NameLoc)); // Add the remaining tokens in the mnemonic. while (Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); Head = Name.slice(Start, Next); Operands.push_back(ARMOperand::CreateToken(Head, NameLoc)); } // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (ARMOperand *Op = ParseOperand()) Operands.push_back(Op); else { Parser.EatToEndOfStatement(); return true; } while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (ARMOperand *Op = ParseOperand()) Operands.push_back(Op); else { Parser.EatToEndOfStatement(); return true; } } } if (getLexer().isNot(AsmToken::EndOfStatement)) { Parser.EatToEndOfStatement(); return TokError("unexpected token in argument list"); } Parser.Lex(); // Consume the EndOfStatement return false; } bool ARMAsmParser:: MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out) { MCInst Inst; unsigned ErrorInfo; switch (MatchInstructionImpl(Operands, Inst, ErrorInfo)) { case Match_Success: Out.EmitInstruction(Inst); return false; case Match_MissingFeature: Error(IDLoc, "instruction requires a CPU feature not currently enabled"); return true; case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0U) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: return Error(IDLoc, "unrecognized instruction mnemonic"); } llvm_unreachable("Implement any new match types added!"); } /// ParseDirective parses the arm specific directives bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return ParseDirectiveWord(4, DirectiveID.getLoc()); else if (IDVal == ".thumb") return ParseDirectiveThumb(DirectiveID.getLoc()); else if (IDVal == ".thumb_func") return ParseDirectiveThumbFunc(DirectiveID.getLoc()); else if (IDVal == ".code") return ParseDirectiveCode(DirectiveID.getLoc()); else if (IDVal == ".syntax") return ParseDirectiveSyntax(DirectiveID.getLoc()); return true; } /// ParseDirectiveWord /// ::= .word [ expression (, expression)* ] bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().ParseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } /// ParseDirectiveThumb /// ::= .thumb bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(L, "unexpected token in directive"); Parser.Lex(); // TODO: set thumb mode // TODO: tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } /// ParseDirectiveThumbFunc /// ::= .thumbfunc symbol_name bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) return Error(L, "unexpected token in .syntax directive"); Parser.Lex(); // Consume the identifier token. if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(L, "unexpected token in directive"); Parser.Lex(); // TODO: mark symbol as a thumb symbol // getParser().getStreamer().Emit???(); return false; } /// ParseDirectiveSyntax /// ::= .syntax unified | divided bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return Error(L, "unexpected token in .syntax directive"); StringRef Mode = Tok.getString(); if (Mode == "unified" || Mode == "UNIFIED") Parser.Lex(); else if (Mode == "divided" || Mode == "DIVIDED") Parser.Lex(); else return Error(L, "unrecognized syntax mode in .syntax directive"); if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token in directive"); Parser.Lex(); // TODO tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } /// ParseDirectiveCode /// ::= .code 16 | 32 bool ARMAsmParser::ParseDirectiveCode(SMLoc L) { const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Integer)) return Error(L, "unexpected token in .code directive"); int64_t Val = Parser.getTok().getIntVal(); if (Val == 16) Parser.Lex(); else if (Val == 32) Parser.Lex(); else return Error(L, "invalid operand to .code directive"); if (getLexer().isNot(AsmToken::EndOfStatement)) return Error(Parser.getTok().getLoc(), "unexpected token in directive"); Parser.Lex(); // TODO tell the MC streamer the mode // getParser().getStreamer().Emit???(); return false; } extern "C" void LLVMInitializeARMAsmLexer(); /// Force static initialization. extern "C" void LLVMInitializeARMAsmParser() { RegisterAsmParser X(TheARMTarget); RegisterAsmParser Y(TheThumbTarget); LLVMInitializeARMAsmLexer(); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "ARMGenAsmMatcher.inc"