//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCASSEMBLER_H #define LLVM_MC_MCASSEMBLER_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/Support/Casting.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" #include "llvm/System/DataTypes.h" #include // FIXME: Shouldn't be needed. namespace llvm { class raw_ostream; class MCAsmLayout; class MCAssembler; class MCContext; class MCCodeEmitter; class MCExpr; class MCFragment; class MCObjectWriter; class MCSection; class MCSectionData; class MCSymbol; class MCSymbolData; class MCValue; class TargetAsmBackend; class MCFragment : public ilist_node { friend class MCAsmLayout; MCFragment(const MCFragment&); // DO NOT IMPLEMENT void operator=(const MCFragment&); // DO NOT IMPLEMENT public: enum FragmentType { FT_Align, FT_Data, FT_Fill, FT_Inst, FT_Org }; private: FragmentType Kind; /// Parent - The data for the section this fragment is in. MCSectionData *Parent; /// Atom - The atom this fragment is in, as represented by it's defining /// symbol. Atom's are only used by backends which set /// \see MCAsmBackend::hasReliableSymbolDifference(). MCSymbolData *Atom; /// @name Assembler Backend Data /// @{ // // FIXME: This could all be kept private to the assembler implementation. /// Offset - The offset of this fragment in its section. This is ~0 until /// initialized. uint64_t Offset; /// EffectiveSize - The compute size of this section. This is ~0 until /// initialized. uint64_t EffectiveSize; /// LayoutOrder - The global layout order of this fragment. This is the index /// across all fragments in the file, not just within the section. unsigned LayoutOrder; /// @} protected: MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0); public: // Only for sentinel. MCFragment(); FragmentType getKind() const { return Kind; } MCSectionData *getParent() const { return Parent; } void setParent(MCSectionData *Value) { Parent = Value; } MCSymbolData *getAtom() const { return Atom; } void setAtom(MCSymbolData *Value) { Atom = Value; } unsigned getLayoutOrder() const { return LayoutOrder; } void setLayoutOrder(unsigned Value) { LayoutOrder = Value; } static bool classof(const MCFragment *O) { return true; } void dump(); }; class MCDataFragment : public MCFragment { SmallString<32> Contents; /// Fixups - The list of fixups in this fragment. std::vector Fixups; public: typedef std::vector::const_iterator const_fixup_iterator; typedef std::vector::iterator fixup_iterator; public: MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {} /// @name Accessors /// @{ SmallString<32> &getContents() { return Contents; } const SmallString<32> &getContents() const { return Contents; } /// @} /// @name Fixup Access /// @{ void addFixup(MCFixup Fixup) { // Enforce invariant that fixups are in offset order. assert((Fixups.empty() || Fixup.getOffset() > Fixups.back().getOffset()) && "Fixups must be added in order!"); Fixups.push_back(Fixup); } std::vector &getFixups() { return Fixups; } const std::vector &getFixups() const { return Fixups; } fixup_iterator fixup_begin() { return Fixups.begin(); } const_fixup_iterator fixup_begin() const { return Fixups.begin(); } fixup_iterator fixup_end() {return Fixups.end();} const_fixup_iterator fixup_end() const {return Fixups.end();} size_t fixup_size() const { return Fixups.size(); } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Data; } static bool classof(const MCDataFragment *) { return true; } }; // FIXME: This current incarnation of MCInstFragment doesn't make much sense, as // it is almost entirely a duplicate of MCDataFragment. If we decide to stick // with this approach (as opposed to making MCInstFragment a very light weight // object with just the MCInst and a code size, then we should just change // MCDataFragment to have an optional MCInst at its end. class MCInstFragment : public MCFragment { /// Inst - The instruction this is a fragment for. MCInst Inst; /// InstSize - The size of the currently encoded instruction. SmallString<8> Code; /// Fixups - The list of fixups in this fragment. SmallVector Fixups; public: typedef SmallVectorImpl::const_iterator const_fixup_iterator; typedef SmallVectorImpl::iterator fixup_iterator; public: MCInstFragment(MCInst _Inst, MCSectionData *SD = 0) : MCFragment(FT_Inst, SD), Inst(_Inst) { } /// @name Accessors /// @{ SmallVectorImpl &getCode() { return Code; } const SmallVectorImpl &getCode() const { return Code; } unsigned getInstSize() const { return Code.size(); } MCInst &getInst() { return Inst; } const MCInst &getInst() const { return Inst; } void setInst(MCInst Value) { Inst = Value; } /// @} /// @name Fixup Access /// @{ SmallVectorImpl &getFixups() { return Fixups; } const SmallVectorImpl &getFixups() const { return Fixups; } fixup_iterator fixup_begin() { return Fixups.begin(); } const_fixup_iterator fixup_begin() const { return Fixups.begin(); } fixup_iterator fixup_end() {return Fixups.end();} const_fixup_iterator fixup_end() const {return Fixups.end();} size_t fixup_size() const { return Fixups.size(); } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Inst; } static bool classof(const MCInstFragment *) { return true; } }; class MCAlignFragment : public MCFragment { /// Alignment - The alignment to ensure, in bytes. unsigned Alignment; /// Value - Value to use for filling padding bytes. int64_t Value; /// ValueSize - The size of the integer (in bytes) of \arg Value. unsigned ValueSize; /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment /// cannot be satisfied in this width then this fragment is ignored. unsigned MaxBytesToEmit; /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead /// of using the provided value. The exact interpretation of this flag is /// target dependent. bool EmitNops : 1; /// OnlyAlignAddress - Flag to indicate that this align is only used to adjust /// the address space size of a section and that it should not be included as /// part of the section size. This flag can only be used on the last fragment /// in a section. bool OnlyAlignAddress : 1; public: MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize, unsigned _MaxBytesToEmit, MCSectionData *SD = 0) : MCFragment(FT_Align, SD), Alignment(_Alignment), Value(_Value),ValueSize(_ValueSize), MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false), OnlyAlignAddress(false) {} /// @name Accessors /// @{ unsigned getAlignment() const { return Alignment; } int64_t getValue() const { return Value; } unsigned getValueSize() const { return ValueSize; } unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; } bool hasEmitNops() const { return EmitNops; } void setEmitNops(bool Value) { EmitNops = Value; } bool hasOnlyAlignAddress() const { return OnlyAlignAddress; } void setOnlyAlignAddress(bool Value) { OnlyAlignAddress = Value; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Align; } static bool classof(const MCAlignFragment *) { return true; } }; class MCFillFragment : public MCFragment { /// Value - Value to use for filling bytes. int64_t Value; /// ValueSize - The size (in bytes) of \arg Value to use when filling, or 0 if /// this is a virtual fill fragment. unsigned ValueSize; /// Size - The number of bytes to insert. uint64_t Size; public: MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size, MCSectionData *SD = 0) : MCFragment(FT_Fill, SD), Value(_Value), ValueSize(_ValueSize), Size(_Size) { assert((!ValueSize || (Size % ValueSize) == 0) && "Fill size must be a multiple of the value size!"); } /// @name Accessors /// @{ int64_t getValue() const { return Value; } unsigned getValueSize() const { return ValueSize; } uint64_t getSize() const { return Size; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Fill; } static bool classof(const MCFillFragment *) { return true; } }; class MCOrgFragment : public MCFragment { /// Offset - The offset this fragment should start at. const MCExpr *Offset; /// Value - Value to use for filling bytes. int8_t Value; public: MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0) : MCFragment(FT_Org, SD), Offset(&_Offset), Value(_Value) {} /// @name Accessors /// @{ const MCExpr &getOffset() const { return *Offset; } uint8_t getValue() const { return Value; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Org; } static bool classof(const MCOrgFragment *) { return true; } }; // FIXME: Should this be a separate class, or just merged into MCSection? Since // we anticipate the fast path being through an MCAssembler, the only reason to // keep it out is for API abstraction. class MCSectionData : public ilist_node { friend class MCAsmLayout; MCSectionData(const MCSectionData&); // DO NOT IMPLEMENT void operator=(const MCSectionData&); // DO NOT IMPLEMENT public: typedef iplist FragmentListType; typedef FragmentListType::const_iterator const_iterator; typedef FragmentListType::iterator iterator; typedef FragmentListType::const_reverse_iterator const_reverse_iterator; typedef FragmentListType::reverse_iterator reverse_iterator; private: iplist Fragments; const MCSection *Section; /// Ordinal - The section index in the assemblers section list. unsigned Ordinal; /// LayoutOrder - The index of this section in the layout order. unsigned LayoutOrder; /// Alignment - The maximum alignment seen in this section. unsigned Alignment; /// @name Assembler Backend Data /// @{ // // FIXME: This could all be kept private to the assembler implementation. /// Address - The computed address of this section. This is ~0 until /// initialized. uint64_t Address; /// HasInstructions - Whether this section has had instructions emitted into /// it. unsigned HasInstructions : 1; /// @} public: // Only for use as sentinel. MCSectionData(); MCSectionData(const MCSection &Section, MCAssembler *A = 0); const MCSection &getSection() const { return *Section; } unsigned getAlignment() const { return Alignment; } void setAlignment(unsigned Value) { Alignment = Value; } bool hasInstructions() const { return HasInstructions; } void setHasInstructions(bool Value) { HasInstructions = Value; } unsigned getOrdinal() const { return Ordinal; } void setOrdinal(unsigned Value) { Ordinal = Value; } unsigned getLayoutOrder() const { return LayoutOrder; } void setLayoutOrder(unsigned Value) { LayoutOrder = Value; } /// @name Fragment Access /// @{ const FragmentListType &getFragmentList() const { return Fragments; } FragmentListType &getFragmentList() { return Fragments; } iterator begin() { return Fragments.begin(); } const_iterator begin() const { return Fragments.begin(); } iterator end() { return Fragments.end(); } const_iterator end() const { return Fragments.end(); } reverse_iterator rbegin() { return Fragments.rbegin(); } const_reverse_iterator rbegin() const { return Fragments.rbegin(); } reverse_iterator rend() { return Fragments.rend(); } const_reverse_iterator rend() const { return Fragments.rend(); } size_t size() const { return Fragments.size(); } bool empty() const { return Fragments.empty(); } void dump(); /// @} }; // FIXME: Same concerns as with SectionData. class MCSymbolData : public ilist_node { public: const MCSymbol *Symbol; /// Fragment - The fragment this symbol's value is relative to, if any. MCFragment *Fragment; /// Offset - The offset to apply to the fragment address to form this symbol's /// value. uint64_t Offset; /// IsExternal - True if this symbol is visible outside this translation /// unit. unsigned IsExternal : 1; /// IsPrivateExtern - True if this symbol is private extern. unsigned IsPrivateExtern : 1; /// CommonSize - The size of the symbol, if it is 'common', or 0. // // FIXME: Pack this in with other fields? We could put it in offset, since a // common symbol can never get a definition. uint64_t CommonSize; /// CommonAlign - The alignment of the symbol, if it is 'common'. // // FIXME: Pack this in with other fields? unsigned CommonAlign; /// Flags - The Flags field is used by object file implementations to store /// additional per symbol information which is not easily classified. uint32_t Flags; /// Index - Index field, for use by the object file implementation. uint64_t Index; public: // Only for use as sentinel. MCSymbolData(); MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset, MCAssembler *A = 0); /// @name Accessors /// @{ const MCSymbol &getSymbol() const { return *Symbol; } MCFragment *getFragment() const { return Fragment; } void setFragment(MCFragment *Value) { Fragment = Value; } uint64_t getOffset() const { return Offset; } void setOffset(uint64_t Value) { Offset = Value; } /// @} /// @name Symbol Attributes /// @{ bool isExternal() const { return IsExternal; } void setExternal(bool Value) { IsExternal = Value; } bool isPrivateExtern() const { return IsPrivateExtern; } void setPrivateExtern(bool Value) { IsPrivateExtern = Value; } /// isCommon - Is this a 'common' symbol. bool isCommon() const { return CommonSize != 0; } /// setCommon - Mark this symbol as being 'common'. /// /// \param Size - The size of the symbol. /// \param Align - The alignment of the symbol. void setCommon(uint64_t Size, unsigned Align) { CommonSize = Size; CommonAlign = Align; } /// getCommonSize - Return the size of a 'common' symbol. uint64_t getCommonSize() const { assert(isCommon() && "Not a 'common' symbol!"); return CommonSize; } /// getCommonAlignment - Return the alignment of a 'common' symbol. unsigned getCommonAlignment() const { assert(isCommon() && "Not a 'common' symbol!"); return CommonAlign; } /// getFlags - Get the (implementation defined) symbol flags. uint32_t getFlags() const { return Flags; } /// setFlags - Set the (implementation defined) symbol flags. void setFlags(uint32_t Value) { Flags = Value; } /// modifyFlags - Modify the flags via a mask void modifyFlags(uint32_t Value, uint32_t Mask) { Flags = (Flags & ~Mask) | Value; } /// getIndex - Get the (implementation defined) index. uint64_t getIndex() const { return Index; } /// setIndex - Set the (implementation defined) index. void setIndex(uint64_t Value) { Index = Value; } /// @} void dump(); }; // FIXME: This really doesn't belong here. See comments below. struct IndirectSymbolData { MCSymbol *Symbol; MCSectionData *SectionData; }; class MCAssembler { friend class MCAsmLayout; public: typedef iplist SectionDataListType; typedef iplist SymbolDataListType; typedef SectionDataListType::const_iterator const_iterator; typedef SectionDataListType::iterator iterator; typedef SymbolDataListType::const_iterator const_symbol_iterator; typedef SymbolDataListType::iterator symbol_iterator; typedef std::vector::const_iterator const_indirect_symbol_iterator; typedef std::vector::iterator indirect_symbol_iterator; private: MCAssembler(const MCAssembler&); // DO NOT IMPLEMENT void operator=(const MCAssembler&); // DO NOT IMPLEMENT MCContext &Context; TargetAsmBackend &Backend; MCCodeEmitter &Emitter; raw_ostream &OS; iplist Sections; iplist Symbols; /// The map of sections to their associated assembler backend data. // // FIXME: Avoid this indirection? DenseMap SectionMap; /// The map of symbols to their associated assembler backend data. // // FIXME: Avoid this indirection? DenseMap SymbolMap; std::vector IndirectSymbols; unsigned RelaxAll : 1; unsigned SubsectionsViaSymbols : 1; private: /// Evaluate a fixup to a relocatable expression and the value which should be /// placed into the fixup. /// /// \param Layout The layout to use for evaluation. /// \param Fixup The fixup to evaluate. /// \param DF The fragment the fixup is inside. /// \param Target [out] On return, the relocatable expression the fixup /// evaluates to. /// \param Value [out] On return, the value of the fixup as currently layed /// out. /// \return Whether the fixup value was fully resolved. This is true if the /// \arg Value result is fixed, otherwise the value may change due to /// relocation. bool EvaluateFixup(const MCAsmLayout &Layout, const MCFixup &Fixup, const MCFragment *DF, MCValue &Target, uint64_t &Value) const; /// Check whether a fixup can be satisfied, or whether it needs to be relaxed /// (increased in size, in order to hold its value correctly). bool FixupNeedsRelaxation(const MCFixup &Fixup, const MCFragment *DF, const MCAsmLayout &Layout) const; /// Check whether the given fragment needs relaxation. bool FragmentNeedsRelaxation(const MCInstFragment *IF, const MCAsmLayout &Layout) const; /// Compute the effective fragment size assuming it is layed out at the given /// \arg SectionAddress and \arg FragmentOffset. uint64_t ComputeFragmentSize(MCAsmLayout &Layout, const MCFragment &F, uint64_t SectionAddress, uint64_t FragmentOffset) const; /// LayoutOnce - Perform one layout iteration and return true if any offsets /// were adjusted. bool LayoutOnce(MCAsmLayout &Layout); /// FinishLayout - Finalize a layout, including fragment lowering. void FinishLayout(MCAsmLayout &Layout); public: /// Find the symbol which defines the atom containing the given symbol, or /// null if there is no such symbol. const MCSymbolData *getAtom(const MCAsmLayout &Layout, const MCSymbolData *Symbol) const; /// Check whether a particular symbol is visible to the linker and is required /// in the symbol table, or whether it can be discarded by the assembler. This /// also effects whether the assembler treats the label as potentially /// defining a separate atom. bool isSymbolLinkerVisible(const MCSymbol &SD) const; /// Emit the section contents using the given object writer. // // FIXME: Should MCAssembler always have a reference to the object writer? void WriteSectionData(const MCSectionData *Section, const MCAsmLayout &Layout, MCObjectWriter *OW) const; public: /// Construct a new assembler instance. /// /// \arg OS - The stream to output to. // // FIXME: How are we going to parameterize this? Two obvious options are stay // concrete and require clients to pass in a target like object. The other // option is to make this abstract, and have targets provide concrete // implementations as we do with AsmParser. MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend, MCCodeEmitter &_Emitter, raw_ostream &OS); ~MCAssembler(); MCContext &getContext() const { return Context; } TargetAsmBackend &getBackend() const { return Backend; } MCCodeEmitter &getEmitter() const { return Emitter; } /// Finish - Do final processing and write the object to the output stream. void Finish(); // FIXME: This does not belong here. bool getSubsectionsViaSymbols() const { return SubsectionsViaSymbols; } void setSubsectionsViaSymbols(bool Value) { SubsectionsViaSymbols = Value; } bool getRelaxAll() const { return RelaxAll; } void setRelaxAll(bool Value) { RelaxAll = Value; } /// @name Section List Access /// @{ const SectionDataListType &getSectionList() const { return Sections; } SectionDataListType &getSectionList() { return Sections; } iterator begin() { return Sections.begin(); } const_iterator begin() const { return Sections.begin(); } iterator end() { return Sections.end(); } const_iterator end() const { return Sections.end(); } size_t size() const { return Sections.size(); } /// @} /// @name Symbol List Access /// @{ const SymbolDataListType &getSymbolList() const { return Symbols; } SymbolDataListType &getSymbolList() { return Symbols; } symbol_iterator symbol_begin() { return Symbols.begin(); } const_symbol_iterator symbol_begin() const { return Symbols.begin(); } symbol_iterator symbol_end() { return Symbols.end(); } const_symbol_iterator symbol_end() const { return Symbols.end(); } size_t symbol_size() const { return Symbols.size(); } /// @} /// @name Indirect Symbol List Access /// @{ // FIXME: This is a total hack, this should not be here. Once things are // factored so that the streamer has direct access to the .o writer, it can // disappear. std::vector &getIndirectSymbols() { return IndirectSymbols; } indirect_symbol_iterator indirect_symbol_begin() { return IndirectSymbols.begin(); } const_indirect_symbol_iterator indirect_symbol_begin() const { return IndirectSymbols.begin(); } indirect_symbol_iterator indirect_symbol_end() { return IndirectSymbols.end(); } const_indirect_symbol_iterator indirect_symbol_end() const { return IndirectSymbols.end(); } size_t indirect_symbol_size() const { return IndirectSymbols.size(); } /// @} /// @name Backend Data Access /// @{ MCSectionData &getSectionData(const MCSection &Section) const { MCSectionData *Entry = SectionMap.lookup(&Section); assert(Entry && "Missing section data!"); return *Entry; } MCSectionData &getOrCreateSectionData(const MCSection &Section, bool *Created = 0) { MCSectionData *&Entry = SectionMap[&Section]; if (Created) *Created = !Entry; if (!Entry) Entry = new MCSectionData(Section, this); return *Entry; } MCSymbolData &getSymbolData(const MCSymbol &Symbol) const { MCSymbolData *Entry = SymbolMap.lookup(&Symbol); assert(Entry && "Missing symbol data!"); return *Entry; } MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol, bool *Created = 0) { MCSymbolData *&Entry = SymbolMap[&Symbol]; if (Created) *Created = !Entry; if (!Entry) Entry = new MCSymbolData(Symbol, 0, 0, this); return *Entry; } /// @} void dump(); }; } // end namespace llvm #endif