//===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines ObjC ARC optimizations. ARC stands for // Automatic Reference Counting and is a system for managing reference counts // for objects in Objective C. // // The optimizations performed include elimination of redundant, partially // redundant, and inconsequential reference count operations, elimination of // redundant weak pointer operations, pattern-matching and replacement of // low-level operations into higher-level operations, and numerous minor // simplifications. // // This file also defines a simple ARC-aware AliasAnalysis. // // WARNING: This file knows about certain library functions. It recognizes them // by name, and hardwires knowledge of their semantics. // // WARNING: This file knows about how certain Objective-C library functions are // used. Naive LLVM IR transformations which would otherwise be // behavior-preserving may break these assumptions. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "objc-arc" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // A handy option to enable/disable all optimizations in this file. static cl::opt EnableARCOpts("enable-objc-arc-opts", cl::init(true)); //===----------------------------------------------------------------------===// // Misc. Utilities //===----------------------------------------------------------------------===// namespace { /// MapVector - An associative container with fast insertion-order /// (deterministic) iteration over its elements. Plus the special /// blot operation. template class MapVector { /// Map - Map keys to indices in Vector. typedef DenseMap MapTy; MapTy Map; /// Vector - Keys and values. typedef std::vector > VectorTy; VectorTy Vector; public: typedef typename VectorTy::iterator iterator; typedef typename VectorTy::const_iterator const_iterator; iterator begin() { return Vector.begin(); } iterator end() { return Vector.end(); } const_iterator begin() const { return Vector.begin(); } const_iterator end() const { return Vector.end(); } #ifdef XDEBUG ~MapVector() { assert(Vector.size() >= Map.size()); // May differ due to blotting. for (typename MapTy::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I) { assert(I->second < Vector.size()); assert(Vector[I->second].first == I->first); } for (typename VectorTy::const_iterator I = Vector.begin(), E = Vector.end(); I != E; ++I) assert(!I->first || (Map.count(I->first) && Map[I->first] == size_t(I - Vector.begin()))); } #endif ValueT &operator[](const KeyT &Arg) { std::pair Pair = Map.insert(std::make_pair(Arg, size_t(0))); if (Pair.second) { size_t Num = Vector.size(); Pair.first->second = Num; Vector.push_back(std::make_pair(Arg, ValueT())); return Vector[Num].second; } return Vector[Pair.first->second].second; } std::pair insert(const std::pair &InsertPair) { std::pair Pair = Map.insert(std::make_pair(InsertPair.first, size_t(0))); if (Pair.second) { size_t Num = Vector.size(); Pair.first->second = Num; Vector.push_back(InsertPair); return std::make_pair(Vector.begin() + Num, true); } return std::make_pair(Vector.begin() + Pair.first->second, false); } const_iterator find(const KeyT &Key) const { typename MapTy::const_iterator It = Map.find(Key); if (It == Map.end()) return Vector.end(); return Vector.begin() + It->second; } /// blot - This is similar to erase, but instead of removing the element /// from the vector, it just zeros out the key in the vector. This leaves /// iterators intact, but clients must be prepared for zeroed-out keys when /// iterating. void blot(const KeyT &Key) { typename MapTy::iterator It = Map.find(Key); if (It == Map.end()) return; Vector[It->second].first = KeyT(); Map.erase(It); } void clear() { Map.clear(); Vector.clear(); } }; } //===----------------------------------------------------------------------===// // ARC Utilities. //===----------------------------------------------------------------------===// #include "llvm/ADT/StringSwitch.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Intrinsics.h" #include "llvm/Module.h" #include "llvm/Support/CallSite.h" #include "llvm/Transforms/Utils/Local.h" namespace { /// InstructionClass - A simple classification for instructions. enum InstructionClass { IC_Retain, ///< objc_retain IC_RetainRV, ///< objc_retainAutoreleasedReturnValue IC_RetainBlock, ///< objc_retainBlock IC_Release, ///< objc_release IC_Autorelease, ///< objc_autorelease IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop IC_NoopCast, ///< objc_retainedObject, etc. IC_FusedRetainAutorelease, ///< objc_retainAutorelease IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive) IC_StoreWeak, ///< objc_storeWeak (primitive) IC_InitWeak, ///< objc_initWeak (derived) IC_LoadWeak, ///< objc_loadWeak (derived) IC_MoveWeak, ///< objc_moveWeak (derived) IC_CopyWeak, ///< objc_copyWeak (derived) IC_DestroyWeak, ///< objc_destroyWeak (derived) IC_StoreStrong, ///< objc_storeStrong (derived) IC_CallOrUser, ///< could call objc_release and/or "use" pointers IC_Call, ///< could call objc_release IC_User, ///< could "use" a pointer IC_None ///< anything else }; } /// IsPotentialUse - Test whether the given value is possible a /// reference-counted pointer. static bool IsPotentialUse(const Value *Op) { // Pointers to static or stack storage are not reference-counted pointers. if (isa(Op) || isa(Op)) return false; // Special arguments are not reference-counted. if (const Argument *Arg = dyn_cast(Op)) if (Arg->hasByValAttr() || Arg->hasNestAttr() || Arg->hasStructRetAttr()) return false; // Only consider values with pointer types. // It seemes intuitive to exclude function pointer types as well, since // functions are never reference-counted, however clang occasionally // bitcasts reference-counted pointers to function-pointer type // temporarily. PointerType *Ty = dyn_cast(Op->getType()); if (!Ty) return false; // Conservatively assume anything else is a potential use. return true; } /// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind /// of construct CS is. static InstructionClass GetCallSiteClass(ImmutableCallSite CS) { for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) if (IsPotentialUse(*I)) return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser; return CS.onlyReadsMemory() ? IC_None : IC_Call; } /// GetFunctionClass - Determine if F is one of the special known Functions. /// If it isn't, return IC_CallOrUser. static InstructionClass GetFunctionClass(const Function *F) { Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); // No arguments. if (AI == AE) return StringSwitch(F->getName()) .Case("objc_autoreleasePoolPush", IC_AutoreleasepoolPush) .Default(IC_CallOrUser); // One argument. const Argument *A0 = AI++; if (AI == AE) // Argument is a pointer. if (PointerType *PTy = dyn_cast(A0->getType())) { Type *ETy = PTy->getElementType(); // Argument is i8*. if (ETy->isIntegerTy(8)) return StringSwitch(F->getName()) .Case("objc_retain", IC_Retain) .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV) .Case("objc_retainBlock", IC_RetainBlock) .Case("objc_release", IC_Release) .Case("objc_autorelease", IC_Autorelease) .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV) .Case("objc_autoreleasePoolPop", IC_AutoreleasepoolPop) .Case("objc_retainedObject", IC_NoopCast) .Case("objc_unretainedObject", IC_NoopCast) .Case("objc_unretainedPointer", IC_NoopCast) .Case("objc_retain_autorelease", IC_FusedRetainAutorelease) .Case("objc_retainAutorelease", IC_FusedRetainAutorelease) .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV) .Default(IC_CallOrUser); // Argument is i8** if (PointerType *Pte = dyn_cast(ETy)) if (Pte->getElementType()->isIntegerTy(8)) return StringSwitch(F->getName()) .Case("objc_loadWeakRetained", IC_LoadWeakRetained) .Case("objc_loadWeak", IC_LoadWeak) .Case("objc_destroyWeak", IC_DestroyWeak) .Default(IC_CallOrUser); } // Two arguments, first is i8**. const Argument *A1 = AI++; if (AI == AE) if (PointerType *PTy = dyn_cast(A0->getType())) if (PointerType *Pte = dyn_cast(PTy->getElementType())) if (Pte->getElementType()->isIntegerTy(8)) if (PointerType *PTy1 = dyn_cast(A1->getType())) { Type *ETy1 = PTy1->getElementType(); // Second argument is i8* if (ETy1->isIntegerTy(8)) return StringSwitch(F->getName()) .Case("objc_storeWeak", IC_StoreWeak) .Case("objc_initWeak", IC_InitWeak) .Case("objc_storeStrong", IC_StoreStrong) .Default(IC_CallOrUser); // Second argument is i8**. if (PointerType *Pte1 = dyn_cast(ETy1)) if (Pte1->getElementType()->isIntegerTy(8)) return StringSwitch(F->getName()) .Case("objc_moveWeak", IC_MoveWeak) .Case("objc_copyWeak", IC_CopyWeak) .Default(IC_CallOrUser); } // Anything else. return IC_CallOrUser; } /// GetInstructionClass - Determine what kind of construct V is. static InstructionClass GetInstructionClass(const Value *V) { if (const Instruction *I = dyn_cast(V)) { // Any instruction other than bitcast and gep with a pointer operand have a // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer // to a subsequent use, rather than using it themselves, in this sense. // As a short cut, several other opcodes are known to have no pointer // operands of interest. And ret is never followed by a release, so it's // not interesting to examine. switch (I->getOpcode()) { case Instruction::Call: { const CallInst *CI = cast(I); // Check for calls to special functions. if (const Function *F = CI->getCalledFunction()) { InstructionClass Class = GetFunctionClass(F); if (Class != IC_CallOrUser) return Class; // None of the intrinsic functions do objc_release. For intrinsics, the // only question is whether or not they may be users. switch (F->getIntrinsicID()) { case Intrinsic::returnaddress: case Intrinsic::frameaddress: case Intrinsic::stacksave: case Intrinsic::stackrestore: case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend: case Intrinsic::objectsize: case Intrinsic::prefetch: case Intrinsic::stackprotector: case Intrinsic::eh_return_i32: case Intrinsic::eh_return_i64: case Intrinsic::eh_typeid_for: case Intrinsic::eh_dwarf_cfa: case Intrinsic::eh_sjlj_lsda: case Intrinsic::eh_sjlj_functioncontext: case Intrinsic::init_trampoline: case Intrinsic::adjust_trampoline: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: case Intrinsic::invariant_end: // Don't let dbg info affect our results. case Intrinsic::dbg_declare: case Intrinsic::dbg_value: // Short cut: Some intrinsics obviously don't use ObjC pointers. return IC_None; default: break; } } return GetCallSiteClass(CI); } case Instruction::Invoke: return GetCallSiteClass(cast(I)); case Instruction::BitCast: case Instruction::GetElementPtr: case Instruction::Select: case Instruction::PHI: case Instruction::Ret: case Instruction::Br: case Instruction::Switch: case Instruction::IndirectBr: case Instruction::Alloca: case Instruction::VAArg: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv: case Instruction::SRem: case Instruction::URem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc: case Instruction::IntToPtr: case Instruction::FCmp: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::InsertElement: case Instruction::ExtractElement: case Instruction::ShuffleVector: case Instruction::ExtractValue: break; case Instruction::ICmp: // Comparing a pointer with null, or any other constant, isn't an // interesting use, because we don't care what the pointer points to, or // about the values of any other dynamic reference-counted pointers. if (IsPotentialUse(I->getOperand(1))) return IC_User; break; default: // For anything else, check all the operands. // Note that this includes both operands of a Store: while the first // operand isn't actually being dereferenced, it is being stored to // memory where we can no longer track who might read it and dereference // it, so we have to consider it potentially used. for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) if (IsPotentialUse(*OI)) return IC_User; } } // Otherwise, it's totally inert for ARC purposes. return IC_None; } /// GetBasicInstructionClass - Determine what kind of construct V is. This is /// similar to GetInstructionClass except that it only detects objc runtine /// calls. This allows it to be faster. static InstructionClass GetBasicInstructionClass(const Value *V) { if (const CallInst *CI = dyn_cast(V)) { if (const Function *F = CI->getCalledFunction()) return GetFunctionClass(F); // Otherwise, be conservative. return IC_CallOrUser; } // Otherwise, be conservative. return isa(V) ? IC_CallOrUser : IC_User; } /// IsRetain - Test if the given class is objc_retain or /// equivalent. static bool IsRetain(InstructionClass Class) { return Class == IC_Retain || Class == IC_RetainRV; } /// IsAutorelease - Test if the given class is objc_autorelease or /// equivalent. static bool IsAutorelease(InstructionClass Class) { return Class == IC_Autorelease || Class == IC_AutoreleaseRV; } /// IsForwarding - Test if the given class represents instructions which return /// their argument verbatim. static bool IsForwarding(InstructionClass Class) { // objc_retainBlock technically doesn't always return its argument // verbatim, but it doesn't matter for our purposes here. return Class == IC_Retain || Class == IC_RetainRV || Class == IC_Autorelease || Class == IC_AutoreleaseRV || Class == IC_RetainBlock || Class == IC_NoopCast; } /// IsNoopOnNull - Test if the given class represents instructions which do /// nothing if passed a null pointer. static bool IsNoopOnNull(InstructionClass Class) { return Class == IC_Retain || Class == IC_RetainRV || Class == IC_Release || Class == IC_Autorelease || Class == IC_AutoreleaseRV || Class == IC_RetainBlock; } /// IsAlwaysTail - Test if the given class represents instructions which are /// always safe to mark with the "tail" keyword. static bool IsAlwaysTail(InstructionClass Class) { // IC_RetainBlock may be given a stack argument. return Class == IC_Retain || Class == IC_RetainRV || Class == IC_Autorelease || Class == IC_AutoreleaseRV; } /// IsNoThrow - Test if the given class represents instructions which are always /// safe to mark with the nounwind attribute.. static bool IsNoThrow(InstructionClass Class) { // objc_retainBlock is not nounwind because it calls user copy constructors // which could theoretically throw. return Class == IC_Retain || Class == IC_RetainRV || Class == IC_Release || Class == IC_Autorelease || Class == IC_AutoreleaseRV || Class == IC_AutoreleasepoolPush || Class == IC_AutoreleasepoolPop; } /// EraseInstruction - Erase the given instruction. Many ObjC calls return their /// argument verbatim, so if it's such a call and the return value has users, /// replace them with the argument value. static void EraseInstruction(Instruction *CI) { Value *OldArg = cast(CI)->getArgOperand(0); bool Unused = CI->use_empty(); if (!Unused) { // Replace the return value with the argument. assert(IsForwarding(GetBasicInstructionClass(CI)) && "Can't delete non-forwarding instruction with users!"); CI->replaceAllUsesWith(OldArg); } CI->eraseFromParent(); if (Unused) RecursivelyDeleteTriviallyDeadInstructions(OldArg); } /// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which /// also knows how to look through objc_retain and objc_autorelease calls, which /// we know to return their argument verbatim. static const Value *GetUnderlyingObjCPtr(const Value *V) { for (;;) { V = GetUnderlyingObject(V); if (!IsForwarding(GetBasicInstructionClass(V))) break; V = cast(V)->getArgOperand(0); } return V; } /// StripPointerCastsAndObjCCalls - This is a wrapper around /// Value::stripPointerCasts which also knows how to look through objc_retain /// and objc_autorelease calls, which we know to return their argument verbatim. static const Value *StripPointerCastsAndObjCCalls(const Value *V) { for (;;) { V = V->stripPointerCasts(); if (!IsForwarding(GetBasicInstructionClass(V))) break; V = cast(V)->getArgOperand(0); } return V; } /// StripPointerCastsAndObjCCalls - This is a wrapper around /// Value::stripPointerCasts which also knows how to look through objc_retain /// and objc_autorelease calls, which we know to return their argument verbatim. static Value *StripPointerCastsAndObjCCalls(Value *V) { for (;;) { V = V->stripPointerCasts(); if (!IsForwarding(GetBasicInstructionClass(V))) break; V = cast(V)->getArgOperand(0); } return V; } /// GetObjCArg - Assuming the given instruction is one of the special calls such /// as objc_retain or objc_release, return the argument value, stripped of no-op /// casts and forwarding calls. static Value *GetObjCArg(Value *Inst) { return StripPointerCastsAndObjCCalls(cast(Inst)->getArgOperand(0)); } /// IsObjCIdentifiedObject - This is similar to AliasAnalysis' /// isObjCIdentifiedObject, except that it uses special knowledge of /// ObjC conventions... static bool IsObjCIdentifiedObject(const Value *V) { // Assume that call results and arguments have their own "provenance". // Constants (including GlobalVariables) and Allocas are never // reference-counted. if (isa(V) || isa(V) || isa(V) || isa(V) || isa(V)) return true; if (const LoadInst *LI = dyn_cast(V)) { const Value *Pointer = StripPointerCastsAndObjCCalls(LI->getPointerOperand()); if (const GlobalVariable *GV = dyn_cast(Pointer)) { // A constant pointer can't be pointing to an object on the heap. It may // be reference-counted, but it won't be deleted. if (GV->isConstant()) return true; StringRef Name = GV->getName(); // These special variables are known to hold values which are not // reference-counted pointers. if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") || Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") || Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") || Name.startswith("\01L_OBJC_METH_VAR_NAME_") || Name.startswith("\01l_objc_msgSend_fixup_")) return true; } } return false; } /// FindSingleUseIdentifiedObject - This is similar to /// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value /// with multiple uses. static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { if (Arg->hasOneUse()) { if (const BitCastInst *BC = dyn_cast(Arg)) return FindSingleUseIdentifiedObject(BC->getOperand(0)); if (const GetElementPtrInst *GEP = dyn_cast(Arg)) if (GEP->hasAllZeroIndices()) return FindSingleUseIdentifiedObject(GEP->getPointerOperand()); if (IsForwarding(GetBasicInstructionClass(Arg))) return FindSingleUseIdentifiedObject( cast(Arg)->getArgOperand(0)); if (!IsObjCIdentifiedObject(Arg)) return 0; return Arg; } // If we found an identifiable object but it has multiple uses, but they are // trivial uses, we can still consider this to be a single-use value. if (IsObjCIdentifiedObject(Arg)) { for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end(); UI != UE; ++UI) { const User *U = *UI; if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg) return 0; } return Arg; } return 0; } /// ModuleHasARC - Test if the given module looks interesting to run ARC /// optimization on. static bool ModuleHasARC(const Module &M) { return M.getNamedValue("objc_retain") || M.getNamedValue("objc_release") || M.getNamedValue("objc_autorelease") || M.getNamedValue("objc_retainAutoreleasedReturnValue") || M.getNamedValue("objc_retainBlock") || M.getNamedValue("objc_autoreleaseReturnValue") || M.getNamedValue("objc_autoreleasePoolPush") || M.getNamedValue("objc_loadWeakRetained") || M.getNamedValue("objc_loadWeak") || M.getNamedValue("objc_destroyWeak") || M.getNamedValue("objc_storeWeak") || M.getNamedValue("objc_initWeak") || M.getNamedValue("objc_moveWeak") || M.getNamedValue("objc_copyWeak") || M.getNamedValue("objc_retainedObject") || M.getNamedValue("objc_unretainedObject") || M.getNamedValue("objc_unretainedPointer"); } /// DoesObjCBlockEscape - Test whether the given pointer, which is an /// Objective C block pointer, does not "escape". This differs from regular /// escape analysis in that a use as an argument to a call is not considered /// an escape. static bool DoesObjCBlockEscape(const Value *BlockPtr) { // Walk the def-use chains. SmallVector Worklist; Worklist.push_back(BlockPtr); do { const Value *V = Worklist.pop_back_val(); for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; ++UI) { const User *UUser = *UI; // Special - Use by a call (callee or argument) is not considered // to be an escape. switch (GetBasicInstructionClass(UUser)) { case IC_StoreWeak: case IC_InitWeak: case IC_StoreStrong: case IC_Autorelease: case IC_AutoreleaseRV: // These special functions make copies of their pointer arguments. return true; case IC_User: case IC_None: // Use by an instruction which copies the value is an escape if the // result is an escape. if (isa(UUser) || isa(UUser) || isa(UUser) || isa(UUser)) { Worklist.push_back(UUser); continue; } // Use by a load is not an escape. if (isa(UUser)) continue; // Use by a store is not an escape if the use is the address. if (const StoreInst *SI = dyn_cast(UUser)) if (V != SI->getValueOperand()) continue; break; default: // Regular calls and other stuff are not considered escapes. continue; } // Otherwise, conservatively assume an escape. return true; } } while (!Worklist.empty()); // No escapes found. return false; } //===----------------------------------------------------------------------===// // ARC AliasAnalysis. //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Passes.h" #include "llvm/Pass.h" namespace { /// ObjCARCAliasAnalysis - This is a simple alias analysis /// implementation that uses knowledge of ARC constructs to answer queries. /// /// TODO: This class could be generalized to know about other ObjC-specific /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing /// even though their offsets are dynamic. class ObjCARCAliasAnalysis : public ImmutablePass, public AliasAnalysis { public: static char ID; // Class identification, replacement for typeinfo ObjCARCAliasAnalysis() : ImmutablePass(ID) { initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry()); } private: virtual void initializePass() { InitializeAliasAnalysis(this); } /// getAdjustedAnalysisPointer - This method is used when a pass implements /// an analysis interface through multiple inheritance. If needed, it /// should override this to adjust the this pointer as needed for the /// specified pass info. virtual void *getAdjustedAnalysisPointer(const void *PI) { if (PI == &AliasAnalysis::ID) return static_cast(this); return this; } virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual AliasResult alias(const Location &LocA, const Location &LocB); virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); virtual ModRefBehavior getModRefBehavior(const Function *F); virtual ModRefResult getModRefInfo(ImmutableCallSite CS, const Location &Loc); virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2); }; } // End of anonymous namespace // Register this pass... char ObjCARCAliasAnalysis::ID = 0; INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa", "ObjC-ARC-Based Alias Analysis", false, true, false) ImmutablePass *llvm::createObjCARCAliasAnalysisPass() { return new ObjCARCAliasAnalysis(); } void ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AliasAnalysis::getAnalysisUsage(AU); } AliasAnalysis::AliasResult ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) { if (!EnableARCOpts) return AliasAnalysis::alias(LocA, LocB); // First, strip off no-ops, including ObjC-specific no-ops, and try making a // precise alias query. const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr); const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr); AliasResult Result = AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag), Location(SB, LocB.Size, LocB.TBAATag)); if (Result != MayAlias) return Result; // If that failed, climb to the underlying object, including climbing through // ObjC-specific no-ops, and try making an imprecise alias query. const Value *UA = GetUnderlyingObjCPtr(SA); const Value *UB = GetUnderlyingObjCPtr(SB); if (UA != SA || UB != SB) { Result = AliasAnalysis::alias(Location(UA), Location(UB)); // We can't use MustAlias or PartialAlias results here because // GetUnderlyingObjCPtr may return an offsetted pointer value. if (Result == NoAlias) return NoAlias; } // If that failed, fail. We don't need to chain here, since that's covered // by the earlier precise query. return MayAlias; } bool ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { if (!EnableARCOpts) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); // First, strip off no-ops, including ObjC-specific no-ops, and try making // a precise alias query. const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr); if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag), OrLocal)) return true; // If that failed, climb to the underlying object, including climbing through // ObjC-specific no-ops, and try making an imprecise alias query. const Value *U = GetUnderlyingObjCPtr(S); if (U != S) return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal); // If that failed, fail. We don't need to chain here, since that's covered // by the earlier precise query. return false; } AliasAnalysis::ModRefBehavior ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { // We have nothing to do. Just chain to the next AliasAnalysis. return AliasAnalysis::getModRefBehavior(CS); } AliasAnalysis::ModRefBehavior ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) { if (!EnableARCOpts) return AliasAnalysis::getModRefBehavior(F); switch (GetFunctionClass(F)) { case IC_NoopCast: return DoesNotAccessMemory; default: break; } return AliasAnalysis::getModRefBehavior(F); } AliasAnalysis::ModRefResult ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) { if (!EnableARCOpts) return AliasAnalysis::getModRefInfo(CS, Loc); switch (GetBasicInstructionClass(CS.getInstruction())) { case IC_Retain: case IC_RetainRV: case IC_Autorelease: case IC_AutoreleaseRV: case IC_NoopCast: case IC_AutoreleasepoolPush: case IC_FusedRetainAutorelease: case IC_FusedRetainAutoreleaseRV: // These functions don't access any memory visible to the compiler. // Note that this doesn't include objc_retainBlock, because it updates // pointers when it copies block data. return NoModRef; default: break; } return AliasAnalysis::getModRefInfo(CS, Loc); } AliasAnalysis::ModRefResult ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { // TODO: Theoretically we could check for dependencies between objc_* calls // and OnlyAccessesArgumentPointees calls or other well-behaved calls. return AliasAnalysis::getModRefInfo(CS1, CS2); } //===----------------------------------------------------------------------===// // ARC expansion. //===----------------------------------------------------------------------===// #include "llvm/Support/InstIterator.h" #include "llvm/Transforms/Scalar.h" namespace { /// ObjCARCExpand - Early ARC transformations. class ObjCARCExpand : public FunctionPass { virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual bool doInitialization(Module &M); virtual bool runOnFunction(Function &F); /// Run - A flag indicating whether this optimization pass should run. bool Run; public: static char ID; ObjCARCExpand() : FunctionPass(ID) { initializeObjCARCExpandPass(*PassRegistry::getPassRegistry()); } }; } char ObjCARCExpand::ID = 0; INITIALIZE_PASS(ObjCARCExpand, "objc-arc-expand", "ObjC ARC expansion", false, false) Pass *llvm::createObjCARCExpandPass() { return new ObjCARCExpand(); } void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); } bool ObjCARCExpand::doInitialization(Module &M) { Run = ModuleHasARC(M); return false; } bool ObjCARCExpand::runOnFunction(Function &F) { if (!EnableARCOpts) return false; // If nothing in the Module uses ARC, don't do anything. if (!Run) return false; bool Changed = false; for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { Instruction *Inst = &*I; switch (GetBasicInstructionClass(Inst)) { case IC_Retain: case IC_RetainRV: case IC_Autorelease: case IC_AutoreleaseRV: case IC_FusedRetainAutorelease: case IC_FusedRetainAutoreleaseRV: // These calls return their argument verbatim, as a low-level // optimization. However, this makes high-level optimizations // harder. Undo any uses of this optimization that the front-end // emitted here. We'll redo them in the contract pass. Changed = true; Inst->replaceAllUsesWith(cast(Inst)->getArgOperand(0)); break; default: break; } } return Changed; } //===----------------------------------------------------------------------===// // ARC autorelease pool elimination. //===----------------------------------------------------------------------===// #include "llvm/ADT/STLExtras.h" #include "llvm/Constants.h" namespace { /// ObjCARCAPElim - Autorelease pool elimination. class ObjCARCAPElim : public ModulePass { virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual bool runOnModule(Module &M); static bool MayAutorelease(ImmutableCallSite CS, unsigned Depth = 0); static bool OptimizeBB(BasicBlock *BB); public: static char ID; ObjCARCAPElim() : ModulePass(ID) { initializeObjCARCAPElimPass(*PassRegistry::getPassRegistry()); } }; } char ObjCARCAPElim::ID = 0; INITIALIZE_PASS(ObjCARCAPElim, "objc-arc-apelim", "ObjC ARC autorelease pool elimination", false, false) Pass *llvm::createObjCARCAPElimPass() { return new ObjCARCAPElim(); } void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); } /// MayAutorelease - Interprocedurally determine if calls made by the /// given call site can possibly produce autoreleases. bool ObjCARCAPElim::MayAutorelease(ImmutableCallSite CS, unsigned Depth) { if (const Function *Callee = CS.getCalledFunction()) { if (Callee->isDeclaration() || Callee->mayBeOverridden()) return true; for (Function::const_iterator I = Callee->begin(), E = Callee->end(); I != E; ++I) { const BasicBlock *BB = I; for (BasicBlock::const_iterator J = BB->begin(), F = BB->end(); J != F; ++J) if (ImmutableCallSite JCS = ImmutableCallSite(J)) // This recursion depth limit is arbitrary. It's just great // enough to cover known interesting testcases. if (Depth < 3 && !JCS.onlyReadsMemory() && MayAutorelease(JCS, Depth + 1)) return true; } return false; } return true; } bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) { bool Changed = false; Instruction *Push = 0; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { Instruction *Inst = I++; switch (GetBasicInstructionClass(Inst)) { case IC_AutoreleasepoolPush: Push = Inst; break; case IC_AutoreleasepoolPop: // If this pop matches a push and nothing in between can autorelease, // zap the pair. if (Push && cast(Inst)->getArgOperand(0) == Push) { Changed = true; Inst->eraseFromParent(); Push->eraseFromParent(); } Push = 0; break; case IC_CallOrUser: if (MayAutorelease(ImmutableCallSite(Inst))) Push = 0; break; default: break; } } return Changed; } bool ObjCARCAPElim::runOnModule(Module &M) { if (!EnableARCOpts) return false; // If nothing in the Module uses ARC, don't do anything. if (!ModuleHasARC(M)) return false; // Find the llvm.global_ctors variable, as the first step in // identifying the global constructors. In theory, unnecessary autorelease // pools could occur anywhere, but in practice it's pretty rare. Global // ctors are a place where autorelease pools get inserted automatically, // so it's pretty common for them to be unnecessary, and it's pretty // profitable to eliminate them. GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); if (!GV) return false; assert(GV->hasDefinitiveInitializer() && "llvm.global_ctors is uncooperative!"); bool Changed = false; // Dig the constructor functions out of GV's initializer. ConstantArray *Init = cast(GV->getInitializer()); for (User::op_iterator OI = Init->op_begin(), OE = Init->op_end(); OI != OE; ++OI) { Value *Op = *OI; // llvm.global_ctors is an array of pairs where the second members // are constructor functions. Function *F = dyn_cast(cast(Op)->getOperand(1)); // If the user used a constructor function with the wrong signature and // it got bitcasted or whatever, look the other way. if (!F) continue; // Only look at function definitions. if (F->isDeclaration()) continue; // Only look at functions with one basic block. if (llvm::next(F->begin()) != F->end()) continue; // Ok, a single-block constructor function definition. Try to optimize it. Changed |= OptimizeBB(F->begin()); } return Changed; } //===----------------------------------------------------------------------===// // ARC optimization. //===----------------------------------------------------------------------===// // TODO: On code like this: // // objc_retain(%x) // stuff_that_cannot_release() // objc_autorelease(%x) // stuff_that_cannot_release() // objc_retain(%x) // stuff_that_cannot_release() // objc_autorelease(%x) // // The second retain and autorelease can be deleted. // TODO: It should be possible to delete // objc_autoreleasePoolPush and objc_autoreleasePoolPop // pairs if nothing is actually autoreleased between them. Also, autorelease // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code // after inlining) can be turned into plain release calls. // TODO: Critical-edge splitting. If the optimial insertion point is // a critical edge, the current algorithm has to fail, because it doesn't // know how to split edges. It should be possible to make the optimizer // think in terms of edges, rather than blocks, and then split critical // edges on demand. // TODO: OptimizeSequences could generalized to be Interprocedural. // TODO: Recognize that a bunch of other objc runtime calls have // non-escaping arguments and non-releasing arguments, and may be // non-autoreleasing. // TODO: Sink autorelease calls as far as possible. Unfortunately we // usually can't sink them past other calls, which would be the main // case where it would be useful. // TODO: The pointer returned from objc_loadWeakRetained is retained. // TODO: Delete release+retain pairs (rare). #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/LLVMContext.h" #include "llvm/Support/CFG.h" STATISTIC(NumNoops, "Number of no-op objc calls eliminated"); STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated"); STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases"); STATISTIC(NumRets, "Number of return value forwarding " "retain+autoreleaes eliminated"); STATISTIC(NumRRs, "Number of retain+release paths eliminated"); STATISTIC(NumPeeps, "Number of calls peephole-optimized"); namespace { /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it /// uses many of the same techniques, except it uses special ObjC-specific /// reasoning about pointer relationships. class ProvenanceAnalysis { AliasAnalysis *AA; typedef std::pair ValuePairTy; typedef DenseMap CachedResultsTy; CachedResultsTy CachedResults; bool relatedCheck(const Value *A, const Value *B); bool relatedSelect(const SelectInst *A, const Value *B); bool relatedPHI(const PHINode *A, const Value *B); void operator=(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION; ProvenanceAnalysis(const ProvenanceAnalysis &) LLVM_DELETED_FUNCTION; public: ProvenanceAnalysis() {} void setAA(AliasAnalysis *aa) { AA = aa; } AliasAnalysis *getAA() const { return AA; } bool related(const Value *A, const Value *B); void clear() { CachedResults.clear(); } }; } bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) { // If the values are Selects with the same condition, we can do a more precise // check: just check for relations between the values on corresponding arms. if (const SelectInst *SB = dyn_cast(B)) if (A->getCondition() == SB->getCondition()) return related(A->getTrueValue(), SB->getTrueValue()) || related(A->getFalseValue(), SB->getFalseValue()); // Check both arms of the Select node individually. return related(A->getTrueValue(), B) || related(A->getFalseValue(), B); } bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) { // If the values are PHIs in the same block, we can do a more precise as well // as efficient check: just check for relations between the values on // corresponding edges. if (const PHINode *PNB = dyn_cast(B)) if (PNB->getParent() == A->getParent()) { for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) if (related(A->getIncomingValue(i), PNB->getIncomingValueForBlock(A->getIncomingBlock(i)))) return true; return false; } // Check each unique source of the PHI node against B. SmallPtrSet UniqueSrc; for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) { const Value *PV1 = A->getIncomingValue(i); if (UniqueSrc.insert(PV1) && related(PV1, B)) return true; } // All of the arms checked out. return false; } /// isStoredObjCPointer - Test if the value of P, or any value covered by its /// provenance, is ever stored within the function (not counting callees). static bool isStoredObjCPointer(const Value *P) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(P); Visited.insert(P); do { P = Worklist.pop_back_val(); for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end(); UI != UE; ++UI) { const User *Ur = *UI; if (isa(Ur)) { if (UI.getOperandNo() == 0) // The pointer is stored. return true; // The pointed is stored through. continue; } if (isa(Ur)) // The pointer is passed as an argument, ignore this. continue; if (isa(P)) // Assume the worst. return true; if (Visited.insert(Ur)) Worklist.push_back(Ur); } } while (!Worklist.empty()); // Everything checked out. return false; } bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) { // Skip past provenance pass-throughs. A = GetUnderlyingObjCPtr(A); B = GetUnderlyingObjCPtr(B); // Quick check. if (A == B) return true; // Ask regular AliasAnalysis, for a first approximation. switch (AA->alias(A, B)) { case AliasAnalysis::NoAlias: return false; case AliasAnalysis::MustAlias: case AliasAnalysis::PartialAlias: return true; case AliasAnalysis::MayAlias: break; } bool AIsIdentified = IsObjCIdentifiedObject(A); bool BIsIdentified = IsObjCIdentifiedObject(B); // An ObjC-Identified object can't alias a load if it is never locally stored. if (AIsIdentified) { // Check for an obvious escape. if (isa(B)) return isStoredObjCPointer(A); if (BIsIdentified) { // Check for an obvious escape. if (isa(A)) return isStoredObjCPointer(B); // Both pointers are identified and escapes aren't an evident problem. return false; } } else if (BIsIdentified) { // Check for an obvious escape. if (isa(A)) return isStoredObjCPointer(B); } // Special handling for PHI and Select. if (const PHINode *PN = dyn_cast(A)) return relatedPHI(PN, B); if (const PHINode *PN = dyn_cast(B)) return relatedPHI(PN, A); if (const SelectInst *S = dyn_cast(A)) return relatedSelect(S, B); if (const SelectInst *S = dyn_cast(B)) return relatedSelect(S, A); // Conservative. return true; } bool ProvenanceAnalysis::related(const Value *A, const Value *B) { // Begin by inserting a conservative value into the map. If the insertion // fails, we have the answer already. If it succeeds, leave it there until we // compute the real answer to guard against recursive queries. if (A > B) std::swap(A, B); std::pair Pair = CachedResults.insert(std::make_pair(ValuePairTy(A, B), true)); if (!Pair.second) return Pair.first->second; bool Result = relatedCheck(A, B); CachedResults[ValuePairTy(A, B)] = Result; return Result; } namespace { // Sequence - A sequence of states that a pointer may go through in which an // objc_retain and objc_release are actually needed. enum Sequence { S_None, S_Retain, ///< objc_retain(x) S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement S_Use, ///< any use of x S_Stop, ///< like S_Release, but code motion is stopped S_Release, ///< objc_release(x) S_MovableRelease ///< objc_release(x), !clang.imprecise_release }; } static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) { // The easy cases. if (A == B) return A; if (A == S_None || B == S_None) return S_None; if (A > B) std::swap(A, B); if (TopDown) { // Choose the side which is further along in the sequence. if ((A == S_Retain || A == S_CanRelease) && (B == S_CanRelease || B == S_Use)) return B; } else { // Choose the side which is further along in the sequence. if ((A == S_Use || A == S_CanRelease) && (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease)) return A; // If both sides are releases, choose the more conservative one. if (A == S_Stop && (B == S_Release || B == S_MovableRelease)) return A; if (A == S_Release && B == S_MovableRelease) return A; } return S_None; } namespace { /// RRInfo - Unidirectional information about either a /// retain-decrement-use-release sequence or release-use-decrement-retain /// reverese sequence. struct RRInfo { /// KnownSafe - After an objc_retain, the reference count of the referenced /// object is known to be positive. Similarly, before an objc_release, the /// reference count of the referenced object is known to be positive. If /// there are retain-release pairs in code regions where the retain count /// is known to be positive, they can be eliminated, regardless of any side /// effects between them. /// /// Also, a retain+release pair nested within another retain+release /// pair all on the known same pointer value can be eliminated, regardless /// of any intervening side effects. /// /// KnownSafe is true when either of these conditions is satisfied. bool KnownSafe; /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as /// opposed to objc_retain calls). bool IsRetainBlock; /// IsTailCallRelease - True of the objc_release calls are all marked /// with the "tail" keyword. bool IsTailCallRelease; /// ReleaseMetadata - If the Calls are objc_release calls and they all have /// a clang.imprecise_release tag, this is the metadata tag. MDNode *ReleaseMetadata; /// Calls - For a top-down sequence, the set of objc_retains or /// objc_retainBlocks. For bottom-up, the set of objc_releases. SmallPtrSet Calls; /// ReverseInsertPts - The set of optimal insert positions for /// moving calls in the opposite sequence. SmallPtrSet ReverseInsertPts; RRInfo() : KnownSafe(false), IsRetainBlock(false), IsTailCallRelease(false), ReleaseMetadata(0) {} void clear(); }; } void RRInfo::clear() { KnownSafe = false; IsRetainBlock = false; IsTailCallRelease = false; ReleaseMetadata = 0; Calls.clear(); ReverseInsertPts.clear(); } namespace { /// PtrState - This class summarizes several per-pointer runtime properties /// which are propogated through the flow graph. class PtrState { /// KnownPositiveRefCount - True if the reference count is known to /// be incremented. bool KnownPositiveRefCount; /// Partial - True of we've seen an opportunity for partial RR elimination, /// such as pushing calls into a CFG triangle or into one side of a /// CFG diamond. bool Partial; /// Seq - The current position in the sequence. Sequence Seq : 8; public: /// RRI - Unidirectional information about the current sequence. /// TODO: Encapsulate this better. RRInfo RRI; PtrState() : KnownPositiveRefCount(false), Partial(false), Seq(S_None) {} void SetKnownPositiveRefCount() { KnownPositiveRefCount = true; } void ClearRefCount() { KnownPositiveRefCount = false; } bool IsKnownIncremented() const { return KnownPositiveRefCount; } void SetSeq(Sequence NewSeq) { Seq = NewSeq; } Sequence GetSeq() const { return Seq; } void ClearSequenceProgress() { ResetSequenceProgress(S_None); } void ResetSequenceProgress(Sequence NewSeq) { Seq = NewSeq; Partial = false; RRI.clear(); } void Merge(const PtrState &Other, bool TopDown); }; } void PtrState::Merge(const PtrState &Other, bool TopDown) { Seq = MergeSeqs(Seq, Other.Seq, TopDown); KnownPositiveRefCount = KnownPositiveRefCount && Other.KnownPositiveRefCount; // We can't merge a plain objc_retain with an objc_retainBlock. if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock) Seq = S_None; // If we're not in a sequence (anymore), drop all associated state. if (Seq == S_None) { Partial = false; RRI.clear(); } else if (Partial || Other.Partial) { // If we're doing a merge on a path that's previously seen a partial // merge, conservatively drop the sequence, to avoid doing partial // RR elimination. If the branch predicates for the two merge differ, // mixing them is unsafe. ClearSequenceProgress(); } else { // Conservatively merge the ReleaseMetadata information. if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata) RRI.ReleaseMetadata = 0; RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe; RRI.IsTailCallRelease = RRI.IsTailCallRelease && Other.RRI.IsTailCallRelease; RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end()); // Merge the insert point sets. If there are any differences, // that makes this a partial merge. Partial = RRI.ReverseInsertPts.size() != Other.RRI.ReverseInsertPts.size(); for (SmallPtrSet::const_iterator I = Other.RRI.ReverseInsertPts.begin(), E = Other.RRI.ReverseInsertPts.end(); I != E; ++I) Partial |= RRI.ReverseInsertPts.insert(*I); } } namespace { /// BBState - Per-BasicBlock state. class BBState { /// TopDownPathCount - The number of unique control paths from the entry /// which can reach this block. unsigned TopDownPathCount; /// BottomUpPathCount - The number of unique control paths to exits /// from this block. unsigned BottomUpPathCount; /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp. typedef MapVector MapTy; /// PerPtrTopDown - The top-down traversal uses this to record information /// known about a pointer at the bottom of each block. MapTy PerPtrTopDown; /// PerPtrBottomUp - The bottom-up traversal uses this to record information /// known about a pointer at the top of each block. MapTy PerPtrBottomUp; /// Preds, Succs - Effective successors and predecessors of the current /// block (this ignores ignorable edges and ignored backedges). SmallVector Preds; SmallVector Succs; public: BBState() : TopDownPathCount(0), BottomUpPathCount(0) {} typedef MapTy::iterator ptr_iterator; typedef MapTy::const_iterator ptr_const_iterator; ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } ptr_const_iterator top_down_ptr_begin() const { return PerPtrTopDown.begin(); } ptr_const_iterator top_down_ptr_end() const { return PerPtrTopDown.end(); } ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); } ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } ptr_const_iterator bottom_up_ptr_begin() const { return PerPtrBottomUp.begin(); } ptr_const_iterator bottom_up_ptr_end() const { return PerPtrBottomUp.end(); } /// SetAsEntry - Mark this block as being an entry block, which has one /// path from the entry by definition. void SetAsEntry() { TopDownPathCount = 1; } /// SetAsExit - Mark this block as being an exit block, which has one /// path to an exit by definition. void SetAsExit() { BottomUpPathCount = 1; } PtrState &getPtrTopDownState(const Value *Arg) { return PerPtrTopDown[Arg]; } PtrState &getPtrBottomUpState(const Value *Arg) { return PerPtrBottomUp[Arg]; } void clearBottomUpPointers() { PerPtrBottomUp.clear(); } void clearTopDownPointers() { PerPtrTopDown.clear(); } void InitFromPred(const BBState &Other); void InitFromSucc(const BBState &Other); void MergePred(const BBState &Other); void MergeSucc(const BBState &Other); /// GetAllPathCount - Return the number of possible unique paths from an /// entry to an exit which pass through this block. This is only valid /// after both the top-down and bottom-up traversals are complete. unsigned GetAllPathCount() const { assert(TopDownPathCount != 0); assert(BottomUpPathCount != 0); return TopDownPathCount * BottomUpPathCount; } // Specialized CFG utilities. typedef SmallVectorImpl::const_iterator edge_iterator; edge_iterator pred_begin() { return Preds.begin(); } edge_iterator pred_end() { return Preds.end(); } edge_iterator succ_begin() { return Succs.begin(); } edge_iterator succ_end() { return Succs.end(); } void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); } void addPred(BasicBlock *Pred) { Preds.push_back(Pred); } bool isExit() const { return Succs.empty(); } }; } void BBState::InitFromPred(const BBState &Other) { PerPtrTopDown = Other.PerPtrTopDown; TopDownPathCount = Other.TopDownPathCount; } void BBState::InitFromSucc(const BBState &Other) { PerPtrBottomUp = Other.PerPtrBottomUp; BottomUpPathCount = Other.BottomUpPathCount; } /// MergePred - The top-down traversal uses this to merge information about /// predecessors to form the initial state for a new block. void BBState::MergePred(const BBState &Other) { // Other.TopDownPathCount can be 0, in which case it is either dead or a // loop backedge. Loop backedges are special. TopDownPathCount += Other.TopDownPathCount; // Check for overflow. If we have overflow, fall back to conservative behavior. if (TopDownPathCount < Other.TopDownPathCount) { clearTopDownPointers(); return; } // For each entry in the other set, if our set has an entry with the same key, // merge the entries. Otherwise, copy the entry and merge it with an empty // entry. for (ptr_const_iterator MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end(); MI != ME; ++MI) { std::pair Pair = PerPtrTopDown.insert(*MI); Pair.first->second.Merge(Pair.second ? PtrState() : MI->second, /*TopDown=*/true); } // For each entry in our set, if the other set doesn't have an entry with the // same key, force it to merge with an empty entry. for (ptr_iterator MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI) if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end()) MI->second.Merge(PtrState(), /*TopDown=*/true); } /// MergeSucc - The bottom-up traversal uses this to merge information about /// successors to form the initial state for a new block. void BBState::MergeSucc(const BBState &Other) { // Other.BottomUpPathCount can be 0, in which case it is either dead or a // loop backedge. Loop backedges are special. BottomUpPathCount += Other.BottomUpPathCount; // Check for overflow. If we have overflow, fall back to conservative behavior. if (BottomUpPathCount < Other.BottomUpPathCount) { clearBottomUpPointers(); return; } // For each entry in the other set, if our set has an entry with the // same key, merge the entries. Otherwise, copy the entry and merge // it with an empty entry. for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) { std::pair Pair = PerPtrBottomUp.insert(*MI); Pair.first->second.Merge(Pair.second ? PtrState() : MI->second, /*TopDown=*/false); } // For each entry in our set, if the other set doesn't have an entry // with the same key, force it to merge with an empty entry. for (ptr_iterator MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME; ++MI) if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end()) MI->second.Merge(PtrState(), /*TopDown=*/false); } namespace { /// ObjCARCOpt - The main ARC optimization pass. class ObjCARCOpt : public FunctionPass { bool Changed; ProvenanceAnalysis PA; /// Run - A flag indicating whether this optimization pass should run. bool Run; /// RetainRVCallee, etc. - Declarations for ObjC runtime /// functions, for use in creating calls to them. These are initialized /// lazily to avoid cluttering up the Module with unused declarations. Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee, *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee; /// UsedInThisFunciton - Flags which determine whether each of the /// interesting runtine functions is in fact used in the current function. unsigned UsedInThisFunction; /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release /// metadata. unsigned ImpreciseReleaseMDKind; /// CopyOnEscapeMDKind - The Metadata Kind for clang.arc.copy_on_escape /// metadata. unsigned CopyOnEscapeMDKind; /// NoObjCARCExceptionsMDKind - The Metadata Kind for /// clang.arc.no_objc_arc_exceptions metadata. unsigned NoObjCARCExceptionsMDKind; Constant *getRetainRVCallee(Module *M); Constant *getAutoreleaseRVCallee(Module *M); Constant *getReleaseCallee(Module *M); Constant *getRetainCallee(Module *M); Constant *getRetainBlockCallee(Module *M); Constant *getAutoreleaseCallee(Module *M); bool IsRetainBlockOptimizable(const Instruction *Inst); void OptimizeRetainCall(Function &F, Instruction *Retain); bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV); void OptimizeIndividualCalls(Function &F); void CheckForCFGHazards(const BasicBlock *BB, DenseMap &BBStates, BBState &MyStates) const; bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB, MapVector &Retains, BBState &MyStates); bool VisitBottomUp(BasicBlock *BB, DenseMap &BBStates, MapVector &Retains); bool VisitInstructionTopDown(Instruction *Inst, DenseMap &Releases, BBState &MyStates); bool VisitTopDown(BasicBlock *BB, DenseMap &BBStates, DenseMap &Releases); bool Visit(Function &F, DenseMap &BBStates, MapVector &Retains, DenseMap &Releases); void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, MapVector &Retains, DenseMap &Releases, SmallVectorImpl &DeadInsts, Module *M); bool PerformCodePlacement(DenseMap &BBStates, MapVector &Retains, DenseMap &Releases, Module *M); void OptimizeWeakCalls(Function &F); bool OptimizeSequences(Function &F); void OptimizeReturns(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual bool doInitialization(Module &M); virtual bool runOnFunction(Function &F); virtual void releaseMemory(); public: static char ID; ObjCARCOpt() : FunctionPass(ID) { initializeObjCARCOptPass(*PassRegistry::getPassRegistry()); } }; } char ObjCARCOpt::ID = 0; INITIALIZE_PASS_BEGIN(ObjCARCOpt, "objc-arc", "ObjC ARC optimization", false, false) INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis) INITIALIZE_PASS_END(ObjCARCOpt, "objc-arc", "ObjC ARC optimization", false, false) Pass *llvm::createObjCARCOptPass() { return new ObjCARCOpt(); } void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); // ARC optimization doesn't currently split critical edges. AU.setPreservesCFG(); } bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) { // Without the magic metadata tag, we have to assume this might be an // objc_retainBlock call inserted to convert a block pointer to an id, // in which case it really is needed. if (!Inst->getMetadata(CopyOnEscapeMDKind)) return false; // If the pointer "escapes" (not including being used in a call), // the copy may be needed. if (DoesObjCBlockEscape(Inst)) return false; // Otherwise, it's not needed. return true; } Constant *ObjCARCOpt::getRetainRVCallee(Module *M) { if (!RetainRVCallee) { LLVMContext &C = M->getContext(); Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); Type *Params[] = { I8X }; FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false); AttributeSet Attributes = AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex, Attributes::get(C, Attributes::NoUnwind)); RetainRVCallee = M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy, Attributes); } return RetainRVCallee; } Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) { if (!AutoreleaseRVCallee) { LLVMContext &C = M->getContext(); Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); Type *Params[] = { I8X }; FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false); AttributeSet Attributes = AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex, Attributes::get(C, Attributes::NoUnwind)); AutoreleaseRVCallee = M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy, Attributes); } return AutoreleaseRVCallee; } Constant *ObjCARCOpt::getReleaseCallee(Module *M) { if (!ReleaseCallee) { LLVMContext &C = M->getContext(); Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) }; AttributeSet Attributes = AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex, Attributes::get(C, Attributes::NoUnwind)); ReleaseCallee = M->getOrInsertFunction( "objc_release", FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false), Attributes); } return ReleaseCallee; } Constant *ObjCARCOpt::getRetainCallee(Module *M) { if (!RetainCallee) { LLVMContext &C = M->getContext(); Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) }; AttributeSet Attributes = AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex, Attributes::get(C, Attributes::NoUnwind)); RetainCallee = M->getOrInsertFunction( "objc_retain", FunctionType::get(Params[0], Params, /*isVarArg=*/false), Attributes); } return RetainCallee; } Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) { if (!RetainBlockCallee) { LLVMContext &C = M->getContext(); Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) }; // objc_retainBlock is not nounwind because it calls user copy constructors // which could theoretically throw. RetainBlockCallee = M->getOrInsertFunction( "objc_retainBlock", FunctionType::get(Params[0], Params, /*isVarArg=*/false), AttributeSet()); } return RetainBlockCallee; } Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) { if (!AutoreleaseCallee) { LLVMContext &C = M->getContext(); Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) }; AttributeSet Attributes = AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex, Attributes::get(C, Attributes::NoUnwind)); AutoreleaseCallee = M->getOrInsertFunction( "objc_autorelease", FunctionType::get(Params[0], Params, /*isVarArg=*/false), Attributes); } return AutoreleaseCallee; } /// IsPotentialUse - Test whether the given value is possible a /// reference-counted pointer, including tests which utilize AliasAnalysis. static bool IsPotentialUse(const Value *Op, AliasAnalysis &AA) { // First make the rudimentary check. if (!IsPotentialUse(Op)) return false; // Objects in constant memory are not reference-counted. if (AA.pointsToConstantMemory(Op)) return false; // Pointers in constant memory are not pointing to reference-counted objects. if (const LoadInst *LI = dyn_cast(Op)) if (AA.pointsToConstantMemory(LI->getPointerOperand())) return false; // Otherwise assume the worst. return true; } /// CanAlterRefCount - Test whether the given instruction can result in a /// reference count modification (positive or negative) for the pointer's /// object. static bool CanAlterRefCount(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA, InstructionClass Class) { switch (Class) { case IC_Autorelease: case IC_AutoreleaseRV: case IC_User: // These operations never directly modify a reference count. return false; default: break; } ImmutableCallSite CS = static_cast(Inst); assert(CS && "Only calls can alter reference counts!"); // See if AliasAnalysis can help us with the call. AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS); if (AliasAnalysis::onlyReadsMemory(MRB)) return false; if (AliasAnalysis::onlyAccessesArgPointees(MRB)) { for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) { const Value *Op = *I; if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op)) return true; } return false; } // Assume the worst. return true; } /// CanUse - Test whether the given instruction can "use" the given pointer's /// object in a way that requires the reference count to be positive. static bool CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA, InstructionClass Class) { // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers. if (Class == IC_Call) return false; // Consider various instructions which may have pointer arguments which are // not "uses". if (const ICmpInst *ICI = dyn_cast(Inst)) { // Comparing a pointer with null, or any other constant, isn't really a use, // because we don't care what the pointer points to, or about the values // of any other dynamic reference-counted pointers. if (!IsPotentialUse(ICI->getOperand(1), *PA.getAA())) return false; } else if (ImmutableCallSite CS = static_cast(Inst)) { // For calls, just check the arguments (and not the callee operand). for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(), OE = CS.arg_end(); OI != OE; ++OI) { const Value *Op = *OI; if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op)) return true; } return false; } else if (const StoreInst *SI = dyn_cast(Inst)) { // Special-case stores, because we don't care about the stored value, just // the store address. const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand()); // If we can't tell what the underlying object was, assume there is a // dependence. return IsPotentialUse(Op, *PA.getAA()) && PA.related(Op, Ptr); } // Check each operand for a match. for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end(); OI != OE; ++OI) { const Value *Op = *OI; if (IsPotentialUse(Op, *PA.getAA()) && PA.related(Ptr, Op)) return true; } return false; } /// CanInterruptRV - Test whether the given instruction can autorelease /// any pointer or cause an autoreleasepool pop. static bool CanInterruptRV(InstructionClass Class) { switch (Class) { case IC_AutoreleasepoolPop: case IC_CallOrUser: case IC_Call: case IC_Autorelease: case IC_AutoreleaseRV: case IC_FusedRetainAutorelease: case IC_FusedRetainAutoreleaseRV: return true; default: return false; } } namespace { /// DependenceKind - There are several kinds of dependence-like concepts in /// use here. enum DependenceKind { NeedsPositiveRetainCount, AutoreleasePoolBoundary, CanChangeRetainCount, RetainAutoreleaseDep, ///< Blocks objc_retainAutorelease. RetainAutoreleaseRVDep, ///< Blocks objc_retainAutoreleaseReturnValue. RetainRVDep ///< Blocks objc_retainAutoreleasedReturnValue. }; } /// Depends - Test if there can be dependencies on Inst through Arg. This /// function only tests dependencies relevant for removing pairs of calls. static bool Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg, ProvenanceAnalysis &PA) { // If we've reached the definition of Arg, stop. if (Inst == Arg) return true; switch (Flavor) { case NeedsPositiveRetainCount: { InstructionClass Class = GetInstructionClass(Inst); switch (Class) { case IC_AutoreleasepoolPop: case IC_AutoreleasepoolPush: case IC_None: return false; default: return CanUse(Inst, Arg, PA, Class); } } case AutoreleasePoolBoundary: { InstructionClass Class = GetInstructionClass(Inst); switch (Class) { case IC_AutoreleasepoolPop: case IC_AutoreleasepoolPush: // These mark the end and begin of an autorelease pool scope. return true; default: // Nothing else does this. return false; } } case CanChangeRetainCount: { InstructionClass Class = GetInstructionClass(Inst); switch (Class) { case IC_AutoreleasepoolPop: // Conservatively assume this can decrement any count. return true; case IC_AutoreleasepoolPush: case IC_None: return false; default: return CanAlterRefCount(Inst, Arg, PA, Class); } } case RetainAutoreleaseDep: switch (GetBasicInstructionClass(Inst)) { case IC_AutoreleasepoolPop: case IC_AutoreleasepoolPush: // Don't merge an objc_autorelease with an objc_retain inside a different // autoreleasepool scope. return true; case IC_Retain: case IC_RetainRV: // Check for a retain of the same pointer for merging. return GetObjCArg(Inst) == Arg; default: // Nothing else matters for objc_retainAutorelease formation. return false; } case RetainAutoreleaseRVDep: { InstructionClass Class = GetBasicInstructionClass(Inst); switch (Class) { case IC_Retain: case IC_RetainRV: // Check for a retain of the same pointer for merging. return GetObjCArg(Inst) == Arg; default: // Anything that can autorelease interrupts // retainAutoreleaseReturnValue formation. return CanInterruptRV(Class); } } case RetainRVDep: return CanInterruptRV(GetBasicInstructionClass(Inst)); } llvm_unreachable("Invalid dependence flavor"); } /// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and /// find local and non-local dependencies on Arg. /// TODO: Cache results? static void FindDependencies(DependenceKind Flavor, const Value *Arg, BasicBlock *StartBB, Instruction *StartInst, SmallPtrSet &DependingInstructions, SmallPtrSet &Visited, ProvenanceAnalysis &PA) { BasicBlock::iterator StartPos = StartInst; SmallVector, 4> Worklist; Worklist.push_back(std::make_pair(StartBB, StartPos)); do { std::pair Pair = Worklist.pop_back_val(); BasicBlock *LocalStartBB = Pair.first; BasicBlock::iterator LocalStartPos = Pair.second; BasicBlock::iterator StartBBBegin = LocalStartBB->begin(); for (;;) { if (LocalStartPos == StartBBBegin) { pred_iterator PI(LocalStartBB), PE(LocalStartBB, false); if (PI == PE) // If we've reached the function entry, produce a null dependence. DependingInstructions.insert(0); else // Add the predecessors to the worklist. do { BasicBlock *PredBB = *PI; if (Visited.insert(PredBB)) Worklist.push_back(std::make_pair(PredBB, PredBB->end())); } while (++PI != PE); break; } Instruction *Inst = --LocalStartPos; if (Depends(Flavor, Inst, Arg, PA)) { DependingInstructions.insert(Inst); break; } } } while (!Worklist.empty()); // Determine whether the original StartBB post-dominates all of the blocks we // visited. If not, insert a sentinal indicating that most optimizations are // not safe. for (SmallPtrSet::const_iterator I = Visited.begin(), E = Visited.end(); I != E; ++I) { const BasicBlock *BB = *I; if (BB == StartBB) continue; const TerminatorInst *TI = cast(&BB->back()); for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) { const BasicBlock *Succ = *SI; if (Succ != StartBB && !Visited.count(Succ)) { DependingInstructions.insert(reinterpret_cast(-1)); return; } } } } static bool isNullOrUndef(const Value *V) { return isa(V) || isa(V); } static bool isNoopInstruction(const Instruction *I) { return isa(I) || (isa(I) && cast(I)->hasAllZeroIndices()); } /// OptimizeRetainCall - Turn objc_retain into /// objc_retainAutoreleasedReturnValue if the operand is a return value. void ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) { ImmutableCallSite CS(GetObjCArg(Retain)); const Instruction *Call = CS.getInstruction(); if (!Call) return; if (Call->getParent() != Retain->getParent()) return; // Check that the call is next to the retain. BasicBlock::const_iterator I = Call; ++I; while (isNoopInstruction(I)) ++I; if (&*I != Retain) return; // Turn it to an objc_retainAutoreleasedReturnValue.. Changed = true; ++NumPeeps; cast(Retain)->setCalledFunction(getRetainRVCallee(F.getParent())); } /// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into /// objc_retain if the operand is not a return value. Or, if it can be paired /// with an objc_autoreleaseReturnValue, delete the pair and return true. bool ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { // Check for the argument being from an immediately preceding call or invoke. const Value *Arg = GetObjCArg(RetainRV); ImmutableCallSite CS(Arg); if (const Instruction *Call = CS.getInstruction()) { if (Call->getParent() == RetainRV->getParent()) { BasicBlock::const_iterator I = Call; ++I; while (isNoopInstruction(I)) ++I; if (&*I == RetainRV) return false; } else if (const InvokeInst *II = dyn_cast(Call)) { BasicBlock *RetainRVParent = RetainRV->getParent(); if (II->getNormalDest() == RetainRVParent) { BasicBlock::const_iterator I = RetainRVParent->begin(); while (isNoopInstruction(I)) ++I; if (&*I == RetainRV) return false; } } } // Check for being preceded by an objc_autoreleaseReturnValue on the same // pointer. In this case, we can delete the pair. BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin(); if (I != Begin) { do --I; while (I != Begin && isNoopInstruction(I)); if (GetBasicInstructionClass(I) == IC_AutoreleaseRV && GetObjCArg(I) == Arg) { Changed = true; ++NumPeeps; EraseInstruction(I); EraseInstruction(RetainRV); return true; } } // Turn it to a plain objc_retain. Changed = true; ++NumPeeps; cast(RetainRV)->setCalledFunction(getRetainCallee(F.getParent())); return false; } /// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into /// objc_autorelease if the result is not used as a return value. void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) { // Check for a return of the pointer value. const Value *Ptr = GetObjCArg(AutoreleaseRV); SmallVector Users; Users.push_back(Ptr); do { Ptr = Users.pop_back_val(); for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end(); UI != UE; ++UI) { const User *I = *UI; if (isa(I) || GetBasicInstructionClass(I) == IC_RetainRV) return; if (isa(I)) Users.push_back(I); } } while (!Users.empty()); Changed = true; ++NumPeeps; cast(AutoreleaseRV)-> setCalledFunction(getAutoreleaseCallee(F.getParent())); } /// OptimizeIndividualCalls - Visit each call, one at a time, and make /// simplifications without doing any additional analysis. void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { // Reset all the flags in preparation for recomputing them. UsedInThisFunction = 0; // Visit all objc_* calls in F. for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { Instruction *Inst = &*I++; InstructionClass Class = GetBasicInstructionClass(Inst); switch (Class) { default: break; // Delete no-op casts. These function calls have special semantics, but // the semantics are entirely implemented via lowering in the front-end, // so by the time they reach the optimizer, they are just no-op calls // which return their argument. // // There are gray areas here, as the ability to cast reference-counted // pointers to raw void* and back allows code to break ARC assumptions, // however these are currently considered to be unimportant. case IC_NoopCast: Changed = true; ++NumNoops; EraseInstruction(Inst); continue; // If the pointer-to-weak-pointer is null, it's undefined behavior. case IC_StoreWeak: case IC_LoadWeak: case IC_LoadWeakRetained: case IC_InitWeak: case IC_DestroyWeak: { CallInst *CI = cast(Inst); if (isNullOrUndef(CI->getArgOperand(0))) { Changed = true; Type *Ty = CI->getArgOperand(0)->getType(); new StoreInst(UndefValue::get(cast(Ty)->getElementType()), Constant::getNullValue(Ty), CI); CI->replaceAllUsesWith(UndefValue::get(CI->getType())); CI->eraseFromParent(); continue; } break; } case IC_CopyWeak: case IC_MoveWeak: { CallInst *CI = cast(Inst); if (isNullOrUndef(CI->getArgOperand(0)) || isNullOrUndef(CI->getArgOperand(1))) { Changed = true; Type *Ty = CI->getArgOperand(0)->getType(); new StoreInst(UndefValue::get(cast(Ty)->getElementType()), Constant::getNullValue(Ty), CI); CI->replaceAllUsesWith(UndefValue::get(CI->getType())); CI->eraseFromParent(); continue; } break; } case IC_Retain: OptimizeRetainCall(F, Inst); break; case IC_RetainRV: if (OptimizeRetainRVCall(F, Inst)) continue; break; case IC_AutoreleaseRV: OptimizeAutoreleaseRVCall(F, Inst); break; } // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. if (IsAutorelease(Class) && Inst->use_empty()) { CallInst *Call = cast(Inst); const Value *Arg = Call->getArgOperand(0); Arg = FindSingleUseIdentifiedObject(Arg); if (Arg) { Changed = true; ++NumAutoreleases; // Create the declaration lazily. LLVMContext &C = Inst->getContext(); CallInst *NewCall = CallInst::Create(getReleaseCallee(F.getParent()), Call->getArgOperand(0), "", Call); NewCall->setMetadata(ImpreciseReleaseMDKind, MDNode::get(C, ArrayRef())); EraseInstruction(Call); Inst = NewCall; Class = IC_Release; } } // For functions which can never be passed stack arguments, add // a tail keyword. if (IsAlwaysTail(Class)) { Changed = true; cast(Inst)->setTailCall(); } // Set nounwind as needed. if (IsNoThrow(Class)) { Changed = true; cast(Inst)->setDoesNotThrow(); } if (!IsNoopOnNull(Class)) { UsedInThisFunction |= 1 << Class; continue; } const Value *Arg = GetObjCArg(Inst); // ARC calls with null are no-ops. Delete them. if (isNullOrUndef(Arg)) { Changed = true; ++NumNoops; EraseInstruction(Inst); continue; } // Keep track of which of retain, release, autorelease, and retain_block // are actually present in this function. UsedInThisFunction |= 1 << Class; // If Arg is a PHI, and one or more incoming values to the // PHI are null, and the call is control-equivalent to the PHI, and there // are no relevant side effects between the PHI and the call, the call // could be pushed up to just those paths with non-null incoming values. // For now, don't bother splitting critical edges for this. SmallVector, 4> Worklist; Worklist.push_back(std::make_pair(Inst, Arg)); do { std::pair Pair = Worklist.pop_back_val(); Inst = Pair.first; Arg = Pair.second; const PHINode *PN = dyn_cast(Arg); if (!PN) continue; // Determine if the PHI has any null operands, or any incoming // critical edges. bool HasNull = false; bool HasCriticalEdges = false; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *Incoming = StripPointerCastsAndObjCCalls(PN->getIncomingValue(i)); if (isNullOrUndef(Incoming)) HasNull = true; else if (cast(PN->getIncomingBlock(i)->back()) .getNumSuccessors() != 1) { HasCriticalEdges = true; break; } } // If we have null operands and no critical edges, optimize. if (!HasCriticalEdges && HasNull) { SmallPtrSet DependingInstructions; SmallPtrSet Visited; // Check that there is nothing that cares about the reference // count between the call and the phi. switch (Class) { case IC_Retain: case IC_RetainBlock: // These can always be moved up. break; case IC_Release: // These can't be moved across things that care about the retain // count. FindDependencies(NeedsPositiveRetainCount, Arg, Inst->getParent(), Inst, DependingInstructions, Visited, PA); break; case IC_Autorelease: // These can't be moved across autorelease pool scope boundaries. FindDependencies(AutoreleasePoolBoundary, Arg, Inst->getParent(), Inst, DependingInstructions, Visited, PA); break; case IC_RetainRV: case IC_AutoreleaseRV: // Don't move these; the RV optimization depends on the autoreleaseRV // being tail called, and the retainRV being immediately after a call // (which might still happen if we get lucky with codegen layout, but // it's not worth taking the chance). continue; default: llvm_unreachable("Invalid dependence flavor"); } if (DependingInstructions.size() == 1 && *DependingInstructions.begin() == PN) { Changed = true; ++NumPartialNoops; // Clone the call into each predecessor that has a non-null value. CallInst *CInst = cast(Inst); Type *ParamTy = CInst->getArgOperand(0)->getType(); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *Incoming = StripPointerCastsAndObjCCalls(PN->getIncomingValue(i)); if (!isNullOrUndef(Incoming)) { CallInst *Clone = cast(CInst->clone()); Value *Op = PN->getIncomingValue(i); Instruction *InsertPos = &PN->getIncomingBlock(i)->back(); if (Op->getType() != ParamTy) Op = new BitCastInst(Op, ParamTy, "", InsertPos); Clone->setArgOperand(0, Op); Clone->insertBefore(InsertPos); Worklist.push_back(std::make_pair(Clone, Incoming)); } } // Erase the original call. EraseInstruction(CInst); continue; } } } while (!Worklist.empty()); } } /// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible /// control flow, or other CFG structures where moving code across the edge /// would result in it being executed more. void ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, DenseMap &BBStates, BBState &MyStates) const { // If any top-down local-use or possible-dec has a succ which is earlier in // the sequence, forget it. for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end(); I != E; ++I) switch (I->second.GetSeq()) { default: break; case S_Use: { const Value *Arg = I->first; const TerminatorInst *TI = cast(&BB->back()); bool SomeSuccHasSame = false; bool AllSuccsHaveSame = true; PtrState &S = I->second; succ_const_iterator SI(TI), SE(TI, false); // If the terminator is an invoke marked with the // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be // ignored, for ARC purposes. if (isa(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) --SE; for (; SI != SE; ++SI) { Sequence SuccSSeq = S_None; bool SuccSRRIKnownSafe = false; // If VisitBottomUp has pointer information for this successor, take // what we know about it. DenseMap::iterator BBI = BBStates.find(*SI); assert(BBI != BBStates.end()); const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); SuccSSeq = SuccS.GetSeq(); SuccSRRIKnownSafe = SuccS.RRI.KnownSafe; switch (SuccSSeq) { case S_None: case S_CanRelease: { if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) { S.ClearSequenceProgress(); break; } continue; } case S_Use: SomeSuccHasSame = true; break; case S_Stop: case S_Release: case S_MovableRelease: if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) AllSuccsHaveSame = false; break; case S_Retain: llvm_unreachable("bottom-up pointer in retain state!"); } } // If the state at the other end of any of the successor edges // matches the current state, require all edges to match. This // guards against loops in the middle of a sequence. if (SomeSuccHasSame && !AllSuccsHaveSame) S.ClearSequenceProgress(); break; } case S_CanRelease: { const Value *Arg = I->first; const TerminatorInst *TI = cast(&BB->back()); bool SomeSuccHasSame = false; bool AllSuccsHaveSame = true; PtrState &S = I->second; succ_const_iterator SI(TI), SE(TI, false); // If the terminator is an invoke marked with the // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be // ignored, for ARC purposes. if (isa(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) --SE; for (; SI != SE; ++SI) { Sequence SuccSSeq = S_None; bool SuccSRRIKnownSafe = false; // If VisitBottomUp has pointer information for this successor, take // what we know about it. DenseMap::iterator BBI = BBStates.find(*SI); assert(BBI != BBStates.end()); const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); SuccSSeq = SuccS.GetSeq(); SuccSRRIKnownSafe = SuccS.RRI.KnownSafe; switch (SuccSSeq) { case S_None: { if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) { S.ClearSequenceProgress(); break; } continue; } case S_CanRelease: SomeSuccHasSame = true; break; case S_Stop: case S_Release: case S_MovableRelease: case S_Use: if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) AllSuccsHaveSame = false; break; case S_Retain: llvm_unreachable("bottom-up pointer in retain state!"); } } // If the state at the other end of any of the successor edges // matches the current state, require all edges to match. This // guards against loops in the middle of a sequence. if (SomeSuccHasSame && !AllSuccsHaveSame) S.ClearSequenceProgress(); break; } } } bool ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB, MapVector &Retains, BBState &MyStates) { bool NestingDetected = false; InstructionClass Class = GetInstructionClass(Inst); const Value *Arg = 0; switch (Class) { case IC_Release: { Arg = GetObjCArg(Inst); PtrState &S = MyStates.getPtrBottomUpState(Arg); // If we see two releases in a row on the same pointer. If so, make // a note, and we'll cicle back to revisit it after we've // hopefully eliminated the second release, which may allow us to // eliminate the first release too. // Theoretically we could implement removal of nested retain+release // pairs by making PtrState hold a stack of states, but this is // simple and avoids adding overhead for the non-nested case. if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) NestingDetected = true; MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); S.ResetSequenceProgress(ReleaseMetadata ? S_MovableRelease : S_Release); S.RRI.ReleaseMetadata = ReleaseMetadata; S.RRI.KnownSafe = S.IsKnownIncremented(); S.RRI.IsTailCallRelease = cast(Inst)->isTailCall(); S.RRI.Calls.insert(Inst); S.SetKnownPositiveRefCount(); break; } case IC_RetainBlock: // An objc_retainBlock call with just a use may need to be kept, // because it may be copying a block from the stack to the heap. if (!IsRetainBlockOptimizable(Inst)) break; // FALLTHROUGH case IC_Retain: case IC_RetainRV: { Arg = GetObjCArg(Inst); PtrState &S = MyStates.getPtrBottomUpState(Arg); S.SetKnownPositiveRefCount(); switch (S.GetSeq()) { case S_Stop: case S_Release: case S_MovableRelease: case S_Use: S.RRI.ReverseInsertPts.clear(); // FALL THROUGH case S_CanRelease: // Don't do retain+release tracking for IC_RetainRV, because it's // better to let it remain as the first instruction after a call. if (Class != IC_RetainRV) { S.RRI.IsRetainBlock = Class == IC_RetainBlock; Retains[Inst] = S.RRI; } S.ClearSequenceProgress(); break; case S_None: break; case S_Retain: llvm_unreachable("bottom-up pointer in retain state!"); } return NestingDetected; } case IC_AutoreleasepoolPop: // Conservatively, clear MyStates for all known pointers. MyStates.clearBottomUpPointers(); return NestingDetected; case IC_AutoreleasepoolPush: case IC_None: // These are irrelevant. return NestingDetected; default: break; } // Consider any other possible effects of this instruction on each // pointer being tracked. for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(), ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) { const Value *Ptr = MI->first; if (Ptr == Arg) continue; // Handled above. PtrState &S = MI->second; Sequence Seq = S.GetSeq(); // Check for possible releases. if (CanAlterRefCount(Inst, Ptr, PA, Class)) { S.ClearRefCount(); switch (Seq) { case S_Use: S.SetSeq(S_CanRelease); continue; case S_CanRelease: case S_Release: case S_MovableRelease: case S_Stop: case S_None: break; case S_Retain: llvm_unreachable("bottom-up pointer in retain state!"); } } // Check for possible direct uses. switch (Seq) { case S_Release: case S_MovableRelease: if (CanUse(Inst, Ptr, PA, Class)) { assert(S.RRI.ReverseInsertPts.empty()); // If this is an invoke instruction, we're scanning it as part of // one of its successor blocks, since we can't insert code after it // in its own block, and we don't want to split critical edges. if (isa(Inst)) S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt()); else S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst))); S.SetSeq(S_Use); } else if (Seq == S_Release && (Class == IC_User || Class == IC_CallOrUser)) { // Non-movable releases depend on any possible objc pointer use. S.SetSeq(S_Stop); assert(S.RRI.ReverseInsertPts.empty()); // As above; handle invoke specially. if (isa(Inst)) S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt()); else S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst))); } break; case S_Stop: if (CanUse(Inst, Ptr, PA, Class)) S.SetSeq(S_Use); break; case S_CanRelease: case S_Use: case S_None: break; case S_Retain: llvm_unreachable("bottom-up pointer in retain state!"); } } return NestingDetected; } bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB, DenseMap &BBStates, MapVector &Retains) { bool NestingDetected = false; BBState &MyStates = BBStates[BB]; // Merge the states from each successor to compute the initial state // for the current block. BBState::edge_iterator SI(MyStates.succ_begin()), SE(MyStates.succ_end()); if (SI != SE) { const BasicBlock *Succ = *SI; DenseMap::iterator I = BBStates.find(Succ); assert(I != BBStates.end()); MyStates.InitFromSucc(I->second); ++SI; for (; SI != SE; ++SI) { Succ = *SI; I = BBStates.find(Succ); assert(I != BBStates.end()); MyStates.MergeSucc(I->second); } } // Visit all the instructions, bottom-up. for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { Instruction *Inst = llvm::prior(I); // Invoke instructions are visited as part of their successors (below). if (isa(Inst)) continue; NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); } // If there's a predecessor with an invoke, visit the invoke as if it were // part of this block, since we can't insert code after an invoke in its own // block, and we don't want to split critical edges. for (BBState::edge_iterator PI(MyStates.pred_begin()), PE(MyStates.pred_end()); PI != PE; ++PI) { BasicBlock *Pred = *PI; if (InvokeInst *II = dyn_cast(&Pred->back())) NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates); } return NestingDetected; } bool ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst, DenseMap &Releases, BBState &MyStates) { bool NestingDetected = false; InstructionClass Class = GetInstructionClass(Inst); const Value *Arg = 0; switch (Class) { case IC_RetainBlock: // An objc_retainBlock call with just a use may need to be kept, // because it may be copying a block from the stack to the heap. if (!IsRetainBlockOptimizable(Inst)) break; // FALLTHROUGH case IC_Retain: case IC_RetainRV: { Arg = GetObjCArg(Inst); PtrState &S = MyStates.getPtrTopDownState(Arg); // Don't do retain+release tracking for IC_RetainRV, because it's // better to let it remain as the first instruction after a call. if (Class != IC_RetainRV) { // If we see two retains in a row on the same pointer. If so, make // a note, and we'll cicle back to revisit it after we've // hopefully eliminated the second retain, which may allow us to // eliminate the first retain too. // Theoretically we could implement removal of nested retain+release // pairs by making PtrState hold a stack of states, but this is // simple and avoids adding overhead for the non-nested case. if (S.GetSeq() == S_Retain) NestingDetected = true; S.ResetSequenceProgress(S_Retain); S.RRI.IsRetainBlock = Class == IC_RetainBlock; S.RRI.KnownSafe = S.IsKnownIncremented(); S.RRI.Calls.insert(Inst); } S.SetKnownPositiveRefCount(); // A retain can be a potential use; procede to the generic checking // code below. break; } case IC_Release: { Arg = GetObjCArg(Inst); PtrState &S = MyStates.getPtrTopDownState(Arg); S.ClearRefCount(); switch (S.GetSeq()) { case S_Retain: case S_CanRelease: S.RRI.ReverseInsertPts.clear(); // FALL THROUGH case S_Use: S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); S.RRI.IsTailCallRelease = cast(Inst)->isTailCall(); Releases[Inst] = S.RRI; S.ClearSequenceProgress(); break; case S_None: break; case S_Stop: case S_Release: case S_MovableRelease: llvm_unreachable("top-down pointer in release state!"); } break; } case IC_AutoreleasepoolPop: // Conservatively, clear MyStates for all known pointers. MyStates.clearTopDownPointers(); return NestingDetected; case IC_AutoreleasepoolPush: case IC_None: // These are irrelevant. return NestingDetected; default: break; } // Consider any other possible effects of this instruction on each // pointer being tracked. for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(), ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) { const Value *Ptr = MI->first; if (Ptr == Arg) continue; // Handled above. PtrState &S = MI->second; Sequence Seq = S.GetSeq(); // Check for possible releases. if (CanAlterRefCount(Inst, Ptr, PA, Class)) { S.ClearRefCount(); switch (Seq) { case S_Retain: S.SetSeq(S_CanRelease); assert(S.RRI.ReverseInsertPts.empty()); S.RRI.ReverseInsertPts.insert(Inst); // One call can't cause a transition from S_Retain to S_CanRelease // and S_CanRelease to S_Use. If we've made the first transition, // we're done. continue; case S_Use: case S_CanRelease: case S_None: break; case S_Stop: case S_Release: case S_MovableRelease: llvm_unreachable("top-down pointer in release state!"); } } // Check for possible direct uses. switch (Seq) { case S_CanRelease: if (CanUse(Inst, Ptr, PA, Class)) S.SetSeq(S_Use); break; case S_Retain: case S_Use: case S_None: break; case S_Stop: case S_Release: case S_MovableRelease: llvm_unreachable("top-down pointer in release state!"); } } return NestingDetected; } bool ObjCARCOpt::VisitTopDown(BasicBlock *BB, DenseMap &BBStates, DenseMap &Releases) { bool NestingDetected = false; BBState &MyStates = BBStates[BB]; // Merge the states from each predecessor to compute the initial state // for the current block. BBState::edge_iterator PI(MyStates.pred_begin()), PE(MyStates.pred_end()); if (PI != PE) { const BasicBlock *Pred = *PI; DenseMap::iterator I = BBStates.find(Pred); assert(I != BBStates.end()); MyStates.InitFromPred(I->second); ++PI; for (; PI != PE; ++PI) { Pred = *PI; I = BBStates.find(Pred); assert(I != BBStates.end()); MyStates.MergePred(I->second); } } // Visit all the instructions, top-down. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { Instruction *Inst = I; NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates); } CheckForCFGHazards(BB, BBStates, MyStates); return NestingDetected; } static void ComputePostOrders(Function &F, SmallVectorImpl &PostOrder, SmallVectorImpl &ReverseCFGPostOrder, unsigned NoObjCARCExceptionsMDKind, DenseMap &BBStates) { /// Visited - The visited set, for doing DFS walks. SmallPtrSet Visited; // Do DFS, computing the PostOrder. SmallPtrSet OnStack; SmallVector, 16> SuccStack; // Functions always have exactly one entry block, and we don't have // any other block that we treat like an entry block. BasicBlock *EntryBB = &F.getEntryBlock(); BBState &MyStates = BBStates[EntryBB]; MyStates.SetAsEntry(); TerminatorInst *EntryTI = cast(&EntryBB->back()); SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI))); Visited.insert(EntryBB); OnStack.insert(EntryBB); do { dfs_next_succ: BasicBlock *CurrBB = SuccStack.back().first; TerminatorInst *TI = cast(&CurrBB->back()); succ_iterator SE(TI, false); // If the terminator is an invoke marked with the // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be // ignored, for ARC purposes. if (isa(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind)) --SE; while (SuccStack.back().second != SE) { BasicBlock *SuccBB = *SuccStack.back().second++; if (Visited.insert(SuccBB)) { TerminatorInst *TI = cast(&SuccBB->back()); SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI))); BBStates[CurrBB].addSucc(SuccBB); BBState &SuccStates = BBStates[SuccBB]; SuccStates.addPred(CurrBB); OnStack.insert(SuccBB); goto dfs_next_succ; } if (!OnStack.count(SuccBB)) { BBStates[CurrBB].addSucc(SuccBB); BBStates[SuccBB].addPred(CurrBB); } } OnStack.erase(CurrBB); PostOrder.push_back(CurrBB); SuccStack.pop_back(); } while (!SuccStack.empty()); Visited.clear(); // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. // Functions may have many exits, and there also blocks which we treat // as exits due to ignored edges. SmallVector, 16> PredStack; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { BasicBlock *ExitBB = I; BBState &MyStates = BBStates[ExitBB]; if (!MyStates.isExit()) continue; MyStates.SetAsExit(); PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin())); Visited.insert(ExitBB); while (!PredStack.empty()) { reverse_dfs_next_succ: BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); while (PredStack.back().second != PE) { BasicBlock *BB = *PredStack.back().second++; if (Visited.insert(BB)) { PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin())); goto reverse_dfs_next_succ; } } ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first); } } } // Visit - Visit the function both top-down and bottom-up. bool ObjCARCOpt::Visit(Function &F, DenseMap &BBStates, MapVector &Retains, DenseMap &Releases) { // Use reverse-postorder traversals, because we magically know that loops // will be well behaved, i.e. they won't repeatedly call retain on a single // pointer without doing a release. We can't use the ReversePostOrderTraversal // class here because we want the reverse-CFG postorder to consider each // function exit point, and we want to ignore selected cycle edges. SmallVector PostOrder; SmallVector ReverseCFGPostOrder; ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, NoObjCARCExceptionsMDKind, BBStates); // Use reverse-postorder on the reverse CFG for bottom-up. bool BottomUpNestingDetected = false; for (SmallVectorImpl::const_reverse_iterator I = ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend(); I != E; ++I) BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains); // Use reverse-postorder for top-down. bool TopDownNestingDetected = false; for (SmallVectorImpl::const_reverse_iterator I = PostOrder.rbegin(), E = PostOrder.rend(); I != E; ++I) TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases); return TopDownNestingDetected && BottomUpNestingDetected; } /// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove. void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, MapVector &Retains, DenseMap &Releases, SmallVectorImpl &DeadInsts, Module *M) { Type *ArgTy = Arg->getType(); Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext())); // Insert the new retain and release calls. for (SmallPtrSet::const_iterator PI = ReleasesToMove.ReverseInsertPts.begin(), PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) { Instruction *InsertPt = *PI; Value *MyArg = ArgTy == ParamTy ? Arg : new BitCastInst(Arg, ParamTy, "", InsertPt); CallInst *Call = CallInst::Create(RetainsToMove.IsRetainBlock ? getRetainBlockCallee(M) : getRetainCallee(M), MyArg, "", InsertPt); Call->setDoesNotThrow(); if (RetainsToMove.IsRetainBlock) Call->setMetadata(CopyOnEscapeMDKind, MDNode::get(M->getContext(), ArrayRef())); else Call->setTailCall(); } for (SmallPtrSet::const_iterator PI = RetainsToMove.ReverseInsertPts.begin(), PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) { Instruction *InsertPt = *PI; Value *MyArg = ArgTy == ParamTy ? Arg : new BitCastInst(Arg, ParamTy, "", InsertPt); CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg, "", InsertPt); // Attach a clang.imprecise_release metadata tag, if appropriate. if (MDNode *M = ReleasesToMove.ReleaseMetadata) Call->setMetadata(ImpreciseReleaseMDKind, M); Call->setDoesNotThrow(); if (ReleasesToMove.IsTailCallRelease) Call->setTailCall(); } // Delete the original retain and release calls. for (SmallPtrSet::const_iterator AI = RetainsToMove.Calls.begin(), AE = RetainsToMove.Calls.end(); AI != AE; ++AI) { Instruction *OrigRetain = *AI; Retains.blot(OrigRetain); DeadInsts.push_back(OrigRetain); } for (SmallPtrSet::const_iterator AI = ReleasesToMove.Calls.begin(), AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) { Instruction *OrigRelease = *AI; Releases.erase(OrigRelease); DeadInsts.push_back(OrigRelease); } } /// PerformCodePlacement - Identify pairings between the retains and releases, /// and delete and/or move them. bool ObjCARCOpt::PerformCodePlacement(DenseMap &BBStates, MapVector &Retains, DenseMap &Releases, Module *M) { bool AnyPairsCompletelyEliminated = false; RRInfo RetainsToMove; RRInfo ReleasesToMove; SmallVector NewRetains; SmallVector NewReleases; SmallVector DeadInsts; // Visit each retain. for (MapVector::const_iterator I = Retains.begin(), E = Retains.end(); I != E; ++I) { Value *V = I->first; if (!V) continue; // blotted Instruction *Retain = cast(V); Value *Arg = GetObjCArg(Retain); // If the object being released is in static or stack storage, we know it's // not being managed by ObjC reference counting, so we can delete pairs // regardless of what possible decrements or uses lie between them. bool KnownSafe = isa(Arg) || isa(Arg); // A constant pointer can't be pointing to an object on the heap. It may // be reference-counted, but it won't be deleted. if (const LoadInst *LI = dyn_cast(Arg)) if (const GlobalVariable *GV = dyn_cast( StripPointerCastsAndObjCCalls(LI->getPointerOperand()))) if (GV->isConstant()) KnownSafe = true; // If a pair happens in a region where it is known that the reference count // is already incremented, we can similarly ignore possible decrements. bool KnownSafeTD = true, KnownSafeBU = true; // Connect the dots between the top-down-collected RetainsToMove and // bottom-up-collected ReleasesToMove to form sets of related calls. // This is an iterative process so that we connect multiple releases // to multiple retains if needed. unsigned OldDelta = 0; unsigned NewDelta = 0; unsigned OldCount = 0; unsigned NewCount = 0; bool FirstRelease = true; bool FirstRetain = true; NewRetains.push_back(Retain); for (;;) { for (SmallVectorImpl::const_iterator NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) { Instruction *NewRetain = *NI; MapVector::const_iterator It = Retains.find(NewRetain); assert(It != Retains.end()); const RRInfo &NewRetainRRI = It->second; KnownSafeTD &= NewRetainRRI.KnownSafe; for (SmallPtrSet::const_iterator LI = NewRetainRRI.Calls.begin(), LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) { Instruction *NewRetainRelease = *LI; DenseMap::const_iterator Jt = Releases.find(NewRetainRelease); if (Jt == Releases.end()) goto next_retain; const RRInfo &NewRetainReleaseRRI = Jt->second; assert(NewRetainReleaseRRI.Calls.count(NewRetain)); if (ReleasesToMove.Calls.insert(NewRetainRelease)) { OldDelta -= BBStates[NewRetainRelease->getParent()].GetAllPathCount(); // Merge the ReleaseMetadata and IsTailCallRelease values. if (FirstRelease) { ReleasesToMove.ReleaseMetadata = NewRetainReleaseRRI.ReleaseMetadata; ReleasesToMove.IsTailCallRelease = NewRetainReleaseRRI.IsTailCallRelease; FirstRelease = false; } else { if (ReleasesToMove.ReleaseMetadata != NewRetainReleaseRRI.ReleaseMetadata) ReleasesToMove.ReleaseMetadata = 0; if (ReleasesToMove.IsTailCallRelease != NewRetainReleaseRRI.IsTailCallRelease) ReleasesToMove.IsTailCallRelease = false; } // Collect the optimal insertion points. if (!KnownSafe) for (SmallPtrSet::const_iterator RI = NewRetainReleaseRRI.ReverseInsertPts.begin(), RE = NewRetainReleaseRRI.ReverseInsertPts.end(); RI != RE; ++RI) { Instruction *RIP = *RI; if (ReleasesToMove.ReverseInsertPts.insert(RIP)) NewDelta -= BBStates[RIP->getParent()].GetAllPathCount(); } NewReleases.push_back(NewRetainRelease); } } } NewRetains.clear(); if (NewReleases.empty()) break; // Back the other way. for (SmallVectorImpl::const_iterator NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) { Instruction *NewRelease = *NI; DenseMap::const_iterator It = Releases.find(NewRelease); assert(It != Releases.end()); const RRInfo &NewReleaseRRI = It->second; KnownSafeBU &= NewReleaseRRI.KnownSafe; for (SmallPtrSet::const_iterator LI = NewReleaseRRI.Calls.begin(), LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) { Instruction *NewReleaseRetain = *LI; MapVector::const_iterator Jt = Retains.find(NewReleaseRetain); if (Jt == Retains.end()) goto next_retain; const RRInfo &NewReleaseRetainRRI = Jt->second; assert(NewReleaseRetainRRI.Calls.count(NewRelease)); if (RetainsToMove.Calls.insert(NewReleaseRetain)) { unsigned PathCount = BBStates[NewReleaseRetain->getParent()].GetAllPathCount(); OldDelta += PathCount; OldCount += PathCount; // Merge the IsRetainBlock values. if (FirstRetain) { RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock; FirstRetain = false; } else if (ReleasesToMove.IsRetainBlock != NewReleaseRetainRRI.IsRetainBlock) // It's not possible to merge the sequences if one uses // objc_retain and the other uses objc_retainBlock. goto next_retain; // Collect the optimal insertion points. if (!KnownSafe) for (SmallPtrSet::const_iterator RI = NewReleaseRetainRRI.ReverseInsertPts.begin(), RE = NewReleaseRetainRRI.ReverseInsertPts.end(); RI != RE; ++RI) { Instruction *RIP = *RI; if (RetainsToMove.ReverseInsertPts.insert(RIP)) { PathCount = BBStates[RIP->getParent()].GetAllPathCount(); NewDelta += PathCount; NewCount += PathCount; } } NewRetains.push_back(NewReleaseRetain); } } } NewReleases.clear(); if (NewRetains.empty()) break; } // If the pointer is known incremented or nested, we can safely delete the // pair regardless of what's between them. if (KnownSafeTD || KnownSafeBU) { RetainsToMove.ReverseInsertPts.clear(); ReleasesToMove.ReverseInsertPts.clear(); NewCount = 0; } else { // Determine whether the new insertion points we computed preserve the // balance of retain and release calls through the program. // TODO: If the fully aggressive solution isn't valid, try to find a // less aggressive solution which is. if (NewDelta != 0) goto next_retain; } // Determine whether the original call points are balanced in the retain and // release calls through the program. If not, conservatively don't touch // them. // TODO: It's theoretically possible to do code motion in this case, as // long as the existing imbalances are maintained. if (OldDelta != 0) goto next_retain; // Ok, everything checks out and we're all set. Let's move some code! Changed = true; assert(OldCount != 0 && "Unreachable code?"); AnyPairsCompletelyEliminated = NewCount == 0; NumRRs += OldCount - NewCount; MoveCalls(Arg, RetainsToMove, ReleasesToMove, Retains, Releases, DeadInsts, M); next_retain: NewReleases.clear(); NewRetains.clear(); RetainsToMove.clear(); ReleasesToMove.clear(); } // Now that we're done moving everything, we can delete the newly dead // instructions, as we no longer need them as insert points. while (!DeadInsts.empty()) EraseInstruction(DeadInsts.pop_back_val()); return AnyPairsCompletelyEliminated; } /// OptimizeWeakCalls - Weak pointer optimizations. void ObjCARCOpt::OptimizeWeakCalls(Function &F) { // First, do memdep-style RLE and S2L optimizations. We can't use memdep // itself because it uses AliasAnalysis and we need to do provenance // queries instead. for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { Instruction *Inst = &*I++; InstructionClass Class = GetBasicInstructionClass(Inst); if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained) continue; // Delete objc_loadWeak calls with no users. if (Class == IC_LoadWeak && Inst->use_empty()) { Inst->eraseFromParent(); continue; } // TODO: For now, just look for an earlier available version of this value // within the same block. Theoretically, we could do memdep-style non-local // analysis too, but that would want caching. A better approach would be to // use the technique that EarlyCSE uses. inst_iterator Current = llvm::prior(I); BasicBlock *CurrentBB = Current.getBasicBlockIterator(); for (BasicBlock::iterator B = CurrentBB->begin(), J = Current.getInstructionIterator(); J != B; --J) { Instruction *EarlierInst = &*llvm::prior(J); InstructionClass EarlierClass = GetInstructionClass(EarlierInst); switch (EarlierClass) { case IC_LoadWeak: case IC_LoadWeakRetained: { // If this is loading from the same pointer, replace this load's value // with that one. CallInst *Call = cast(Inst); CallInst *EarlierCall = cast(EarlierInst); Value *Arg = Call->getArgOperand(0); Value *EarlierArg = EarlierCall->getArgOperand(0); switch (PA.getAA()->alias(Arg, EarlierArg)) { case AliasAnalysis::MustAlias: Changed = true; // If the load has a builtin retain, insert a plain retain for it. if (Class == IC_LoadWeakRetained) { CallInst *CI = CallInst::Create(getRetainCallee(F.getParent()), EarlierCall, "", Call); CI->setTailCall(); } // Zap the fully redundant load. Call->replaceAllUsesWith(EarlierCall); Call->eraseFromParent(); goto clobbered; case AliasAnalysis::MayAlias: case AliasAnalysis::PartialAlias: goto clobbered; case AliasAnalysis::NoAlias: break; } break; } case IC_StoreWeak: case IC_InitWeak: { // If this is storing to the same pointer and has the same size etc. // replace this load's value with the stored value. CallInst *Call = cast(Inst); CallInst *EarlierCall = cast(EarlierInst); Value *Arg = Call->getArgOperand(0); Value *EarlierArg = EarlierCall->getArgOperand(0); switch (PA.getAA()->alias(Arg, EarlierArg)) { case AliasAnalysis::MustAlias: Changed = true; // If the load has a builtin retain, insert a plain retain for it. if (Class == IC_LoadWeakRetained) { CallInst *CI = CallInst::Create(getRetainCallee(F.getParent()), EarlierCall, "", Call); CI->setTailCall(); } // Zap the fully redundant load. Call->replaceAllUsesWith(EarlierCall->getArgOperand(1)); Call->eraseFromParent(); goto clobbered; case AliasAnalysis::MayAlias: case AliasAnalysis::PartialAlias: goto clobbered; case AliasAnalysis::NoAlias: break; } break; } case IC_MoveWeak: case IC_CopyWeak: // TOOD: Grab the copied value. goto clobbered; case IC_AutoreleasepoolPush: case IC_None: case IC_User: // Weak pointers are only modified through the weak entry points // (and arbitrary calls, which could call the weak entry points). break; default: // Anything else could modify the weak pointer. goto clobbered; } } clobbered:; } // Then, for each destroyWeak with an alloca operand, check to see if // the alloca and all its users can be zapped. for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { Instruction *Inst = &*I++; InstructionClass Class = GetBasicInstructionClass(Inst); if (Class != IC_DestroyWeak) continue; CallInst *Call = cast(Inst); Value *Arg = Call->getArgOperand(0); if (AllocaInst *Alloca = dyn_cast(Arg)) { for (Value::use_iterator UI = Alloca->use_begin(), UE = Alloca->use_end(); UI != UE; ++UI) { const Instruction *UserInst = cast(*UI); switch (GetBasicInstructionClass(UserInst)) { case IC_InitWeak: case IC_StoreWeak: case IC_DestroyWeak: continue; default: goto done; } } Changed = true; for (Value::use_iterator UI = Alloca->use_begin(), UE = Alloca->use_end(); UI != UE; ) { CallInst *UserInst = cast(*UI++); switch (GetBasicInstructionClass(UserInst)) { case IC_InitWeak: case IC_StoreWeak: // These functions return their second argument. UserInst->replaceAllUsesWith(UserInst->getArgOperand(1)); break; case IC_DestroyWeak: // No return value. break; default: llvm_unreachable("alloca really is used!"); } UserInst->eraseFromParent(); } Alloca->eraseFromParent(); done:; } } } /// OptimizeSequences - Identify program paths which execute sequences of /// retains and releases which can be eliminated. bool ObjCARCOpt::OptimizeSequences(Function &F) { /// Releases, Retains - These are used to store the results of the main flow /// analysis. These use Value* as the key instead of Instruction* so that the /// map stays valid when we get around to rewriting code and calls get /// replaced by arguments. DenseMap Releases; MapVector Retains; /// BBStates, This is used during the traversal of the function to track the /// states for each identified object at each block. DenseMap BBStates; // Analyze the CFG of the function, and all instructions. bool NestingDetected = Visit(F, BBStates, Retains, Releases); // Transform. return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) && NestingDetected; } /// OptimizeReturns - Look for this pattern: /// \code /// %call = call i8* @something(...) /// %2 = call i8* @objc_retain(i8* %call) /// %3 = call i8* @objc_autorelease(i8* %2) /// ret i8* %3 /// \endcode /// And delete the retain and autorelease. /// /// Otherwise if it's just this: /// \code /// %3 = call i8* @objc_autorelease(i8* %2) /// ret i8* %3 /// \endcode /// convert the autorelease to autoreleaseRV. void ObjCARCOpt::OptimizeReturns(Function &F) { if (!F.getReturnType()->isPointerTy()) return; SmallPtrSet DependingInstructions; SmallPtrSet Visited; for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { BasicBlock *BB = FI; ReturnInst *Ret = dyn_cast(&BB->back()); if (!Ret) continue; const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0)); FindDependencies(NeedsPositiveRetainCount, Arg, BB, Ret, DependingInstructions, Visited, PA); if (DependingInstructions.size() != 1) goto next_block; { CallInst *Autorelease = dyn_cast_or_null(*DependingInstructions.begin()); if (!Autorelease) goto next_block; InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease); if (!IsAutorelease(AutoreleaseClass)) goto next_block; if (GetObjCArg(Autorelease) != Arg) goto next_block; DependingInstructions.clear(); Visited.clear(); // Check that there is nothing that can affect the reference // count between the autorelease and the retain. FindDependencies(CanChangeRetainCount, Arg, BB, Autorelease, DependingInstructions, Visited, PA); if (DependingInstructions.size() != 1) goto next_block; { CallInst *Retain = dyn_cast_or_null(*DependingInstructions.begin()); // Check that we found a retain with the same argument. if (!Retain || !IsRetain(GetBasicInstructionClass(Retain)) || GetObjCArg(Retain) != Arg) goto next_block; DependingInstructions.clear(); Visited.clear(); // Convert the autorelease to an autoreleaseRV, since it's // returning the value. if (AutoreleaseClass == IC_Autorelease) { Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent())); AutoreleaseClass = IC_AutoreleaseRV; } // Check that there is nothing that can affect the reference // count between the retain and the call. // Note that Retain need not be in BB. FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain, DependingInstructions, Visited, PA); if (DependingInstructions.size() != 1) goto next_block; { CallInst *Call = dyn_cast_or_null(*DependingInstructions.begin()); // Check that the pointer is the return value of the call. if (!Call || Arg != Call) goto next_block; // Check that the call is a regular call. InstructionClass Class = GetBasicInstructionClass(Call); if (Class != IC_CallOrUser && Class != IC_Call) goto next_block; // If so, we can zap the retain and autorelease. Changed = true; ++NumRets; EraseInstruction(Retain); EraseInstruction(Autorelease); } } } next_block: DependingInstructions.clear(); Visited.clear(); } } bool ObjCARCOpt::doInitialization(Module &M) { if (!EnableARCOpts) return false; // If nothing in the Module uses ARC, don't do anything. Run = ModuleHasARC(M); if (!Run) return false; // Identify the imprecise release metadata kind. ImpreciseReleaseMDKind = M.getContext().getMDKindID("clang.imprecise_release"); CopyOnEscapeMDKind = M.getContext().getMDKindID("clang.arc.copy_on_escape"); NoObjCARCExceptionsMDKind = M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions"); // Intuitively, objc_retain and others are nocapture, however in practice // they are not, because they return their argument value. And objc_release // calls finalizers which can have arbitrary side effects. // These are initialized lazily. RetainRVCallee = 0; AutoreleaseRVCallee = 0; ReleaseCallee = 0; RetainCallee = 0; RetainBlockCallee = 0; AutoreleaseCallee = 0; return false; } bool ObjCARCOpt::runOnFunction(Function &F) { if (!EnableARCOpts) return false; // If nothing in the Module uses ARC, don't do anything. if (!Run) return false; Changed = false; PA.setAA(&getAnalysis()); // This pass performs several distinct transformations. As a compile-time aid // when compiling code that isn't ObjC, skip these if the relevant ObjC // library functions aren't declared. // Preliminary optimizations. This also computs UsedInThisFunction. OptimizeIndividualCalls(F); // Optimizations for weak pointers. if (UsedInThisFunction & ((1 << IC_LoadWeak) | (1 << IC_LoadWeakRetained) | (1 << IC_StoreWeak) | (1 << IC_InitWeak) | (1 << IC_CopyWeak) | (1 << IC_MoveWeak) | (1 << IC_DestroyWeak))) OptimizeWeakCalls(F); // Optimizations for retain+release pairs. if (UsedInThisFunction & ((1 << IC_Retain) | (1 << IC_RetainRV) | (1 << IC_RetainBlock))) if (UsedInThisFunction & (1 << IC_Release)) // Run OptimizeSequences until it either stops making changes or // no retain+release pair nesting is detected. while (OptimizeSequences(F)) {} // Optimizations if objc_autorelease is used. if (UsedInThisFunction & ((1 << IC_Autorelease) | (1 << IC_AutoreleaseRV))) OptimizeReturns(F); return Changed; } void ObjCARCOpt::releaseMemory() { PA.clear(); } //===----------------------------------------------------------------------===// // ARC contraction. //===----------------------------------------------------------------------===// // TODO: ObjCARCContract could insert PHI nodes when uses aren't // dominated by single calls. #include "llvm/Analysis/Dominators.h" #include "llvm/InlineAsm.h" #include "llvm/Operator.h" STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed"); namespace { /// ObjCARCContract - Late ARC optimizations. These change the IR in a way /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late. class ObjCARCContract : public FunctionPass { bool Changed; AliasAnalysis *AA; DominatorTree *DT; ProvenanceAnalysis PA; /// Run - A flag indicating whether this optimization pass should run. bool Run; /// StoreStrongCallee, etc. - Declarations for ObjC runtime /// functions, for use in creating calls to them. These are initialized /// lazily to avoid cluttering up the Module with unused declarations. Constant *StoreStrongCallee, *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee; /// RetainRVMarker - The inline asm string to insert between calls and /// RetainRV calls to make the optimization work on targets which need it. const MDString *RetainRVMarker; /// StoreStrongCalls - The set of inserted objc_storeStrong calls. If /// at the end of walking the function we have found no alloca /// instructions, these calls can be marked "tail". SmallPtrSet StoreStrongCalls; Constant *getStoreStrongCallee(Module *M); Constant *getRetainAutoreleaseCallee(Module *M); Constant *getRetainAutoreleaseRVCallee(Module *M); bool ContractAutorelease(Function &F, Instruction *Autorelease, InstructionClass Class, SmallPtrSet &DependingInstructions, SmallPtrSet &Visited); void ContractRelease(Instruction *Release, inst_iterator &Iter); virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual bool doInitialization(Module &M); virtual bool runOnFunction(Function &F); public: static char ID; ObjCARCContract() : FunctionPass(ID) { initializeObjCARCContractPass(*PassRegistry::getPassRegistry()); } }; } char ObjCARCContract::ID = 0; INITIALIZE_PASS_BEGIN(ObjCARCContract, "objc-arc-contract", "ObjC ARC contraction", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_END(ObjCARCContract, "objc-arc-contract", "ObjC ARC contraction", false, false) Pass *llvm::createObjCARCContractPass() { return new ObjCARCContract(); } void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); } Constant *ObjCARCContract::getStoreStrongCallee(Module *M) { if (!StoreStrongCallee) { LLVMContext &C = M->getContext(); Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); Type *I8XX = PointerType::getUnqual(I8X); Type *Params[] = { I8XX, I8X }; AttributeSet Attributes = AttributeSet() .addAttr(M->getContext(), AttributeSet::FunctionIndex, Attributes::get(C, Attributes::NoUnwind)) .addAttr(M->getContext(), 1, Attributes::get(C, Attributes::NoCapture)); StoreStrongCallee = M->getOrInsertFunction( "objc_storeStrong", FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false), Attributes); } return StoreStrongCallee; } Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) { if (!RetainAutoreleaseCallee) { LLVMContext &C = M->getContext(); Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); Type *Params[] = { I8X }; FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false); AttributeSet Attributes = AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex, Attributes::get(C, Attributes::NoUnwind)); RetainAutoreleaseCallee = M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes); } return RetainAutoreleaseCallee; } Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) { if (!RetainAutoreleaseRVCallee) { LLVMContext &C = M->getContext(); Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); Type *Params[] = { I8X }; FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false); AttributeSet Attributes = AttributeSet().addAttr(M->getContext(), AttributeSet::FunctionIndex, Attributes::get(C, Attributes::NoUnwind)); RetainAutoreleaseRVCallee = M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy, Attributes); } return RetainAutoreleaseRVCallee; } /// ContractAutorelease - Merge an autorelease with a retain into a fused call. bool ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease, InstructionClass Class, SmallPtrSet &DependingInstructions, SmallPtrSet &Visited) { const Value *Arg = GetObjCArg(Autorelease); // Check that there are no instructions between the retain and the autorelease // (such as an autorelease_pop) which may change the count. CallInst *Retain = 0; if (Class == IC_AutoreleaseRV) FindDependencies(RetainAutoreleaseRVDep, Arg, Autorelease->getParent(), Autorelease, DependingInstructions, Visited, PA); else FindDependencies(RetainAutoreleaseDep, Arg, Autorelease->getParent(), Autorelease, DependingInstructions, Visited, PA); Visited.clear(); if (DependingInstructions.size() != 1) { DependingInstructions.clear(); return false; } Retain = dyn_cast_or_null(*DependingInstructions.begin()); DependingInstructions.clear(); if (!Retain || GetBasicInstructionClass(Retain) != IC_Retain || GetObjCArg(Retain) != Arg) return false; Changed = true; ++NumPeeps; if (Class == IC_AutoreleaseRV) Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent())); else Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent())); EraseInstruction(Autorelease); return true; } /// ContractRelease - Attempt to merge an objc_release with a store, load, and /// objc_retain to form an objc_storeStrong. This can be a little tricky because /// the instructions don't always appear in order, and there may be unrelated /// intervening instructions. void ObjCARCContract::ContractRelease(Instruction *Release, inst_iterator &Iter) { LoadInst *Load = dyn_cast(GetObjCArg(Release)); if (!Load || !Load->isSimple()) return; // For now, require everything to be in one basic block. BasicBlock *BB = Release->getParent(); if (Load->getParent() != BB) return; // Walk down to find the store and the release, which may be in either order. BasicBlock::iterator I = Load, End = BB->end(); ++I; AliasAnalysis::Location Loc = AA->getLocation(Load); StoreInst *Store = 0; bool SawRelease = false; for (; !Store || !SawRelease; ++I) { if (I == End) return; Instruction *Inst = I; if (Inst == Release) { SawRelease = true; continue; } InstructionClass Class = GetBasicInstructionClass(Inst); // Unrelated retains are harmless. if (IsRetain(Class)) continue; if (Store) { // The store is the point where we're going to put the objc_storeStrong, // so make sure there are no uses after it. if (CanUse(Inst, Load, PA, Class)) return; } else if (AA->getModRefInfo(Inst, Loc) & AliasAnalysis::Mod) { // We are moving the load down to the store, so check for anything // else which writes to the memory between the load and the store. Store = dyn_cast(Inst); if (!Store || !Store->isSimple()) return; if (Store->getPointerOperand() != Loc.Ptr) return; } } Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand()); // Walk up to find the retain. I = Store; BasicBlock::iterator Begin = BB->begin(); while (I != Begin && GetBasicInstructionClass(I) != IC_Retain) --I; Instruction *Retain = I; if (GetBasicInstructionClass(Retain) != IC_Retain) return; if (GetObjCArg(Retain) != New) return; Changed = true; ++NumStoreStrongs; LLVMContext &C = Release->getContext(); Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); Type *I8XX = PointerType::getUnqual(I8X); Value *Args[] = { Load->getPointerOperand(), New }; if (Args[0]->getType() != I8XX) Args[0] = new BitCastInst(Args[0], I8XX, "", Store); if (Args[1]->getType() != I8X) Args[1] = new BitCastInst(Args[1], I8X, "", Store); CallInst *StoreStrong = CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()), Args, "", Store); StoreStrong->setDoesNotThrow(); StoreStrong->setDebugLoc(Store->getDebugLoc()); // We can't set the tail flag yet, because we haven't yet determined // whether there are any escaping allocas. Remember this call, so that // we can set the tail flag once we know it's safe. StoreStrongCalls.insert(StoreStrong); if (&*Iter == Store) ++Iter; Store->eraseFromParent(); Release->eraseFromParent(); EraseInstruction(Retain); if (Load->use_empty()) Load->eraseFromParent(); } bool ObjCARCContract::doInitialization(Module &M) { // If nothing in the Module uses ARC, don't do anything. Run = ModuleHasARC(M); if (!Run) return false; // These are initialized lazily. StoreStrongCallee = 0; RetainAutoreleaseCallee = 0; RetainAutoreleaseRVCallee = 0; // Initialize RetainRVMarker. RetainRVMarker = 0; if (NamedMDNode *NMD = M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker")) if (NMD->getNumOperands() == 1) { const MDNode *N = NMD->getOperand(0); if (N->getNumOperands() == 1) if (const MDString *S = dyn_cast(N->getOperand(0))) RetainRVMarker = S; } return false; } bool ObjCARCContract::runOnFunction(Function &F) { if (!EnableARCOpts) return false; // If nothing in the Module uses ARC, don't do anything. if (!Run) return false; Changed = false; AA = &getAnalysis(); DT = &getAnalysis(); PA.setAA(&getAnalysis()); // Track whether it's ok to mark objc_storeStrong calls with the "tail" // keyword. Be conservative if the function has variadic arguments. // It seems that functions which "return twice" are also unsafe for the // "tail" argument, because they are setjmp, which could need to // return to an earlier stack state. bool TailOkForStoreStrongs = !F.isVarArg() && !F.callsFunctionThatReturnsTwice(); // For ObjC library calls which return their argument, replace uses of the // argument with uses of the call return value, if it dominates the use. This // reduces register pressure. SmallPtrSet DependingInstructions; SmallPtrSet Visited; for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { Instruction *Inst = &*I++; // Only these library routines return their argument. In particular, // objc_retainBlock does not necessarily return its argument. InstructionClass Class = GetBasicInstructionClass(Inst); switch (Class) { case IC_Retain: case IC_FusedRetainAutorelease: case IC_FusedRetainAutoreleaseRV: break; case IC_Autorelease: case IC_AutoreleaseRV: if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited)) continue; break; case IC_RetainRV: { // If we're compiling for a target which needs a special inline-asm // marker to do the retainAutoreleasedReturnValue optimization, // insert it now. if (!RetainRVMarker) break; BasicBlock::iterator BBI = Inst; BasicBlock *InstParent = Inst->getParent(); // Step up to see if the call immediately precedes the RetainRV call. // If it's an invoke, we have to cross a block boundary. And we have // to carefully dodge no-op instructions. do { if (&*BBI == InstParent->begin()) { BasicBlock *Pred = InstParent->getSinglePredecessor(); if (!Pred) goto decline_rv_optimization; BBI = Pred->getTerminator(); break; } --BBI; } while (isNoopInstruction(BBI)); if (&*BBI == GetObjCArg(Inst)) { Changed = true; InlineAsm *IA = InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()), /*isVarArg=*/false), RetainRVMarker->getString(), /*Constraints=*/"", /*hasSideEffects=*/true); CallInst::Create(IA, "", Inst); } decline_rv_optimization: break; } case IC_InitWeak: { // objc_initWeak(p, null) => *p = null CallInst *CI = cast(Inst); if (isNullOrUndef(CI->getArgOperand(1))) { Value *Null = ConstantPointerNull::get(cast(CI->getType())); Changed = true; new StoreInst(Null, CI->getArgOperand(0), CI); CI->replaceAllUsesWith(Null); CI->eraseFromParent(); } continue; } case IC_Release: ContractRelease(Inst, I); continue; case IC_User: // Be conservative if the function has any alloca instructions. // Technically we only care about escaping alloca instructions, // but this is sufficient to handle some interesting cases. if (isa(Inst)) TailOkForStoreStrongs = false; continue; default: continue; } // Don't use GetObjCArg because we don't want to look through bitcasts // and such; to do the replacement, the argument must have type i8*. const Value *Arg = cast(Inst)->getArgOperand(0); for (;;) { // If we're compiling bugpointed code, don't get in trouble. if (!isa(Arg) && !isa(Arg)) break; // Look through the uses of the pointer. for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end(); UI != UE; ) { Use &U = UI.getUse(); unsigned OperandNo = UI.getOperandNo(); ++UI; // Increment UI now, because we may unlink its element. // If the call's return value dominates a use of the call's argument // value, rewrite the use to use the return value. We check for // reachability here because an unreachable call is considered to // trivially dominate itself, which would lead us to rewriting its // argument in terms of its return value, which would lead to // infinite loops in GetObjCArg. if (DT->isReachableFromEntry(U) && DT->dominates(Inst, U)) { Changed = true; Instruction *Replacement = Inst; Type *UseTy = U.get()->getType(); if (PHINode *PHI = dyn_cast(U.getUser())) { // For PHI nodes, insert the bitcast in the predecessor block. unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); BasicBlock *BB = PHI->getIncomingBlock(ValNo); if (Replacement->getType() != UseTy) Replacement = new BitCastInst(Replacement, UseTy, "", &BB->back()); // While we're here, rewrite all edges for this PHI, rather // than just one use at a time, to minimize the number of // bitcasts we emit. for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) if (PHI->getIncomingBlock(i) == BB) { // Keep the UI iterator valid. if (&PHI->getOperandUse( PHINode::getOperandNumForIncomingValue(i)) == &UI.getUse()) ++UI; PHI->setIncomingValue(i, Replacement); } } else { if (Replacement->getType() != UseTy) Replacement = new BitCastInst(Replacement, UseTy, "", cast(U.getUser())); U.set(Replacement); } } } // If Arg is a no-op casted pointer, strip one level of casts and iterate. if (const BitCastInst *BI = dyn_cast(Arg)) Arg = BI->getOperand(0); else if (isa(Arg) && cast(Arg)->hasAllZeroIndices()) Arg = cast(Arg)->getPointerOperand(); else if (isa(Arg) && !cast(Arg)->mayBeOverridden()) Arg = cast(Arg)->getAliasee(); else break; } } // If this function has no escaping allocas or suspicious vararg usage, // objc_storeStrong calls can be marked with the "tail" keyword. if (TailOkForStoreStrongs) for (SmallPtrSet::iterator I = StoreStrongCalls.begin(), E = StoreStrongCalls.end(); I != E; ++I) (*I)->setTailCall(); StoreStrongCalls.clear(); return Changed; }