//===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the section-based memory manager used by the MCJIT // execution engine and RuntimeDyld // //===----------------------------------------------------------------------===// #include "llvm/Config/config.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/MathExtras.h" #ifdef __linux__ // These includes used by SectionMemoryManager::getPointerToNamedFunction() // for Glibc trickery. See comments in this function for more information. #ifdef HAVE_SYS_STAT_H #include #endif #include #include #endif namespace llvm { uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, bool IsReadOnly) { if (IsReadOnly) return allocateSection(RODataMem, Size, Alignment); return allocateSection(RWDataMem, Size, Alignment); } uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID) { return allocateSection(CodeMem, Size, Alignment); } uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup, uintptr_t Size, unsigned Alignment) { if (!Alignment) Alignment = 16; assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two."); uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1)/Alignment + 1); uintptr_t Addr = 0; // Look in the list of free memory regions and use a block there if one // is available. for (int i = 0, e = MemGroup.FreeMem.size(); i != e; ++i) { sys::MemoryBlock &MB = MemGroup.FreeMem[i]; if (MB.size() >= RequiredSize) { Addr = (uintptr_t)MB.base(); uintptr_t EndOfBlock = Addr + MB.size(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); // Store cutted free memory block. MemGroup.FreeMem[i] = sys::MemoryBlock((void*)(Addr + Size), EndOfBlock - Addr - Size); return (uint8_t*)Addr; } } // No pre-allocated free block was large enough. Allocate a new memory region. // Note that all sections get allocated as read-write. The permissions will // be updated later based on memory group. // // FIXME: It would be useful to define a default allocation size (or add // it as a constructor parameter) to minimize the number of allocations. // // FIXME: Initialize the Near member for each memory group to avoid // interleaving. error_code ec; sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(RequiredSize, &MemGroup.Near, sys::Memory::MF_READ | sys::Memory::MF_WRITE, ec); if (ec) { // FIXME: Add error propogation to the interface. return NULL; } // Save this address as the basis for our next request MemGroup.Near = MB; MemGroup.AllocatedMem.push_back(MB); Addr = (uintptr_t)MB.base(); uintptr_t EndOfBlock = Addr + MB.size(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); // The allocateMappedMemory may allocate much more memory than we need. In // this case, we store the unused memory as a free memory block. unsigned FreeSize = EndOfBlock-Addr-Size; if (FreeSize > 16) MemGroup.FreeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize)); // Return aligned address return (uint8_t*)Addr; } bool SectionMemoryManager::applyPermissions(std::string *ErrMsg) { // FIXME: Should in-progress permissions be reverted if an error occurs? error_code ec; // Make code memory executable. ec = applyMemoryGroupPermissions(CodeMem, sys::Memory::MF_READ | sys::Memory::MF_EXEC); if (ec) { if (ErrMsg) { *ErrMsg = ec.message(); } return true; } // Make read-only data memory read-only. ec = applyMemoryGroupPermissions(RODataMem, sys::Memory::MF_READ | sys::Memory::MF_EXEC); if (ec) { if (ErrMsg) { *ErrMsg = ec.message(); } return true; } // Read-write data memory already has the correct permissions // Some platforms with separate data cache and instruction cache require // explicit cache flush, otherwise JIT code manipulations (like resolved // relocations) will get to the data cache but not to the instruction cache. invalidateInstructionCache(); return false; } // Determine whether we can register EH tables. #if (defined(__GNUC__) && !defined(__ARM_EABI__) && \ !defined(__USING_SJLJ_EXCEPTIONS__)) #define HAVE_EHTABLE_SUPPORT 1 #else #define HAVE_EHTABLE_SUPPORT 0 #endif #if HAVE_EHTABLE_SUPPORT extern "C" void __register_frame(void*); static const char *processFDE(const char *Entry) { const char *P = Entry; uint32_t Length = *((uint32_t*)P); P += 4; uint32_t Offset = *((uint32_t*)P); if (Offset != 0) __register_frame((void*)Entry); return P + Length; } #endif void SectionMemoryManager::registerEHFrames(StringRef SectionData) { #if HAVE_EHTABLE_SUPPORT const char *P = SectionData.data(); const char *End = SectionData.data() + SectionData.size(); do { P = processFDE(P); } while(P != End); #endif } error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup, unsigned Permissions) { for (int i = 0, e = MemGroup.AllocatedMem.size(); i != e; ++i) { error_code ec; ec = sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i], Permissions); if (ec) { return ec; } } return error_code::success(); } void SectionMemoryManager::invalidateInstructionCache() { for (int i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i) sys::Memory::InvalidateInstructionCache(CodeMem.AllocatedMem[i].base(), CodeMem.AllocatedMem[i].size()); } static int jit_noop() { return 0; } void *SectionMemoryManager::getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure) { #if defined(__linux__) //===--------------------------------------------------------------------===// // Function stubs that are invoked instead of certain library calls // // Force the following functions to be linked in to anything that uses the // JIT. This is a hack designed to work around the all-too-clever Glibc // strategy of making these functions work differently when inlined vs. when // not inlined, and hiding their real definitions in a separate archive file // that the dynamic linker can't see. For more info, search for // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274. if (Name == "stat") return (void*)(intptr_t)&stat; if (Name == "fstat") return (void*)(intptr_t)&fstat; if (Name == "lstat") return (void*)(intptr_t)&lstat; if (Name == "stat64") return (void*)(intptr_t)&stat64; if (Name == "fstat64") return (void*)(intptr_t)&fstat64; if (Name == "lstat64") return (void*)(intptr_t)&lstat64; if (Name == "atexit") return (void*)(intptr_t)&atexit; if (Name == "mknod") return (void*)(intptr_t)&mknod; #endif // __linux__ // We should not invoke parent's ctors/dtors from generated main()! // On Mingw and Cygwin, the symbol __main is resolved to // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors // (and register wrong callee's dtors with atexit(3)). // We expect ExecutionEngine::runStaticConstructorsDestructors() // is called before ExecutionEngine::runFunctionAsMain() is called. if (Name == "__main") return (void*)(intptr_t)&jit_noop; const char *NameStr = Name.c_str(); void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr); if (Ptr) return Ptr; // If it wasn't found and if it starts with an underscore ('_') character, // try again without the underscore. if (NameStr[0] == '_') { Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1); if (Ptr) return Ptr; } if (AbortOnFailure) report_fatal_error("Program used external function '" + Name + "' which could not be resolved!"); return 0; } SectionMemoryManager::~SectionMemoryManager() { for (unsigned i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i) sys::Memory::releaseMappedMemory(CodeMem.AllocatedMem[i]); for (unsigned i = 0, e = RWDataMem.AllocatedMem.size(); i != e; ++i) sys::Memory::releaseMappedMemory(RWDataMem.AllocatedMem[i]); for (unsigned i = 0, e = RODataMem.AllocatedMem.size(); i != e; ++i) sys::Memory::releaseMappedMemory(RODataMem.AllocatedMem[i]); } } // namespace llvm