//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAG class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Constants.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/GlobalAlias.h" #include "llvm/GlobalVariable.h" #include "llvm/Intrinsics.h" #include "llvm/DerivedTypes.h" #include "llvm/Assembly/Writer.h" #include "llvm/CallingConv.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include #include using namespace llvm; /// makeVTList - Return an instance of the SDVTList struct initialized with the /// specified members. static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) { SDVTList Res = {VTs, NumVTs}; return Res; } static const fltSemantics *MVTToAPFloatSemantics(MVT VT) { switch (VT.getSimpleVT()) { default: assert(0 && "Unknown FP format"); case MVT::f32: return &APFloat::IEEEsingle; case MVT::f64: return &APFloat::IEEEdouble; case MVT::f80: return &APFloat::x87DoubleExtended; case MVT::f128: return &APFloat::IEEEquad; case MVT::ppcf128: return &APFloat::PPCDoubleDouble; } } SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {} //===----------------------------------------------------------------------===// // ConstantFPSDNode Class //===----------------------------------------------------------------------===// /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { return getValueAPF().bitwiseIsEqual(V); } bool ConstantFPSDNode::isValueValidForType(MVT VT, const APFloat& Val) { assert(VT.isFloatingPoint() && "Can only convert between FP types"); // PPC long double cannot be converted to any other type. if (VT == MVT::ppcf128 || &Val.getSemantics() == &APFloat::PPCDoubleDouble) return false; // convert modifies in place, so make a copy. APFloat Val2 = APFloat(Val); return Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven) == APFloat::opOK; } //===----------------------------------------------------------------------===// // ISD Namespace //===----------------------------------------------------------------------===// /// isBuildVectorAllOnes - Return true if the specified node is a /// BUILD_VECTOR where all of the elements are ~0 or undef. bool ISD::isBuildVectorAllOnes(const SDNode *N) { // Look through a bit convert. if (N->getOpcode() == ISD::BIT_CONVERT) N = N->getOperand(0).getNode(); if (N->getOpcode() != ISD::BUILD_VECTOR) return false; unsigned i = 0, e = N->getNumOperands(); // Skip over all of the undef values. while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) ++i; // Do not accept an all-undef vector. if (i == e) return false; // Do not accept build_vectors that aren't all constants or which have non-~0 // elements. SDValue NotZero = N->getOperand(i); if (isa(NotZero)) { if (!cast(NotZero)->isAllOnesValue()) return false; } else if (isa(NotZero)) { if (!cast(NotZero)->getValueAPF(). convertToAPInt().isAllOnesValue()) return false; } else return false; // Okay, we have at least one ~0 value, check to see if the rest match or are // undefs. for (++i; i != e; ++i) if (N->getOperand(i) != NotZero && N->getOperand(i).getOpcode() != ISD::UNDEF) return false; return true; } /// isBuildVectorAllZeros - Return true if the specified node is a /// BUILD_VECTOR where all of the elements are 0 or undef. bool ISD::isBuildVectorAllZeros(const SDNode *N) { // Look through a bit convert. if (N->getOpcode() == ISD::BIT_CONVERT) N = N->getOperand(0).getNode(); if (N->getOpcode() != ISD::BUILD_VECTOR) return false; unsigned i = 0, e = N->getNumOperands(); // Skip over all of the undef values. while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) ++i; // Do not accept an all-undef vector. if (i == e) return false; // Do not accept build_vectors that aren't all constants or which have non-~0 // elements. SDValue Zero = N->getOperand(i); if (isa(Zero)) { if (!cast(Zero)->isNullValue()) return false; } else if (isa(Zero)) { if (!cast(Zero)->getValueAPF().isPosZero()) return false; } else return false; // Okay, we have at least one ~0 value, check to see if the rest match or are // undefs. for (++i; i != e; ++i) if (N->getOperand(i) != Zero && N->getOperand(i).getOpcode() != ISD::UNDEF) return false; return true; } /// isScalarToVector - Return true if the specified node is a /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low /// element is not an undef. bool ISD::isScalarToVector(const SDNode *N) { if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) return true; if (N->getOpcode() != ISD::BUILD_VECTOR) return false; if (N->getOperand(0).getOpcode() == ISD::UNDEF) return false; unsigned NumElems = N->getNumOperands(); for (unsigned i = 1; i < NumElems; ++i) { SDValue V = N->getOperand(i); if (V.getOpcode() != ISD::UNDEF) return false; } return true; } /// isDebugLabel - Return true if the specified node represents a debug /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node). bool ISD::isDebugLabel(const SDNode *N) { SDValue Zero; if (N->getOpcode() == ISD::DBG_LABEL) return true; if (N->isMachineOpcode() && N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL) return true; return false; } /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) /// when given the operation for (X op Y). ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { // To perform this operation, we just need to swap the L and G bits of the // operation. unsigned OldL = (Operation >> 2) & 1; unsigned OldG = (Operation >> 1) & 1; return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits (OldL << 1) | // New G bit (OldG << 2)); // New L bit. } /// getSetCCInverse - Return the operation corresponding to !(X op Y), where /// 'op' is a valid SetCC operation. ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { unsigned Operation = Op; if (isInteger) Operation ^= 7; // Flip L, G, E bits, but not U. else Operation ^= 15; // Flip all of the condition bits. if (Operation > ISD::SETTRUE2) Operation &= ~8; // Don't let N and U bits get set. return ISD::CondCode(Operation); } /// isSignedOp - For an integer comparison, return 1 if the comparison is a /// signed operation and 2 if the result is an unsigned comparison. Return zero /// if the operation does not depend on the sign of the input (setne and seteq). static int isSignedOp(ISD::CondCode Opcode) { switch (Opcode) { default: assert(0 && "Illegal integer setcc operation!"); case ISD::SETEQ: case ISD::SETNE: return 0; case ISD::SETLT: case ISD::SETLE: case ISD::SETGT: case ISD::SETGE: return 1; case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: return 2; } } /// getSetCCOrOperation - Return the result of a logical OR between different /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function /// returns SETCC_INVALID if it is not possible to represent the resultant /// comparison. ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, bool isInteger) { if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed integer setcc with an unsigned integer setcc. return ISD::SETCC_INVALID; unsigned Op = Op1 | Op2; // Combine all of the condition bits. // If the N and U bits get set then the resultant comparison DOES suddenly // care about orderedness, and is true when ordered. if (Op > ISD::SETTRUE2) Op &= ~16; // Clear the U bit if the N bit is set. // Canonicalize illegal integer setcc's. if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT Op = ISD::SETNE; return ISD::CondCode(Op); } /// getSetCCAndOperation - Return the result of a logical AND between different /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This /// function returns zero if it is not possible to represent the resultant /// comparison. ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, bool isInteger) { if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed setcc with an unsigned setcc. return ISD::SETCC_INVALID; // Combine all of the condition bits. ISD::CondCode Result = ISD::CondCode(Op1 & Op2); // Canonicalize illegal integer setcc's. if (isInteger) { switch (Result) { default: break; case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT case ISD::SETOEQ: // SETEQ & SETU[LG]E case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE } } return Result; } const TargetMachine &SelectionDAG::getTarget() const { return MF->getTarget(); } //===----------------------------------------------------------------------===// // SDNode Profile Support //===----------------------------------------------------------------------===// /// AddNodeIDOpcode - Add the node opcode to the NodeID data. /// static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { ID.AddInteger(OpC); } /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them /// solely with their pointer. static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { ID.AddPointer(VTList.VTs); } /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. /// static void AddNodeIDOperands(FoldingSetNodeID &ID, const SDValue *Ops, unsigned NumOps) { for (; NumOps; --NumOps, ++Ops) { ID.AddPointer(Ops->getNode()); ID.AddInteger(Ops->getResNo()); } } /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. /// static void AddNodeIDOperands(FoldingSetNodeID &ID, const SDUse *Ops, unsigned NumOps) { for (; NumOps; --NumOps, ++Ops) { ID.AddPointer(Ops->getVal()); ID.AddInteger(Ops->getSDValue().getResNo()); } } static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, SDVTList VTList, const SDValue *OpList, unsigned N) { AddNodeIDOpcode(ID, OpC); AddNodeIDValueTypes(ID, VTList); AddNodeIDOperands(ID, OpList, N); } /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID /// data. static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { AddNodeIDOpcode(ID, N->getOpcode()); // Add the return value info. AddNodeIDValueTypes(ID, N->getVTList()); // Add the operand info. AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands()); // Handle SDNode leafs with special info. switch (N->getOpcode()) { default: break; // Normal nodes don't need extra info. case ISD::ARG_FLAGS: ID.AddInteger(cast(N)->getArgFlags().getRawBits()); break; case ISD::TargetConstant: case ISD::Constant: ID.AddPointer(cast(N)->getConstantIntValue()); break; case ISD::TargetConstantFP: case ISD::ConstantFP: { ID.AddPointer(cast(N)->getConstantFPValue()); break; } case ISD::TargetGlobalAddress: case ISD::GlobalAddress: case ISD::TargetGlobalTLSAddress: case ISD::GlobalTLSAddress: { const GlobalAddressSDNode *GA = cast(N); ID.AddPointer(GA->getGlobal()); ID.AddInteger(GA->getOffset()); break; } case ISD::BasicBlock: ID.AddPointer(cast(N)->getBasicBlock()); break; case ISD::Register: ID.AddInteger(cast(N)->getReg()); break; case ISD::DBG_STOPPOINT: { const DbgStopPointSDNode *DSP = cast(N); ID.AddInteger(DSP->getLine()); ID.AddInteger(DSP->getColumn()); ID.AddPointer(DSP->getCompileUnit()); break; } case ISD::SRCVALUE: ID.AddPointer(cast(N)->getValue()); break; case ISD::MEMOPERAND: { const MachineMemOperand &MO = cast(N)->MO; MO.Profile(ID); break; } case ISD::FrameIndex: case ISD::TargetFrameIndex: ID.AddInteger(cast(N)->getIndex()); break; case ISD::JumpTable: case ISD::TargetJumpTable: ID.AddInteger(cast(N)->getIndex()); break; case ISD::ConstantPool: case ISD::TargetConstantPool: { const ConstantPoolSDNode *CP = cast(N); ID.AddInteger(CP->getAlignment()); ID.AddInteger(CP->getOffset()); if (CP->isMachineConstantPoolEntry()) CP->getMachineCPVal()->AddSelectionDAGCSEId(ID); else ID.AddPointer(CP->getConstVal()); break; } case ISD::CALL: { const CallSDNode *Call = cast(N); ID.AddInteger(Call->getCallingConv()); ID.AddInteger(Call->isVarArg()); break; } case ISD::LOAD: { const LoadSDNode *LD = cast(N); ID.AddInteger(LD->getAddressingMode()); ID.AddInteger(LD->getExtensionType()); ID.AddInteger(LD->getMemoryVT().getRawBits()); ID.AddInteger(LD->getRawFlags()); break; } case ISD::STORE: { const StoreSDNode *ST = cast(N); ID.AddInteger(ST->getAddressingMode()); ID.AddInteger(ST->isTruncatingStore()); ID.AddInteger(ST->getMemoryVT().getRawBits()); ID.AddInteger(ST->getRawFlags()); break; } case ISD::ATOMIC_CMP_SWAP_8: case ISD::ATOMIC_SWAP_8: case ISD::ATOMIC_LOAD_ADD_8: case ISD::ATOMIC_LOAD_SUB_8: case ISD::ATOMIC_LOAD_AND_8: case ISD::ATOMIC_LOAD_OR_8: case ISD::ATOMIC_LOAD_XOR_8: case ISD::ATOMIC_LOAD_NAND_8: case ISD::ATOMIC_LOAD_MIN_8: case ISD::ATOMIC_LOAD_MAX_8: case ISD::ATOMIC_LOAD_UMIN_8: case ISD::ATOMIC_LOAD_UMAX_8: case ISD::ATOMIC_CMP_SWAP_16: case ISD::ATOMIC_SWAP_16: case ISD::ATOMIC_LOAD_ADD_16: case ISD::ATOMIC_LOAD_SUB_16: case ISD::ATOMIC_LOAD_AND_16: case ISD::ATOMIC_LOAD_OR_16: case ISD::ATOMIC_LOAD_XOR_16: case ISD::ATOMIC_LOAD_NAND_16: case ISD::ATOMIC_LOAD_MIN_16: case ISD::ATOMIC_LOAD_MAX_16: case ISD::ATOMIC_LOAD_UMIN_16: case ISD::ATOMIC_LOAD_UMAX_16: case ISD::ATOMIC_CMP_SWAP_32: case ISD::ATOMIC_SWAP_32: case ISD::ATOMIC_LOAD_ADD_32: case ISD::ATOMIC_LOAD_SUB_32: case ISD::ATOMIC_LOAD_AND_32: case ISD::ATOMIC_LOAD_OR_32: case ISD::ATOMIC_LOAD_XOR_32: case ISD::ATOMIC_LOAD_NAND_32: case ISD::ATOMIC_LOAD_MIN_32: case ISD::ATOMIC_LOAD_MAX_32: case ISD::ATOMIC_LOAD_UMIN_32: case ISD::ATOMIC_LOAD_UMAX_32: case ISD::ATOMIC_CMP_SWAP_64: case ISD::ATOMIC_SWAP_64: case ISD::ATOMIC_LOAD_ADD_64: case ISD::ATOMIC_LOAD_SUB_64: case ISD::ATOMIC_LOAD_AND_64: case ISD::ATOMIC_LOAD_OR_64: case ISD::ATOMIC_LOAD_XOR_64: case ISD::ATOMIC_LOAD_NAND_64: case ISD::ATOMIC_LOAD_MIN_64: case ISD::ATOMIC_LOAD_MAX_64: case ISD::ATOMIC_LOAD_UMIN_64: case ISD::ATOMIC_LOAD_UMAX_64: { const AtomicSDNode *AT = cast(N); ID.AddInteger(AT->getRawFlags()); break; } } // end switch (N->getOpcode()) } /// encodeMemSDNodeFlags - Generic routine for computing a value for use in /// the CSE map that carries both alignment and volatility information. /// static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) { return isVolatile | ((Log2_32(Alignment) + 1) << 1); } //===----------------------------------------------------------------------===// // SelectionDAG Class //===----------------------------------------------------------------------===// /// RemoveDeadNodes - This method deletes all unreachable nodes in the /// SelectionDAG. void SelectionDAG::RemoveDeadNodes() { // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted. HandleSDNode Dummy(getRoot()); SmallVector DeadNodes; // Add all obviously-dead nodes to the DeadNodes worklist. for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) if (I->use_empty()) DeadNodes.push_back(I); RemoveDeadNodes(DeadNodes); // If the root changed (e.g. it was a dead load, update the root). setRoot(Dummy.getValue()); } /// RemoveDeadNodes - This method deletes the unreachable nodes in the /// given list, and any nodes that become unreachable as a result. void SelectionDAG::RemoveDeadNodes(SmallVectorImpl &DeadNodes, DAGUpdateListener *UpdateListener) { // Process the worklist, deleting the nodes and adding their uses to the // worklist. while (!DeadNodes.empty()) { SDNode *N = DeadNodes.back(); DeadNodes.pop_back(); if (UpdateListener) UpdateListener->NodeDeleted(N, 0); // Take the node out of the appropriate CSE map. RemoveNodeFromCSEMaps(N); // Next, brutally remove the operand list. This is safe to do, as there are // no cycles in the graph. for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { SDNode *Operand = I->getVal(); Operand->removeUser(std::distance(N->op_begin(), I), N); // Now that we removed this operand, see if there are no uses of it left. if (Operand->use_empty()) DeadNodes.push_back(Operand); } if (N->OperandsNeedDelete) { delete[] N->OperandList; } N->OperandList = 0; N->NumOperands = 0; // Finally, remove N itself. NodeAllocator.Deallocate(AllNodes.remove(N)); } } void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){ SmallVector DeadNodes(1, N); RemoveDeadNodes(DeadNodes, UpdateListener); } void SelectionDAG::DeleteNode(SDNode *N) { assert(N->use_empty() && "Cannot delete a node that is not dead!"); // First take this out of the appropriate CSE map. RemoveNodeFromCSEMaps(N); // Finally, remove uses due to operands of this node, remove from the // AllNodes list, and delete the node. DeleteNodeNotInCSEMaps(N); } void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { // Drop all of the operands and decrement used nodes use counts. for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) I->getVal()->removeUser(std::distance(N->op_begin(), I), N); if (N->OperandsNeedDelete) delete[] N->OperandList; assert(N != AllNodes.begin()); NodeAllocator.Deallocate(AllNodes.remove(N)); } /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that /// correspond to it. This is useful when we're about to delete or repurpose /// the node. We don't want future request for structurally identical nodes /// to return N anymore. bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { bool Erased = false; switch (N->getOpcode()) { case ISD::EntryToken: assert(0 && "EntryToken should not be in CSEMaps!"); return false; case ISD::HANDLENODE: return false; // noop. case ISD::CONDCODE: assert(CondCodeNodes[cast(N)->get()] && "Cond code doesn't exist!"); Erased = CondCodeNodes[cast(N)->get()] != 0; CondCodeNodes[cast(N)->get()] = 0; break; case ISD::ExternalSymbol: Erased = ExternalSymbols.erase(cast(N)->getSymbol()); break; case ISD::TargetExternalSymbol: Erased = TargetExternalSymbols.erase(cast(N)->getSymbol()); break; case ISD::VALUETYPE: { MVT VT = cast(N)->getVT(); if (VT.isExtended()) { Erased = ExtendedValueTypeNodes.erase(VT); } else { Erased = ValueTypeNodes[VT.getSimpleVT()] != 0; ValueTypeNodes[VT.getSimpleVT()] = 0; } break; } default: // Remove it from the CSE Map. Erased = CSEMap.RemoveNode(N); break; } #ifndef NDEBUG // Verify that the node was actually in one of the CSE maps, unless it has a // flag result (which cannot be CSE'd) or is one of the special cases that are // not subject to CSE. if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag && !N->isMachineOpcode() && N->getOpcode() != ISD::DBG_LABEL && N->getOpcode() != ISD::DBG_STOPPOINT && N->getOpcode() != ISD::EH_LABEL && N->getOpcode() != ISD::DECLARE) { N->dump(this); cerr << "\n"; assert(0 && "Node is not in map!"); } #endif return Erased; } /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It /// has been taken out and modified in some way. If the specified node already /// exists in the CSE maps, do not modify the maps, but return the existing node /// instead. If it doesn't exist, add it and return null. /// SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { assert(N->getNumOperands() && "This is a leaf node!"); if (N->getValueType(0) == MVT::Flag) return 0; // Never CSE anything that produces a flag. switch (N->getOpcode()) { default: break; case ISD::HANDLENODE: case ISD::DBG_LABEL: case ISD::DBG_STOPPOINT: case ISD::EH_LABEL: case ISD::DECLARE: return 0; // Never add these nodes. } // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. SDNode *New = CSEMap.GetOrInsertNode(N); if (New != N) return New; // Node already existed. return 0; } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos) { if (N->getValueType(0) == MVT::Flag) return 0; // Never CSE anything that produces a flag. switch (N->getOpcode()) { default: break; case ISD::HANDLENODE: case ISD::DBG_LABEL: case ISD::DBG_STOPPOINT: case ISD::EH_LABEL: return 0; // Never add these nodes. } // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. SDValue Ops[] = { Op }; FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1); return CSEMap.FindNodeOrInsertPos(ID, InsertPos); } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2, void *&InsertPos) { if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. SDValue Ops[] = { Op1, Op2 }; FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2); return CSEMap.FindNodeOrInsertPos(ID, InsertPos); } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, const SDValue *Ops,unsigned NumOps, void *&InsertPos) { if (N->getValueType(0) == MVT::Flag) return 0; // Never CSE anything that produces a flag. switch (N->getOpcode()) { default: break; case ISD::HANDLENODE: case ISD::DBG_LABEL: case ISD::DBG_STOPPOINT: case ISD::EH_LABEL: case ISD::DECLARE: return 0; // Never add these nodes. } // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps); if (const LoadSDNode *LD = dyn_cast(N)) { ID.AddInteger(LD->getAddressingMode()); ID.AddInteger(LD->getExtensionType()); ID.AddInteger(LD->getMemoryVT().getRawBits()); ID.AddInteger(LD->getRawFlags()); } else if (const StoreSDNode *ST = dyn_cast(N)) { ID.AddInteger(ST->getAddressingMode()); ID.AddInteger(ST->isTruncatingStore()); ID.AddInteger(ST->getMemoryVT().getRawBits()); ID.AddInteger(ST->getRawFlags()); } return CSEMap.FindNodeOrInsertPos(ID, InsertPos); } /// VerifyNode - Sanity check the given node. Aborts if it is invalid. void SelectionDAG::VerifyNode(SDNode *N) { switch (N->getOpcode()) { default: break; case ISD::BUILD_VECTOR: { assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!"); assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!"); assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && "Wrong number of BUILD_VECTOR operands!"); MVT EltVT = N->getValueType(0).getVectorElementType(); for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) assert(I->getSDValue().getValueType() == EltVT && "Wrong BUILD_VECTOR operand type!"); break; } } } /// getMVTAlignment - Compute the default alignment value for the /// given type. /// unsigned SelectionDAG::getMVTAlignment(MVT VT) const { const Type *Ty = VT == MVT::iPTR ? PointerType::get(Type::Int8Ty, 0) : VT.getTypeForMVT(); return TLI.getTargetData()->getABITypeAlignment(Ty); } SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli) : TLI(tli), FLI(fli), EntryNode(ISD::EntryToken, getVTList(MVT::Other)), Root(getEntryNode()) { AllNodes.push_back(&EntryNode); } void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) { MF = &mf; MMI = mmi; } SelectionDAG::~SelectionDAG() { allnodes_clear(); } void SelectionDAG::allnodes_clear() { assert(&*AllNodes.begin() == &EntryNode); AllNodes.remove(AllNodes.begin()); while (!AllNodes.empty()) { SDNode *N = AllNodes.remove(AllNodes.begin()); N->SetNextInBucket(0); if (N->OperandsNeedDelete) delete [] N->OperandList; NodeAllocator.Deallocate(N); } } void SelectionDAG::clear() { allnodes_clear(); OperandAllocator.Reset(); CSEMap.clear(); ExtendedValueTypeNodes.clear(); ExternalSymbols.clear(); TargetExternalSymbols.clear(); std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), static_cast(0)); std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), static_cast(0)); EntryNode.Uses = 0; AllNodes.push_back(&EntryNode); Root = getEntryNode(); } SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) { if (Op.getValueType() == VT) return Op; APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(), VT.getSizeInBits()); return getNode(ISD::AND, Op.getValueType(), Op, getConstant(Imm, Op.getValueType())); } SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) { MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT); } SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) { return getConstant(*ConstantInt::get(Val), VT, isT); } SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) { assert(VT.isInteger() && "Cannot create FP integer constant!"); MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; assert(Val.getBitWidth() == EltVT.getSizeInBits() && "APInt size does not match type size!"); unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); ID.AddPointer(&Val); void *IP = 0; SDNode *N = NULL; if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) if (!VT.isVector()) return SDValue(N, 0); if (!N) { N = NodeAllocator.Allocate(); new (N) ConstantSDNode(isT, &Val, EltVT); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); } SDValue Result(N, 0); if (VT.isVector()) { SmallVector Ops; Ops.assign(VT.getVectorNumElements(), Result); Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } return Result; } SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) { return getConstant(Val, TLI.getPointerTy(), isTarget); } SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) { return getConstantFP(*ConstantFP::get(V), VT, isTarget); } SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){ assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; // Do the map lookup using the actual bit pattern for the floating point // value, so that we don't have problems with 0.0 comparing equal to -0.0, and // we don't have issues with SNANs. unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); ID.AddPointer(&V); void *IP = 0; SDNode *N = NULL; if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) if (!VT.isVector()) return SDValue(N, 0); if (!N) { N = NodeAllocator.Allocate(); new (N) ConstantFPSDNode(isTarget, &V, EltVT); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); } SDValue Result(N, 0); if (VT.isVector()) { SmallVector Ops; Ops.assign(VT.getVectorNumElements(), Result); Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } return Result; } SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) { MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; if (EltVT==MVT::f32) return getConstantFP(APFloat((float)Val), VT, isTarget); else return getConstantFP(APFloat(Val), VT, isTarget); } SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, MVT VT, int Offset, bool isTargetGA) { unsigned Opc; const GlobalVariable *GVar = dyn_cast(GV); if (!GVar) { // If GV is an alias then use the aliasee for determining thread-localness. if (const GlobalAlias *GA = dyn_cast(GV)) GVar = dyn_cast_or_null(GA->resolveAliasedGlobal(false)); } if (GVar && GVar->isThreadLocal()) Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; else Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddPointer(GV); ID.AddInteger(Offset); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) { unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(FI); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) FrameIndexSDNode(FI, VT, isTarget); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){ unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(JTI); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) JumpTableSDNode(JTI, VT, isTarget); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT, unsigned Alignment, int Offset, bool isTarget) { if (Alignment == 0) Alignment = TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType()); unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(Alignment); ID.AddInteger(Offset); ID.AddPointer(C); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT, unsigned Alignment, int Offset, bool isTarget) { if (Alignment == 0) Alignment = TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType()); unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(Alignment); ID.AddInteger(Offset); C->AddSelectionDAGCSEId(ID); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0); ID.AddPointer(MBB); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) BasicBlockSDNode(MBB); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0); ID.AddInteger(Flags.getRawBits()); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) ARG_FLAGSSDNode(Flags); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getValueType(MVT VT) { if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size()) ValueTypeNodes.resize(VT.getSimpleVT()+1); SDNode *&N = VT.isExtended() ? ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()]; if (N) return SDValue(N, 0); N = NodeAllocator.Allocate(); new (N) VTSDNode(VT); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) { SDNode *&N = ExternalSymbols[Sym]; if (N) return SDValue(N, 0); N = NodeAllocator.Allocate(); new (N) ExternalSymbolSDNode(false, Sym, VT); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) { SDNode *&N = TargetExternalSymbols[Sym]; if (N) return SDValue(N, 0); N = NodeAllocator.Allocate(); new (N) ExternalSymbolSDNode(true, Sym, VT); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { if ((unsigned)Cond >= CondCodeNodes.size()) CondCodeNodes.resize(Cond+1); if (CondCodeNodes[Cond] == 0) { CondCodeSDNode *N = NodeAllocator.Allocate(); new (N) CondCodeSDNode(Cond); CondCodeNodes[Cond] = N; AllNodes.push_back(N); } return SDValue(CondCodeNodes[Cond], 0); } SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0); ID.AddInteger(RegNo); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) RegisterSDNode(RegNo, VT); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getDbgStopPoint(SDValue Root, unsigned Line, unsigned Col, const CompileUnitDesc *CU) { SDNode *N = NodeAllocator.Allocate(); new (N) DbgStopPointSDNode(Root, Line, Col, CU); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getLabel(unsigned Opcode, SDValue Root, unsigned LabelID) { FoldingSetNodeID ID; SDValue Ops[] = { Root }; AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1); ID.AddInteger(LabelID); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) LabelSDNode(Opcode, Root, LabelID); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getSrcValue(const Value *V) { assert((!V || isa(V->getType())) && "SrcValue is not a pointer?"); FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0); ID.AddPointer(V); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) SrcValueSDNode(V); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) { const Value *v = MO.getValue(); assert((!v || isa(v->getType())) && "SrcValue is not a pointer?"); FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0); MO.Profile(ID); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) MemOperandSDNode(MO); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } /// CreateStackTemporary - Create a stack temporary, suitable for holding the /// specified value type. SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) { MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); unsigned ByteSize = VT.getSizeInBits()/8; const Type *Ty = VT.getTypeForMVT(); unsigned StackAlign = std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign); int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign); return getFrameIndex(FrameIdx, TLI.getPointerTy()); } SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond) { // These setcc operations always fold. switch (Cond) { default: break; case ISD::SETFALSE: case ISD::SETFALSE2: return getConstant(0, VT); case ISD::SETTRUE: case ISD::SETTRUE2: return getConstant(1, VT); case ISD::SETOEQ: case ISD::SETOGT: case ISD::SETOGE: case ISD::SETOLT: case ISD::SETOLE: case ISD::SETONE: case ISD::SETO: case ISD::SETUO: case ISD::SETUEQ: case ISD::SETUNE: assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); break; } if (ConstantSDNode *N2C = dyn_cast(N2.getNode())) { const APInt &C2 = N2C->getAPIntValue(); if (ConstantSDNode *N1C = dyn_cast(N1.getNode())) { const APInt &C1 = N1C->getAPIntValue(); switch (Cond) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETEQ: return getConstant(C1 == C2, VT); case ISD::SETNE: return getConstant(C1 != C2, VT); case ISD::SETULT: return getConstant(C1.ult(C2), VT); case ISD::SETUGT: return getConstant(C1.ugt(C2), VT); case ISD::SETULE: return getConstant(C1.ule(C2), VT); case ISD::SETUGE: return getConstant(C1.uge(C2), VT); case ISD::SETLT: return getConstant(C1.slt(C2), VT); case ISD::SETGT: return getConstant(C1.sgt(C2), VT); case ISD::SETLE: return getConstant(C1.sle(C2), VT); case ISD::SETGE: return getConstant(C1.sge(C2), VT); } } } if (ConstantFPSDNode *N1C = dyn_cast(N1.getNode())) { if (ConstantFPSDNode *N2C = dyn_cast(N2.getNode())) { // No compile time operations on this type yet. if (N1C->getValueType(0) == MVT::ppcf128) return SDValue(); APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); switch (Cond) { default: break; case ISD::SETEQ: if (R==APFloat::cmpUnordered) return getNode(ISD::UNDEF, VT); // fall through case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT); case ISD::SETNE: if (R==APFloat::cmpUnordered) return getNode(ISD::UNDEF, VT); // fall through case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || R==APFloat::cmpLessThan, VT); case ISD::SETLT: if (R==APFloat::cmpUnordered) return getNode(ISD::UNDEF, VT); // fall through case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT); case ISD::SETGT: if (R==APFloat::cmpUnordered) return getNode(ISD::UNDEF, VT); // fall through case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT); case ISD::SETLE: if (R==APFloat::cmpUnordered) return getNode(ISD::UNDEF, VT); // fall through case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || R==APFloat::cmpEqual, VT); case ISD::SETGE: if (R==APFloat::cmpUnordered) return getNode(ISD::UNDEF, VT); // fall through case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || R==APFloat::cmpEqual, VT); case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT); case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT); case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || R==APFloat::cmpEqual, VT); case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT); case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || R==APFloat::cmpLessThan, VT); case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || R==APFloat::cmpUnordered, VT); case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT); case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT); } } else { // Ensure that the constant occurs on the RHS. return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); } } // Could not fold it. return SDValue(); } /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We /// use this predicate to simplify operations downstream. bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { unsigned BitWidth = Op.getValueSizeInBits(); return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. Mask is known to be zero /// for bits that V cannot have. bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth) const { APInt KnownZero, KnownOne; ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); return (KnownZero & Mask) == Mask; } /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bitsets. This code only analyzes bits in Mask, in order to short-circuit /// processing. void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, unsigned Depth) const { unsigned BitWidth = Mask.getBitWidth(); assert(BitWidth == Op.getValueType().getSizeInBits() && "Mask size mismatches value type size!"); KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. if (Depth == 6 || Mask == 0) return; // Limit search depth. APInt KnownZero2, KnownOne2; switch (Op.getOpcode()) { case ISD::Constant: // We know all of the bits for a constant! KnownOne = cast(Op)->getAPIntValue() & Mask; KnownZero = ~KnownOne & Mask; return; case ISD::AND: // If either the LHS or the RHS are Zero, the result is zero. ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; return; case ISD::OR: ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; return; case ISD::XOR: { ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); KnownZero = KnownZeroOut; return; } case ISD::MUL: { APInt Mask2 = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If low bits are zero in either operand, output low known-0 bits. // Also compute a conserative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the // interesting case of alignment computation. KnownOne.clear(); unsigned TrailZ = KnownZero.countTrailingOnes() + KnownZero2.countTrailingOnes(); unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + KnownZero2.countLeadingOnes(), BitWidth) - BitWidth; TrailZ = std::min(TrailZ, BitWidth); LeadZ = std::min(LeadZ, BitWidth); KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | APInt::getHighBitsSet(BitWidth, LeadZ); KnownZero &= Mask; return; } case ISD::UDIV: { // For the purposes of computing leading zeros we can conservatively // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. APInt AllOnes = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero2, KnownOne2, Depth+1); unsigned LeadZ = KnownZero2.countLeadingOnes(); KnownOne2.clear(); KnownZero2.clear(); ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2, Depth+1); unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); if (RHSUnknownLeadingOnes != BitWidth) LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; return; } case ISD::SELECT: ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; return; case ISD::SELECT_CC: ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; return; case ISD::SETCC: // If we know the result of a setcc has the top bits zero, use this info. if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult && BitWidth > 1) KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); return; case ISD::SHL: // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { unsigned ShAmt = SA->getZExtValue(); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) return; ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt), KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero <<= ShAmt; KnownOne <<= ShAmt; // low bits known zero. KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt); } return; case ISD::SRL: // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { unsigned ShAmt = SA->getZExtValue(); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) return; ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt), KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.lshr(ShAmt); KnownOne = KnownOne.lshr(ShAmt); APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask; KnownZero |= HighBits; // High bits known zero. } return; case ISD::SRA: if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { unsigned ShAmt = SA->getZExtValue(); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) return; APInt InDemandedMask = (Mask << ShAmt); // If any of the demanded bits are produced by the sign extension, we also // demand the input sign bit. APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask; if (HighBits.getBoolValue()) InDemandedMask |= APInt::getSignBit(BitWidth); ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.lshr(ShAmt); KnownOne = KnownOne.lshr(ShAmt); // Handle the sign bits. APInt SignBit = APInt::getSignBit(BitWidth); SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask. if (KnownZero.intersects(SignBit)) { KnownZero |= HighBits; // New bits are known zero. } else if (KnownOne.intersects(SignBit)) { KnownOne |= HighBits; // New bits are known one. } } return; case ISD::SIGN_EXTEND_INREG: { MVT EVT = cast(Op.getOperand(1))->getVT(); unsigned EBits = EVT.getSizeInBits(); // Sign extension. Compute the demanded bits in the result that are not // present in the input. APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask; APInt InSignBit = APInt::getSignBit(EBits); APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits); // If the sign extended bits are demanded, we know that the sign // bit is demanded. InSignBit.zext(BitWidth); if (NewBits.getBoolValue()) InputDemandedBits |= InSignBit; ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear KnownZero |= NewBits; KnownOne &= ~NewBits; } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Input sign bit unknown KnownZero &= ~NewBits; KnownOne &= ~NewBits; } return; } case ISD::CTTZ: case ISD::CTLZ: case ISD::CTPOP: { unsigned LowBits = Log2_32(BitWidth)+1; KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); KnownOne.clear(); return; } case ISD::LOAD: { if (ISD::isZEXTLoad(Op.getNode())) { LoadSDNode *LD = cast(Op); MVT VT = LD->getMemoryVT(); unsigned MemBits = VT.getSizeInBits(); KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask; } return; } case ISD::ZERO_EXTEND: { MVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getSizeInBits(); APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask; APInt InMask = Mask; InMask.trunc(InBits); KnownZero.trunc(InBits); KnownOne.trunc(InBits); ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1); KnownZero.zext(BitWidth); KnownOne.zext(BitWidth); KnownZero |= NewBits; return; } case ISD::SIGN_EXTEND: { MVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getSizeInBits(); APInt InSignBit = APInt::getSignBit(InBits); APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask; APInt InMask = Mask; InMask.trunc(InBits); // If any of the sign extended bits are demanded, we know that the sign // bit is demanded. Temporarily set this bit in the mask for our callee. if (NewBits.getBoolValue()) InMask |= InSignBit; KnownZero.trunc(InBits); KnownOne.trunc(InBits); ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1); // Note if the sign bit is known to be zero or one. bool SignBitKnownZero = KnownZero.isNegative(); bool SignBitKnownOne = KnownOne.isNegative(); assert(!(SignBitKnownZero && SignBitKnownOne) && "Sign bit can't be known to be both zero and one!"); // If the sign bit wasn't actually demanded by our caller, we don't // want it set in the KnownZero and KnownOne result values. Reset the // mask and reapply it to the result values. InMask = Mask; InMask.trunc(InBits); KnownZero &= InMask; KnownOne &= InMask; KnownZero.zext(BitWidth); KnownOne.zext(BitWidth); // If the sign bit is known zero or one, the top bits match. if (SignBitKnownZero) KnownZero |= NewBits; else if (SignBitKnownOne) KnownOne |= NewBits; return; } case ISD::ANY_EXTEND: { MVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getSizeInBits(); APInt InMask = Mask; InMask.trunc(InBits); KnownZero.trunc(InBits); KnownOne.trunc(InBits); ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1); KnownZero.zext(BitWidth); KnownOne.zext(BitWidth); return; } case ISD::TRUNCATE: { MVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getSizeInBits(); APInt InMask = Mask; InMask.zext(InBits); KnownZero.zext(InBits); KnownOne.zext(InBits); ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero.trunc(BitWidth); KnownOne.trunc(BitWidth); break; } case ISD::AssertZext: { MVT VT = cast(Op.getOperand(1))->getVT(); APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, KnownOne, Depth+1); KnownZero |= (~InMask) & Mask; return; } case ISD::FGETSIGN: // All bits are zero except the low bit. KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); return; case ISD::SUB: { if (ConstantSDNode *CLHS = dyn_cast(Op.getOperand(0))) { // We know that the top bits of C-X are clear if X contains less bits // than C (i.e. no wrap-around can happen). For example, 20-X is // positive if we can prove that X is >= 0 and < 16. if (CLHS->getAPIntValue().isNonNegative()) { unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); // NLZ can't be BitWidth with no sign bit APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2, Depth+1); // If all of the MaskV bits are known to be zero, then we know the // output top bits are zero, because we now know that the output is // from [0-C]. if ((KnownZero2 & MaskV) == MaskV) { unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); // Top bits known zero. KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; } } } } // fall through case ISD::ADD: { // Output known-0 bits are known if clear or set in both the low clear bits // common to both LHS & RHS. For example, 8+(X<<3) is known to have the // low 3 bits clear. APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes()); ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); unsigned KnownZeroOut = KnownZero2.countTrailingOnes(); ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); KnownZeroOut = std::min(KnownZeroOut, KnownZero2.countTrailingOnes()); KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut); return; } case ISD::SREM: if (ConstantSDNode *Rem = dyn_cast(Op.getOperand(1))) { const APInt &RA = Rem->getAPIntValue(); if (RA.isPowerOf2() || (-RA).isPowerOf2()) { APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA; APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1); // If the sign bit of the first operand is zero, the sign bit of // the result is zero. If the first operand has no one bits below // the second operand's single 1 bit, its sign will be zero. if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) KnownZero2 |= ~LowBits; KnownZero |= KnownZero2 & Mask; assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); } } return; case ISD::UREM: { if (ConstantSDNode *Rem = dyn_cast(Op.getOperand(1))) { const APInt &RA = Rem->getAPIntValue(); if (RA.isPowerOf2()) { APInt LowBits = (RA - 1); APInt Mask2 = LowBits & Mask; KnownZero |= ~LowBits & Mask; ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); break; } } // Since the result is less than or equal to either operand, any leading // zero bits in either operand must also exist in the result. APInt AllOnes = APInt::getAllOnesValue(BitWidth); ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2, Depth+1); uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); KnownOne.clear(); KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; return; } default: // Allow the target to implement this method for its nodes. if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_VOID: TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this); } return; } } /// ComputeNumSignBits - Return the number of times the sign bit of the /// register is replicated into the other bits. We know that at least 1 bit /// is always equal to the sign bit (itself), but other cases can give us /// information. For example, immediately after an "SRA X, 2", we know that /// the top 3 bits are all equal to each other, so we return 3. unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{ MVT VT = Op.getValueType(); assert(VT.isInteger() && "Invalid VT!"); unsigned VTBits = VT.getSizeInBits(); unsigned Tmp, Tmp2; unsigned FirstAnswer = 1; if (Depth == 6) return 1; // Limit search depth. switch (Op.getOpcode()) { default: break; case ISD::AssertSext: Tmp = cast(Op.getOperand(1))->getVT().getSizeInBits(); return VTBits-Tmp+1; case ISD::AssertZext: Tmp = cast(Op.getOperand(1))->getVT().getSizeInBits(); return VTBits-Tmp; case ISD::Constant: { const APInt &Val = cast(Op)->getAPIntValue(); // If negative, return # leading ones. if (Val.isNegative()) return Val.countLeadingOnes(); // Return # leading zeros. return Val.countLeadingZeros(); } case ISD::SIGN_EXTEND: Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits(); return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; case ISD::SIGN_EXTEND_INREG: // Max of the input and what this extends. Tmp = cast(Op.getOperand(1))->getVT().getSizeInBits(); Tmp = VTBits-Tmp+1; Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); return std::max(Tmp, Tmp2); case ISD::SRA: Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); // SRA X, C -> adds C sign bits. if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { Tmp += C->getZExtValue(); if (Tmp > VTBits) Tmp = VTBits; } return Tmp; case ISD::SHL: if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { // shl destroys sign bits. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (C->getZExtValue() >= VTBits || // Bad shift. C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. return Tmp - C->getZExtValue(); } break; case ISD::AND: case ISD::OR: case ISD::XOR: // NOT is handled here. // Logical binary ops preserve the number of sign bits at the worst. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp != 1) { Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); FirstAnswer = std::min(Tmp, Tmp2); // We computed what we know about the sign bits as our first // answer. Now proceed to the generic code that uses // ComputeMaskedBits, and pick whichever answer is better. } break; case ISD::SELECT: Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); if (Tmp == 1) return 1; // Early out. Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); return std::min(Tmp, Tmp2); case ISD::SETCC: // If setcc returns 0/-1, all bits are sign bits. if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrNegativeOneSetCCResult) return VTBits; break; case ISD::ROTL: case ISD::ROTR: if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { unsigned RotAmt = C->getZExtValue() & (VTBits-1); // Handle rotate right by N like a rotate left by 32-N. if (Op.getOpcode() == ISD::ROTR) RotAmt = (VTBits-RotAmt) & (VTBits-1); // If we aren't rotating out all of the known-in sign bits, return the // number that are left. This handles rotl(sext(x), 1) for example. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp > RotAmt+1) return Tmp-RotAmt; } break; case ISD::ADD: // Add can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp == 1) return 1; // Early out. // Special case decrementing a value (ADD X, -1): if (ConstantSDNode *CRHS = dyn_cast(Op.getOperand(0))) if (CRHS->isAllOnesValue()) { APInt KnownZero, KnownOne; APInt Mask = APInt::getAllOnesValue(VTBits); ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero | APInt(VTBits, 1)) == Mask) return VTBits; // If we are subtracting one from a positive number, there is no carry // out of the result. if (KnownZero.isNegative()) return Tmp; } Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); if (Tmp2 == 1) return 1; return std::min(Tmp, Tmp2)-1; break; case ISD::SUB: Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); if (Tmp2 == 1) return 1; // Handle NEG. if (ConstantSDNode *CLHS = dyn_cast(Op.getOperand(0))) if (CLHS->isNullValue()) { APInt KnownZero, KnownOne; APInt Mask = APInt::getAllOnesValue(VTBits); ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero | APInt(VTBits, 1)) == Mask) return VTBits; // If the input is known to be positive (the sign bit is known clear), // the output of the NEG has the same number of sign bits as the input. if (KnownZero.isNegative()) return Tmp2; // Otherwise, we treat this like a SUB. } // Sub can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp == 1) return 1; // Early out. return std::min(Tmp, Tmp2)-1; break; case ISD::TRUNCATE: // FIXME: it's tricky to do anything useful for this, but it is an important // case for targets like X86. break; } // Handle LOADX separately here. EXTLOAD case will fallthrough. if (Op.getOpcode() == ISD::LOAD) { LoadSDNode *LD = cast(Op); unsigned ExtType = LD->getExtensionType(); switch (ExtType) { default: break; case ISD::SEXTLOAD: // '17' bits known Tmp = LD->getMemoryVT().getSizeInBits(); return VTBits-Tmp+1; case ISD::ZEXTLOAD: // '16' bits known Tmp = LD->getMemoryVT().getSizeInBits(); return VTBits-Tmp; } } // Allow the target to implement this method for its nodes. if (Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) { unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth); if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); } // Finally, if we can prove that the top bits of the result are 0's or 1's, // use this information. APInt KnownZero, KnownOne; APInt Mask = APInt::getAllOnesValue(VTBits); ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); if (KnownZero.isNegative()) { // sign bit is 0 Mask = KnownZero; } else if (KnownOne.isNegative()) { // sign bit is 1; Mask = KnownOne; } else { // Nothing known. return FirstAnswer; } // Okay, we know that the sign bit in Mask is set. Use CLZ to determine // the number of identical bits in the top of the input value. Mask = ~Mask; Mask <<= Mask.getBitWidth()-VTBits; // Return # leading zeros. We use 'min' here in case Val was zero before // shifting. We don't want to return '64' as for an i32 "0". return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); } bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const { GlobalAddressSDNode *GA = dyn_cast(Op); if (!GA) return false; GlobalVariable *GV = dyn_cast(GA->getGlobal()); if (!GV) return false; MachineModuleInfo *MMI = getMachineModuleInfo(); return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV); } /// getShuffleScalarElt - Returns the scalar element that will make up the ith /// element of the result of the vector shuffle. SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) { MVT VT = N->getValueType(0); SDValue PermMask = N->getOperand(2); SDValue Idx = PermMask.getOperand(i); if (Idx.getOpcode() == ISD::UNDEF) return getNode(ISD::UNDEF, VT.getVectorElementType()); unsigned Index = cast(Idx)->getZExtValue(); unsigned NumElems = PermMask.getNumOperands(); SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1); Index %= NumElems; if (V.getOpcode() == ISD::BIT_CONVERT) { V = V.getOperand(0); if (V.getValueType().getVectorNumElements() != NumElems) return SDValue(); } if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) return (Index == 0) ? V.getOperand(0) : getNode(ISD::UNDEF, VT.getVectorElementType()); if (V.getOpcode() == ISD::BUILD_VECTOR) return V.getOperand(Index); if (V.getOpcode() == ISD::VECTOR_SHUFFLE) return getShuffleScalarElt(V.getNode(), Index); return SDValue(); } /// getNode - Gets or creates the specified node. /// SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) SDNode(Opcode, SDNode::getSDVTList(VT)); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); #ifndef NDEBUG VerifyNode(N); #endif return SDValue(N, 0); } SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) { // Constant fold unary operations with an integer constant operand. if (ConstantSDNode *C = dyn_cast(Operand.getNode())) { const APInt &Val = C->getAPIntValue(); unsigned BitWidth = VT.getSizeInBits(); switch (Opcode) { default: break; case ISD::SIGN_EXTEND: return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: case ISD::TRUNCATE: return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT); case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: { const uint64_t zero[] = {0, 0}; // No compile time operations on this type. if (VT==MVT::ppcf128) break; APFloat apf = APFloat(APInt(BitWidth, 2, zero)); (void)apf.convertFromAPInt(Val, Opcode==ISD::SINT_TO_FP, APFloat::rmNearestTiesToEven); return getConstantFP(apf, VT); } case ISD::BIT_CONVERT: if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) return getConstantFP(Val.bitsToFloat(), VT); else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) return getConstantFP(Val.bitsToDouble(), VT); break; case ISD::BSWAP: return getConstant(Val.byteSwap(), VT); case ISD::CTPOP: return getConstant(Val.countPopulation(), VT); case ISD::CTLZ: return getConstant(Val.countLeadingZeros(), VT); case ISD::CTTZ: return getConstant(Val.countTrailingZeros(), VT); } } // Constant fold unary operations with a floating point constant operand. if (ConstantFPSDNode *C = dyn_cast(Operand.getNode())) { APFloat V = C->getValueAPF(); // make copy if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) { switch (Opcode) { case ISD::FNEG: V.changeSign(); return getConstantFP(V, VT); case ISD::FABS: V.clearSign(); return getConstantFP(V, VT); case ISD::FP_ROUND: case ISD::FP_EXTEND: // This can return overflow, underflow, or inexact; we don't care. // FIXME need to be more flexible about rounding mode. (void)V.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven); return getConstantFP(V, VT); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: { integerPart x; assert(integerPartWidth >= 64); // FIXME need to be more flexible about rounding mode. APFloat::opStatus s = V.convertToInteger(&x, 64U, Opcode==ISD::FP_TO_SINT, APFloat::rmTowardZero); if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual break; return getConstant(x, VT); } case ISD::BIT_CONVERT: if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT); else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) return getConstant(V.convertToAPInt().getZExtValue(), VT); break; } } } unsigned OpOpcode = Operand.getNode()->getOpcode(); switch (Opcode) { case ISD::TokenFactor: case ISD::CONCAT_VECTORS: return Operand; // Factor or concat of one node? No need. case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node"); case ISD::FP_EXTEND: assert(VT.isFloatingPoint() && Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); if (Operand.getValueType() == VT) return Operand; // noop conversion. if (Operand.getOpcode() == ISD::UNDEF) return getNode(ISD::UNDEF, VT); break; case ISD::SIGN_EXTEND: assert(VT.isInteger() && Operand.getValueType().isInteger() && "Invalid SIGN_EXTEND!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!"); if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0)); break; case ISD::ZERO_EXTEND: assert(VT.isInteger() && Operand.getValueType().isInteger() && "Invalid ZERO_EXTEND!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!"); if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0)); break; case ISD::ANY_EXTEND: assert(VT.isInteger() && Operand.getValueType().isInteger() && "Invalid ANY_EXTEND!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!"); if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0)); break; case ISD::TRUNCATE: assert(VT.isInteger() && Operand.getValueType().isInteger() && "Invalid TRUNCATE!"); if (Operand.getValueType() == VT) return Operand; // noop truncate assert(Operand.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!"); if (OpOpcode == ISD::TRUNCATE) return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0)); else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ANY_EXTEND) { // If the source is smaller than the dest, we still need an extend. if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT)) return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0)); else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0)); else return Operand.getNode()->getOperand(0); } break; case ISD::BIT_CONVERT: // Basic sanity checking. assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits() && "Cannot BIT_CONVERT between types of different sizes!"); if (VT == Operand.getValueType()) return Operand; // noop conversion. if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x) return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0)); if (OpOpcode == ISD::UNDEF) return getNode(ISD::UNDEF, VT); break; case ISD::SCALAR_TO_VECTOR: assert(VT.isVector() && !Operand.getValueType().isVector() && VT.getVectorElementType() == Operand.getValueType() && "Illegal SCALAR_TO_VECTOR node!"); if (OpOpcode == ISD::UNDEF) return getNode(ISD::UNDEF, VT); // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && isa(Operand.getOperand(1)) && Operand.getConstantOperandVal(1) == 0 && Operand.getOperand(0).getValueType() == VT) return Operand.getOperand(0); break; case ISD::FNEG: if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X) return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1), Operand.getNode()->getOperand(0)); if (OpOpcode == ISD::FNEG) // --X -> X return Operand.getNode()->getOperand(0); break; case ISD::FABS: if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0)); break; } SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Flag) { // Don't CSE flag producing nodes FoldingSetNodeID ID; SDValue Ops[1] = { Operand }; AddNodeIDNode(ID, Opcode, VTs, Ops, 1); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); N = NodeAllocator.Allocate(); new (N) UnarySDNode(Opcode, VTs, Operand); CSEMap.InsertNode(N, IP); } else { N = NodeAllocator.Allocate(); new (N) UnarySDNode(Opcode, VTs, Operand); } AllNodes.push_back(N); #ifndef NDEBUG VerifyNode(N); #endif return SDValue(N, 0); } SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, MVT VT, ConstantSDNode *Cst1, ConstantSDNode *Cst2) { const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue(); switch (Opcode) { case ISD::ADD: return getConstant(C1 + C2, VT); case ISD::SUB: return getConstant(C1 - C2, VT); case ISD::MUL: return getConstant(C1 * C2, VT); case ISD::UDIV: if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT); break; case ISD::UREM: if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT); break; case ISD::SDIV: if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT); break; case ISD::SREM: if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT); break; case ISD::AND: return getConstant(C1 & C2, VT); case ISD::OR: return getConstant(C1 | C2, VT); case ISD::XOR: return getConstant(C1 ^ C2, VT); case ISD::SHL: return getConstant(C1 << C2, VT); case ISD::SRL: return getConstant(C1.lshr(C2), VT); case ISD::SRA: return getConstant(C1.ashr(C2), VT); case ISD::ROTL: return getConstant(C1.rotl(C2), VT); case ISD::ROTR: return getConstant(C1.rotr(C2), VT); default: break; } return SDValue(); } SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2) { ConstantSDNode *N1C = dyn_cast(N1.getNode()); ConstantSDNode *N2C = dyn_cast(N2.getNode()); switch (Opcode) { default: break; case ISD::TokenFactor: assert(VT == MVT::Other && N1.getValueType() == MVT::Other && N2.getValueType() == MVT::Other && "Invalid token factor!"); // Fold trivial token factors. if (N1.getOpcode() == ISD::EntryToken) return N2; if (N2.getOpcode() == ISD::EntryToken) return N1; break; case ISD::CONCAT_VECTORS: // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to // one big BUILD_VECTOR. if (N1.getOpcode() == ISD::BUILD_VECTOR && N2.getOpcode() == ISD::BUILD_VECTOR) { SmallVector Elts(N1.getNode()->op_begin(), N1.getNode()->op_end()); Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end()); return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size()); } break; case ISD::AND: assert(VT.isInteger() && N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's // worth handling here. if (N2C && N2C->isNullValue()) return N2; if (N2C && N2C->isAllOnesValue()) // X & -1 -> X return N1; break; case ISD::OR: case ISD::XOR: case ISD::ADD: case ISD::SUB: assert(VT.isInteger() && N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so // it's worth handling here. if (N2C && N2C->isNullValue()) return N1; break; case ISD::UDIV: case ISD::UREM: case ISD::MULHU: case ISD::MULHS: assert(VT.isInteger() && "This operator does not apply to FP types!"); // fall through case ISD::MUL: case ISD::SDIV: case ISD::SREM: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); break; case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. assert(N1.getValueType() == VT && N1.getValueType().isFloatingPoint() && N2.getValueType().isFloatingPoint() && "Invalid FCOPYSIGN!"); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: assert(VT == N1.getValueType() && "Shift operators return type must be the same as their first arg"); assert(VT.isInteger() && N2.getValueType().isInteger() && "Shifts only work on integers"); // Always fold shifts of i1 values so the code generator doesn't need to // handle them. Since we know the size of the shift has to be less than the // size of the value, the shift/rotate count is guaranteed to be zero. if (VT == MVT::i1) return N1; break; case ISD::FP_ROUND_INREG: { MVT EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg round!"); assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && "Cannot FP_ROUND_INREG integer types"); assert(EVT.bitsLE(VT) && "Not rounding down!"); if (cast(N2)->getVT() == VT) return N1; // Not actually rounding. break; } case ISD::FP_ROUND: assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() && VT.bitsLE(N1.getValueType()) && isa(N2) && "Invalid FP_ROUND!"); if (N1.getValueType() == VT) return N1; // noop conversion. break; case ISD::AssertSext: case ISD::AssertZext: { MVT EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg extend!"); assert(VT.isInteger() && EVT.isInteger() && "Cannot *_EXTEND_INREG FP types"); assert(EVT.bitsLE(VT) && "Not extending!"); if (VT == EVT) return N1; // noop assertion. break; } case ISD::SIGN_EXTEND_INREG: { MVT EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg extend!"); assert(VT.isInteger() && EVT.isInteger() && "Cannot *_EXTEND_INREG FP types"); assert(EVT.bitsLE(VT) && "Not extending!"); if (EVT == VT) return N1; // Not actually extending if (N1C) { APInt Val = N1C->getAPIntValue(); unsigned FromBits = cast(N2)->getVT().getSizeInBits(); Val <<= Val.getBitWidth()-FromBits; Val = Val.ashr(Val.getBitWidth()-FromBits); return getConstant(Val, VT); } break; } case ISD::EXTRACT_VECTOR_ELT: // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. if (N1.getOpcode() == ISD::UNDEF) return getNode(ISD::UNDEF, VT); // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is // expanding copies of large vectors from registers. if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements(); return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(N2C->getZExtValue() / Factor), getConstant(N2C->getZExtValue() % Factor, N2.getValueType())); } // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is // expanding large vector constants. if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) return N1.getOperand(N2C->getZExtValue()); // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector // operations are lowered to scalars. if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { if (N1.getOperand(2) == N2) return N1.getOperand(1); else return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2); } break; case ISD::EXTRACT_ELEMENT: assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); assert(!N1.getValueType().isVector() && !VT.isVector() && (N1.getValueType().isInteger() == VT.isInteger()) && "Wrong types for EXTRACT_ELEMENT!"); // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding // 64-bit integers into 32-bit parts. Instead of building the extract of // the BUILD_PAIR, only to have legalize rip it apart, just do it now. if (N1.getOpcode() == ISD::BUILD_PAIR) return N1.getOperand(N2C->getZExtValue()); // EXTRACT_ELEMENT of a constant int is also very common. if (ConstantSDNode *C = dyn_cast(N1)) { unsigned ElementSize = VT.getSizeInBits(); unsigned Shift = ElementSize * N2C->getZExtValue(); APInt ShiftedVal = C->getAPIntValue().lshr(Shift); return getConstant(ShiftedVal.trunc(ElementSize), VT); } break; case ISD::EXTRACT_SUBVECTOR: if (N1.getValueType() == VT) // Trivial extraction. return N1; break; } if (N1C) { if (N2C) { SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C); if (SV.getNode()) return SV; } else { // Cannonicalize constant to RHS if commutative if (isCommutativeBinOp(Opcode)) { std::swap(N1C, N2C); std::swap(N1, N2); } } } // Constant fold FP operations. ConstantFPSDNode *N1CFP = dyn_cast(N1.getNode()); ConstantFPSDNode *N2CFP = dyn_cast(N2.getNode()); if (N1CFP) { if (!N2CFP && isCommutativeBinOp(Opcode)) { // Cannonicalize constant to RHS if commutative std::swap(N1CFP, N2CFP); std::swap(N1, N2); } else if (N2CFP && VT != MVT::ppcf128) { APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); APFloat::opStatus s; switch (Opcode) { case ISD::FADD: s = V1.add(V2, APFloat::rmNearestTiesToEven); if (s != APFloat::opInvalidOp) return getConstantFP(V1, VT); break; case ISD::FSUB: s = V1.subtract(V2, APFloat::rmNearestTiesToEven); if (s!=APFloat::opInvalidOp) return getConstantFP(V1, VT); break; case ISD::FMUL: s = V1.multiply(V2, APFloat::rmNearestTiesToEven); if (s!=APFloat::opInvalidOp) return getConstantFP(V1, VT); break; case ISD::FDIV: s = V1.divide(V2, APFloat::rmNearestTiesToEven); if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) return getConstantFP(V1, VT); break; case ISD::FREM : s = V1.mod(V2, APFloat::rmNearestTiesToEven); if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) return getConstantFP(V1, VT); break; case ISD::FCOPYSIGN: V1.copySign(V2); return getConstantFP(V1, VT); default: break; } } } // Canonicalize an UNDEF to the RHS, even over a constant. if (N1.getOpcode() == ISD::UNDEF) { if (isCommutativeBinOp(Opcode)) { std::swap(N1, N2); } else { switch (Opcode) { case ISD::FP_ROUND_INREG: case ISD::SIGN_EXTEND_INREG: case ISD::SUB: case ISD::FSUB: case ISD::FDIV: case ISD::FREM: case ISD::SRA: return N1; // fold op(undef, arg2) -> undef case ISD::UDIV: case ISD::SDIV: case ISD::UREM: case ISD::SREM: case ISD::SRL: case ISD::SHL: if (!VT.isVector()) return getConstant(0, VT); // fold op(undef, arg2) -> 0 // For vectors, we can't easily build an all zero vector, just return // the LHS. return N2; } } } // Fold a bunch of operators when the RHS is undef. if (N2.getOpcode() == ISD::UNDEF) { switch (Opcode) { case ISD::XOR: if (N1.getOpcode() == ISD::UNDEF) // Handle undef ^ undef -> 0 special case. This is a common // idiom (misuse). return getConstant(0, VT); // fallthrough case ISD::ADD: case ISD::ADDC: case ISD::ADDE: case ISD::SUB: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::UDIV: case ISD::SDIV: case ISD::UREM: case ISD::SREM: return N2; // fold op(arg1, undef) -> undef case ISD::MUL: case ISD::AND: case ISD::SRL: case ISD::SHL: if (!VT.isVector()) return getConstant(0, VT); // fold op(arg1, undef) -> 0 // For vectors, we can't easily build an all zero vector, just return // the LHS. return N1; case ISD::OR: if (!VT.isVector()) return getConstant(VT.getIntegerVTBitMask(), VT); // For vectors, we can't easily build an all one vector, just return // the LHS. return N1; case ISD::SRA: return N1; } } // Memoize this node if possible. SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Flag) { SDValue Ops[] = { N1, N2 }; FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops, 2); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); N = NodeAllocator.Allocate(); new (N) BinarySDNode(Opcode, VTs, N1, N2); CSEMap.InsertNode(N, IP); } else { N = NodeAllocator.Allocate(); new (N) BinarySDNode(Opcode, VTs, N1, N2); } AllNodes.push_back(N); #ifndef NDEBUG VerifyNode(N); #endif return SDValue(N, 0); } SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2, SDValue N3) { // Perform various simplifications. ConstantSDNode *N1C = dyn_cast(N1.getNode()); ConstantSDNode *N2C = dyn_cast(N2.getNode()); switch (Opcode) { case ISD::CONCAT_VECTORS: // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to // one big BUILD_VECTOR. if (N1.getOpcode() == ISD::BUILD_VECTOR && N2.getOpcode() == ISD::BUILD_VECTOR && N3.getOpcode() == ISD::BUILD_VECTOR) { SmallVector Elts(N1.getNode()->op_begin(), N1.getNode()->op_end()); Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end()); Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end()); return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size()); } break; case ISD::SETCC: { // Use FoldSetCC to simplify SETCC's. SDValue Simp = FoldSetCC(VT, N1, N2, cast(N3)->get()); if (Simp.getNode()) return Simp; break; } case ISD::SELECT: if (N1C) { if (N1C->getZExtValue()) return N2; // select true, X, Y -> X else return N3; // select false, X, Y -> Y } if (N2 == N3) return N2; // select C, X, X -> X break; case ISD::BRCOND: if (N2C) { if (N2C->getZExtValue()) // Unconditional branch return getNode(ISD::BR, MVT::Other, N1, N3); else return N1; // Never-taken branch } break; case ISD::VECTOR_SHUFFLE: assert(VT == N1.getValueType() && VT == N2.getValueType() && VT.isVector() && N3.getValueType().isVector() && N3.getOpcode() == ISD::BUILD_VECTOR && VT.getVectorNumElements() == N3.getNumOperands() && "Illegal VECTOR_SHUFFLE node!"); break; case ISD::BIT_CONVERT: // Fold bit_convert nodes from a type to themselves. if (N1.getValueType() == VT) return N1; break; } // Memoize node if it doesn't produce a flag. SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Flag) { SDValue Ops[] = { N1, N2, N3 }; FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops, 3); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); N = NodeAllocator.Allocate(); new (N) TernarySDNode(Opcode, VTs, N1, N2, N3); CSEMap.InsertNode(N, IP); } else { N = NodeAllocator.Allocate(); new (N) TernarySDNode(Opcode, VTs, N1, N2, N3); } AllNodes.push_back(N); #ifndef NDEBUG VerifyNode(N); #endif return SDValue(N, 0); } SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4) { SDValue Ops[] = { N1, N2, N3, N4 }; return getNode(Opcode, VT, Ops, 4); } SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5) { SDValue Ops[] = { N1, N2, N3, N4, N5 }; return getNode(Opcode, VT, Ops, 5); } /// getMemsetValue - Vectorized representation of the memset value /// operand. static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) { unsigned NumBits = VT.isVector() ? VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits(); if (ConstantSDNode *C = dyn_cast(Value)) { APInt Val = APInt(NumBits, C->getZExtValue() & 255); unsigned Shift = 8; for (unsigned i = NumBits; i > 8; i >>= 1) { Val = (Val << Shift) | Val; Shift <<= 1; } if (VT.isInteger()) return DAG.getConstant(Val, VT); return DAG.getConstantFP(APFloat(Val), VT); } Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value); unsigned Shift = 8; for (unsigned i = NumBits; i > 8; i >>= 1) { Value = DAG.getNode(ISD::OR, VT, DAG.getNode(ISD::SHL, VT, Value, DAG.getConstant(Shift, MVT::i8)), Value); Shift <<= 1; } return Value; } /// getMemsetStringVal - Similar to getMemsetValue. Except this is only /// used when a memcpy is turned into a memset when the source is a constant /// string ptr. static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG, const TargetLowering &TLI, std::string &Str, unsigned Offset) { // Handle vector with all elements zero. if (Str.empty()) { if (VT.isInteger()) return DAG.getConstant(0, VT); unsigned NumElts = VT.getVectorNumElements(); MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; return DAG.getNode(ISD::BIT_CONVERT, VT, DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts))); } assert(!VT.isVector() && "Can't handle vector type here!"); unsigned NumBits = VT.getSizeInBits(); unsigned MSB = NumBits / 8; uint64_t Val = 0; if (TLI.isLittleEndian()) Offset = Offset + MSB - 1; for (unsigned i = 0; i != MSB; ++i) { Val = (Val << 8) | (unsigned char)Str[Offset]; Offset += TLI.isLittleEndian() ? -1 : 1; } return DAG.getConstant(Val, VT); } /// getMemBasePlusOffset - Returns base and offset node for the /// static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, SelectionDAG &DAG) { MVT VT = Base.getValueType(); return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT)); } /// isMemSrcFromString - Returns true if memcpy source is a string constant. /// static bool isMemSrcFromString(SDValue Src, std::string &Str) { unsigned SrcDelta = 0; GlobalAddressSDNode *G = NULL; if (Src.getOpcode() == ISD::GlobalAddress) G = cast(Src); else if (Src.getOpcode() == ISD::ADD && Src.getOperand(0).getOpcode() == ISD::GlobalAddress && Src.getOperand(1).getOpcode() == ISD::Constant) { G = cast(Src.getOperand(0)); SrcDelta = cast(Src.getOperand(1))->getZExtValue(); } if (!G) return false; GlobalVariable *GV = dyn_cast(G->getGlobal()); if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false)) return true; return false; } /// MeetsMaxMemopRequirement - Determines if the number of memory ops required /// to replace the memset / memcpy is below the threshold. It also returns the /// types of the sequence of memory ops to perform memset / memcpy. static bool MeetsMaxMemopRequirement(std::vector &MemOps, SDValue Dst, SDValue Src, unsigned Limit, uint64_t Size, unsigned &Align, std::string &Str, bool &isSrcStr, SelectionDAG &DAG, const TargetLowering &TLI) { isSrcStr = isMemSrcFromString(Src, Str); bool isSrcConst = isa(Src); bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(); MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr); if (VT != MVT::iAny) { unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT()); // If source is a string constant, this will require an unaligned load. if (NewAlign > Align && (isSrcConst || AllowUnalign)) { if (Dst.getOpcode() != ISD::FrameIndex) { // Can't change destination alignment. It requires a unaligned store. if (AllowUnalign) VT = MVT::iAny; } else { int FI = cast(Dst)->getIndex(); MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); if (MFI->isFixedObjectIndex(FI)) { // Can't change destination alignment. It requires a unaligned store. if (AllowUnalign) VT = MVT::iAny; } else { // Give the stack frame object a larger alignment if needed. if (MFI->getObjectAlignment(FI) < NewAlign) MFI->setObjectAlignment(FI, NewAlign); Align = NewAlign; } } } } if (VT == MVT::iAny) { if (AllowUnalign) { VT = MVT::i64; } else { switch (Align & 7) { case 0: VT = MVT::i64; break; case 4: VT = MVT::i32; break; case 2: VT = MVT::i16; break; default: VT = MVT::i8; break; } } MVT LVT = MVT::i64; while (!TLI.isTypeLegal(LVT)) LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1); assert(LVT.isInteger()); if (VT.bitsGT(LVT)) VT = LVT; } unsigned NumMemOps = 0; while (Size != 0) { unsigned VTSize = VT.getSizeInBits() / 8; while (VTSize > Size) { // For now, only use non-vector load / store's for the left-over pieces. if (VT.isVector()) { VT = MVT::i64; while (!TLI.isTypeLegal(VT)) VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1); VTSize = VT.getSizeInBits() / 8; } else { VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1); VTSize >>= 1; } } if (++NumMemOps > Limit) return false; MemOps.push_back(VT); Size -= VTSize; } return true; } static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, unsigned Align, bool AlwaysInline, const Value *DstSV, uint64_t DstSVOff, const Value *SrcSV, uint64_t SrcSVOff){ const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Expand memcpy to a series of load and store ops if the size operand falls // below a certain threshold. std::vector MemOps; uint64_t Limit = -1; if (!AlwaysInline) Limit = TLI.getMaxStoresPerMemcpy(); unsigned DstAlign = Align; // Destination alignment can change. std::string Str; bool CopyFromStr; if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign, Str, CopyFromStr, DAG, TLI)) return SDValue(); bool isZeroStr = CopyFromStr && Str.empty(); SmallVector OutChains; unsigned NumMemOps = MemOps.size(); uint64_t SrcOff = 0, DstOff = 0; for (unsigned i = 0; i < NumMemOps; i++) { MVT VT = MemOps[i]; unsigned VTSize = VT.getSizeInBits() / 8; SDValue Value, Store; if (CopyFromStr && (isZeroStr || !VT.isVector())) { // It's unlikely a store of a vector immediate can be done in a single // instruction. It would require a load from a constantpool first. // We also handle store a vector with all zero's. // FIXME: Handle other cases where store of vector immediate is done in // a single instruction. Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff); Store = DAG.getStore(Chain, Value, getMemBasePlusOffset(Dst, DstOff, DAG), DstSV, DstSVOff + DstOff, false, DstAlign); } else { Value = DAG.getLoad(VT, Chain, getMemBasePlusOffset(Src, SrcOff, DAG), SrcSV, SrcSVOff + SrcOff, false, Align); Store = DAG.getStore(Chain, Value, getMemBasePlusOffset(Dst, DstOff, DAG), DstSV, DstSVOff + DstOff, false, DstAlign); } OutChains.push_back(Store); SrcOff += VTSize; DstOff += VTSize; } return DAG.getNode(ISD::TokenFactor, MVT::Other, &OutChains[0], OutChains.size()); } static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, unsigned Align, bool AlwaysInline, const Value *DstSV, uint64_t DstSVOff, const Value *SrcSV, uint64_t SrcSVOff){ const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Expand memmove to a series of load and store ops if the size operand falls // below a certain threshold. std::vector MemOps; uint64_t Limit = -1; if (!AlwaysInline) Limit = TLI.getMaxStoresPerMemmove(); unsigned DstAlign = Align; // Destination alignment can change. std::string Str; bool CopyFromStr; if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign, Str, CopyFromStr, DAG, TLI)) return SDValue(); uint64_t SrcOff = 0, DstOff = 0; SmallVector LoadValues; SmallVector LoadChains; SmallVector OutChains; unsigned NumMemOps = MemOps.size(); for (unsigned i = 0; i < NumMemOps; i++) { MVT VT = MemOps[i]; unsigned VTSize = VT.getSizeInBits() / 8; SDValue Value, Store; Value = DAG.getLoad(VT, Chain, getMemBasePlusOffset(Src, SrcOff, DAG), SrcSV, SrcSVOff + SrcOff, false, Align); LoadValues.push_back(Value); LoadChains.push_back(Value.getValue(1)); SrcOff += VTSize; } Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &LoadChains[0], LoadChains.size()); OutChains.clear(); for (unsigned i = 0; i < NumMemOps; i++) { MVT VT = MemOps[i]; unsigned VTSize = VT.getSizeInBits() / 8; SDValue Value, Store; Store = DAG.getStore(Chain, LoadValues[i], getMemBasePlusOffset(Dst, DstOff, DAG), DstSV, DstSVOff + DstOff, false, DstAlign); OutChains.push_back(Store); DstOff += VTSize; } return DAG.getNode(ISD::TokenFactor, MVT::Other, &OutChains[0], OutChains.size()); } static SDValue getMemsetStores(SelectionDAG &DAG, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, unsigned Align, const Value *DstSV, uint64_t DstSVOff) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Expand memset to a series of load/store ops if the size operand // falls below a certain threshold. std::vector MemOps; std::string Str; bool CopyFromStr; if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(), Size, Align, Str, CopyFromStr, DAG, TLI)) return SDValue(); SmallVector OutChains; uint64_t DstOff = 0; unsigned NumMemOps = MemOps.size(); for (unsigned i = 0; i < NumMemOps; i++) { MVT VT = MemOps[i]; unsigned VTSize = VT.getSizeInBits() / 8; SDValue Value = getMemsetValue(Src, VT, DAG); SDValue Store = DAG.getStore(Chain, Value, getMemBasePlusOffset(Dst, DstOff, DAG), DstSV, DstSVOff + DstOff); OutChains.push_back(Store); DstOff += VTSize; } return DAG.getNode(ISD::TokenFactor, MVT::Other, &OutChains[0], OutChains.size()); } SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool AlwaysInline, const Value *DstSV, uint64_t DstSVOff, const Value *SrcSV, uint64_t SrcSVOff) { // Check to see if we should lower the memcpy to loads and stores first. // For cases within the target-specified limits, this is the best choice. ConstantSDNode *ConstantSize = dyn_cast(Size); if (ConstantSize) { // Memcpy with size zero? Just return the original chain. if (ConstantSize->isNullValue()) return Chain; SDValue Result = getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(), Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff); if (Result.getNode()) return Result; } // Then check to see if we should lower the memcpy with target-specific // code. If the target chooses to do this, this is the next best. SDValue Result = TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align, AlwaysInline, DstSV, DstSVOff, SrcSV, SrcSVOff); if (Result.getNode()) return Result; // If we really need inline code and the target declined to provide it, // use a (potentially long) sequence of loads and stores. if (AlwaysInline) { assert(ConstantSize && "AlwaysInline requires a constant size!"); return getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(), Align, true, DstSV, DstSVOff, SrcSV, SrcSVOff); } // Emit a library call. TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = TLI.getTargetData()->getIntPtrType(); Entry.Node = Dst; Args.push_back(Entry); Entry.Node = Src; Args.push_back(Entry); Entry.Node = Size; Args.push_back(Entry); std::pair CallResult = TLI.LowerCallTo(Chain, Type::VoidTy, false, false, false, false, CallingConv::C, false, getExternalSymbol("memcpy", TLI.getPointerTy()), Args, *this); return CallResult.second; } SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, const Value *DstSV, uint64_t DstSVOff, const Value *SrcSV, uint64_t SrcSVOff) { // Check to see if we should lower the memmove to loads and stores first. // For cases within the target-specified limits, this is the best choice. ConstantSDNode *ConstantSize = dyn_cast(Size); if (ConstantSize) { // Memmove with size zero? Just return the original chain. if (ConstantSize->isNullValue()) return Chain; SDValue Result = getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(), Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff); if (Result.getNode()) return Result; } // Then check to see if we should lower the memmove with target-specific // code. If the target chooses to do this, this is the next best. SDValue Result = TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align, DstSV, DstSVOff, SrcSV, SrcSVOff); if (Result.getNode()) return Result; // Emit a library call. TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = TLI.getTargetData()->getIntPtrType(); Entry.Node = Dst; Args.push_back(Entry); Entry.Node = Src; Args.push_back(Entry); Entry.Node = Size; Args.push_back(Entry); std::pair CallResult = TLI.LowerCallTo(Chain, Type::VoidTy, false, false, false, false, CallingConv::C, false, getExternalSymbol("memmove", TLI.getPointerTy()), Args, *this); return CallResult.second; } SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, const Value *DstSV, uint64_t DstSVOff) { // Check to see if we should lower the memset to stores first. // For cases within the target-specified limits, this is the best choice. ConstantSDNode *ConstantSize = dyn_cast(Size); if (ConstantSize) { // Memset with size zero? Just return the original chain. if (ConstantSize->isNullValue()) return Chain; SDValue Result = getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(), Align, DstSV, DstSVOff); if (Result.getNode()) return Result; } // Then check to see if we should lower the memset with target-specific // code. If the target chooses to do this, this is the next best. SDValue Result = TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align, DstSV, DstSVOff); if (Result.getNode()) return Result; // Emit a library call. const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Dst; Entry.Ty = IntPtrTy; Args.push_back(Entry); // Extend or truncate the argument to be an i32 value for the call. if (Src.getValueType().bitsGT(MVT::i32)) Src = getNode(ISD::TRUNCATE, MVT::i32, Src); else Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src); Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; Args.push_back(Entry); Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false; Args.push_back(Entry); std::pair CallResult = TLI.LowerCallTo(Chain, Type::VoidTy, false, false, false, false, CallingConv::C, false, getExternalSymbol("memset", TLI.getPointerTy()), Args, *this); return CallResult.second; } SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, const Value* PtrVal, unsigned Alignment) { assert((Opcode == ISD::ATOMIC_CMP_SWAP_8 || Opcode == ISD::ATOMIC_CMP_SWAP_16 || Opcode == ISD::ATOMIC_CMP_SWAP_32 || Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op"); assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); MVT VT = Cmp.getValueType(); if (Alignment == 0) // Ensure that codegen never sees alignment 0 Alignment = getMVTAlignment(VT); SDVTList VTs = getVTList(VT, MVT::Other); FoldingSetNodeID ID; SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; AddNodeIDNode(ID, Opcode, VTs, Ops, 4); void* IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode* N = NodeAllocator.Allocate(); new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain, SDValue Ptr, SDValue Val, const Value* PtrVal, unsigned Alignment) { assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 || Opcode == ISD::ATOMIC_LOAD_SUB_8 || Opcode == ISD::ATOMIC_LOAD_AND_8 || Opcode == ISD::ATOMIC_LOAD_OR_8 || Opcode == ISD::ATOMIC_LOAD_XOR_8 || Opcode == ISD::ATOMIC_LOAD_NAND_8 || Opcode == ISD::ATOMIC_LOAD_MIN_8 || Opcode == ISD::ATOMIC_LOAD_MAX_8 || Opcode == ISD::ATOMIC_LOAD_UMIN_8 || Opcode == ISD::ATOMIC_LOAD_UMAX_8 || Opcode == ISD::ATOMIC_SWAP_8 || Opcode == ISD::ATOMIC_LOAD_ADD_16 || Opcode == ISD::ATOMIC_LOAD_SUB_16 || Opcode == ISD::ATOMIC_LOAD_AND_16 || Opcode == ISD::ATOMIC_LOAD_OR_16 || Opcode == ISD::ATOMIC_LOAD_XOR_16 || Opcode == ISD::ATOMIC_LOAD_NAND_16 || Opcode == ISD::ATOMIC_LOAD_MIN_16 || Opcode == ISD::ATOMIC_LOAD_MAX_16 || Opcode == ISD::ATOMIC_LOAD_UMIN_16 || Opcode == ISD::ATOMIC_LOAD_UMAX_16 || Opcode == ISD::ATOMIC_SWAP_16 || Opcode == ISD::ATOMIC_LOAD_ADD_32 || Opcode == ISD::ATOMIC_LOAD_SUB_32 || Opcode == ISD::ATOMIC_LOAD_AND_32 || Opcode == ISD::ATOMIC_LOAD_OR_32 || Opcode == ISD::ATOMIC_LOAD_XOR_32 || Opcode == ISD::ATOMIC_LOAD_NAND_32 || Opcode == ISD::ATOMIC_LOAD_MIN_32 || Opcode == ISD::ATOMIC_LOAD_MAX_32 || Opcode == ISD::ATOMIC_LOAD_UMIN_32 || Opcode == ISD::ATOMIC_LOAD_UMAX_32 || Opcode == ISD::ATOMIC_SWAP_32 || Opcode == ISD::ATOMIC_LOAD_ADD_64 || Opcode == ISD::ATOMIC_LOAD_SUB_64 || Opcode == ISD::ATOMIC_LOAD_AND_64 || Opcode == ISD::ATOMIC_LOAD_OR_64 || Opcode == ISD::ATOMIC_LOAD_XOR_64 || Opcode == ISD::ATOMIC_LOAD_NAND_64 || Opcode == ISD::ATOMIC_LOAD_MIN_64 || Opcode == ISD::ATOMIC_LOAD_MAX_64 || Opcode == ISD::ATOMIC_LOAD_UMIN_64 || Opcode == ISD::ATOMIC_LOAD_UMAX_64 || Opcode == ISD::ATOMIC_SWAP_64) && "Invalid Atomic Op"); MVT VT = Val.getValueType(); if (Alignment == 0) // Ensure that codegen never sees alignment 0 Alignment = getMVTAlignment(VT); SDVTList VTs = getVTList(VT, MVT::Other); FoldingSetNodeID ID; SDValue Ops[] = {Chain, Ptr, Val}; AddNodeIDNode(ID, Opcode, VTs, Ops, 3); void* IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode* N = NodeAllocator.Allocate(); new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } /// getMergeValues - Create a MERGE_VALUES node from the given operands. /// Allowed to return something different (and simpler) if Simplify is true. SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps, bool Simplify) { if (Simplify && NumOps == 1) return Ops[0]; SmallVector VTs; VTs.reserve(NumOps); for (unsigned i = 0; i < NumOps; ++i) VTs.push_back(Ops[i].getValueType()); return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps); } SDValue SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall, bool IsInreg, SDVTList VTs, const SDValue *Operands, unsigned NumOperands) { // Do not include isTailCall in the folding set profile. FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands); ID.AddInteger(CallingConv); ID.AddInteger(IsVarArgs); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { // Instead of including isTailCall in the folding set, we just // set the flag of the existing node. if (!IsTailCall) cast(E)->setNotTailCall(); return SDValue(E, 0); } SDNode *N = NodeAllocator.Allocate(); new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg, VTs, Operands, NumOperands); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, MVT VT, SDValue Chain, SDValue Ptr, SDValue Offset, const Value *SV, int SVOffset, MVT EVT, bool isVolatile, unsigned Alignment) { if (Alignment == 0) // Ensure that codegen never sees alignment 0 Alignment = getMVTAlignment(VT); if (VT == EVT) { ExtType = ISD::NON_EXTLOAD; } else if (ExtType == ISD::NON_EXTLOAD) { assert(VT == EVT && "Non-extending load from different memory type!"); } else { // Extending load. if (VT.isVector()) assert(EVT.getVectorNumElements() == VT.getVectorNumElements() && "Invalid vector extload!"); else assert(EVT.bitsLT(VT) && "Should only be an extending load, not truncating!"); assert((ExtType == ISD::EXTLOAD || VT.isInteger()) && "Cannot sign/zero extend a FP/Vector load!"); assert(VT.isInteger() == EVT.isInteger() && "Cannot convert from FP to Int or Int -> FP!"); } bool Indexed = AM != ISD::UNINDEXED; assert((Indexed || Offset.getOpcode() == ISD::UNDEF) && "Unindexed load with an offset!"); SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); SDValue Ops[] = { Chain, Ptr, Offset }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); ID.AddInteger(AM); ID.AddInteger(ExtType); ID.AddInteger(EVT.getRawBits()); ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment)); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset, Alignment, isVolatile); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getLoad(MVT VT, SDValue Chain, SDValue Ptr, const Value *SV, int SVOffset, bool isVolatile, unsigned Alignment) { SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType()); return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef, SV, SVOffset, VT, isVolatile, Alignment); } SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT, SDValue Chain, SDValue Ptr, const Value *SV, int SVOffset, MVT EVT, bool isVolatile, unsigned Alignment) { SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType()); return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef, SV, SVOffset, EVT, isVolatile, Alignment); } SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM) { LoadSDNode *LD = cast(OrigLoad); assert(LD->getOffset().getOpcode() == ISD::UNDEF && "Load is already a indexed load!"); return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), LD->getChain(), Base, Offset, LD->getSrcValue(), LD->getSrcValueOffset(), LD->getMemoryVT(), LD->isVolatile(), LD->getAlignment()); } SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val, SDValue Ptr, const Value *SV, int SVOffset, bool isVolatile, unsigned Alignment) { MVT VT = Val.getValueType(); if (Alignment == 0) // Ensure that codegen never sees alignment 0 Alignment = getMVTAlignment(VT); SDVTList VTs = getVTList(MVT::Other); SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType()); SDValue Ops[] = { Chain, Val, Ptr, Undef }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); ID.AddInteger(ISD::UNINDEXED); ID.AddInteger(false); ID.AddInteger(VT.getRawBits()); ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment)); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false, VT, SV, SVOffset, Alignment, isVolatile); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val, SDValue Ptr, const Value *SV, int SVOffset, MVT SVT, bool isVolatile, unsigned Alignment) { MVT VT = Val.getValueType(); if (VT == SVT) return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment); assert(VT.bitsGT(SVT) && "Not a truncation?"); assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); if (Alignment == 0) // Ensure that codegen never sees alignment 0 Alignment = getMVTAlignment(VT); SDVTList VTs = getVTList(MVT::Other); SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType()); SDValue Ops[] = { Chain, Val, Ptr, Undef }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); ID.AddInteger(ISD::UNINDEXED); ID.AddInteger(1); ID.AddInteger(SVT.getRawBits()); ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment)); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true, SVT, SV, SVOffset, Alignment, isVolatile); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM) { StoreSDNode *ST = cast(OrigStore); assert(ST->getOffset().getOpcode() == ISD::UNDEF && "Store is already a indexed store!"); SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); ID.AddInteger(AM); ID.AddInteger(ST->isTruncatingStore()); ID.AddInteger(ST->getMemoryVT().getRawBits()); ID.AddInteger(ST->getRawFlags()); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); SDNode *N = NodeAllocator.Allocate(); new (N) StoreSDNode(Ops, VTs, AM, ST->isTruncatingStore(), ST->getMemoryVT(), ST->getSrcValue(), ST->getSrcValueOffset(), ST->getAlignment(), ST->isVolatile()); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDValue(N, 0); } SDValue SelectionDAG::getVAArg(MVT VT, SDValue Chain, SDValue Ptr, SDValue SV) { SDValue Ops[] = { Chain, Ptr, SV }; return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3); } SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, const SDUse *Ops, unsigned NumOps) { switch (NumOps) { case 0: return getNode(Opcode, VT); case 1: return getNode(Opcode, VT, Ops[0]); case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); default: break; } // Copy from an SDUse array into an SDValue array for use with // the regular getNode logic. SmallVector NewOps(Ops, Ops + NumOps); return getNode(Opcode, VT, &NewOps[0], NumOps); } SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, const SDValue *Ops, unsigned NumOps) { switch (NumOps) { case 0: return getNode(Opcode, VT); case 1: return getNode(Opcode, VT, Ops[0]); case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); default: break; } switch (Opcode) { default: break; case ISD::SELECT_CC: { assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); assert(Ops[0].getValueType() == Ops[1].getValueType() && "LHS and RHS of condition must have same type!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "True and False arms of SelectCC must have same type!"); assert(Ops[2].getValueType() == VT && "select_cc node must be of same type as true and false value!"); break; } case ISD::BR_CC: { assert(NumOps == 5 && "BR_CC takes 5 operands!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "LHS/RHS of comparison should match types!"); break; } } // Memoize nodes. SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Flag) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); N = NodeAllocator.Allocate(); new (N) SDNode(Opcode, VTs, Ops, NumOps); CSEMap.InsertNode(N, IP); } else { N = NodeAllocator.Allocate(); new (N) SDNode(Opcode, VTs, Ops, NumOps); } AllNodes.push_back(N); #ifndef NDEBUG VerifyNode(N); #endif return SDValue(N, 0); } SDValue SelectionDAG::getNode(unsigned Opcode, const std::vector &ResultTys, const SDValue *Ops, unsigned NumOps) { return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(), Ops, NumOps); } SDValue SelectionDAG::getNode(unsigned Opcode, const MVT *VTs, unsigned NumVTs, const SDValue *Ops, unsigned NumOps) { if (NumVTs == 1) return getNode(Opcode, VTs[0], Ops, NumOps); return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps); } SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, const SDValue *Ops, unsigned NumOps) { if (VTList.NumVTs == 1) return getNode(Opcode, VTList.VTs[0], Ops, NumOps); switch (Opcode) { // FIXME: figure out how to safely handle things like // int foo(int x) { return 1 << (x & 255); } // int bar() { return foo(256); } #if 0 case ISD::SRA_PARTS: case ISD::SRL_PARTS: case ISD::SHL_PARTS: if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N3.getOperand(1))->getVT() != MVT::i1) return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); else if (N3.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N3.getOperand(1))) { // If the and is only masking out bits that cannot effect the shift, // eliminate the and. unsigned NumBits = VT.getSizeInBits()*2; if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); } break; #endif } // Memoize the node unless it returns a flag. SDNode *N; if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); if (NumOps == 1) { N = NodeAllocator.Allocate(); new (N) UnarySDNode(Opcode, VTList, Ops[0]); } else if (NumOps == 2) { N = NodeAllocator.Allocate(); new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); } else if (NumOps == 3) { N = NodeAllocator.Allocate(); new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); } else { N = NodeAllocator.Allocate(); new (N) SDNode(Opcode, VTList, Ops, NumOps); } CSEMap.InsertNode(N, IP); } else { if (NumOps == 1) { N = NodeAllocator.Allocate(); new (N) UnarySDNode(Opcode, VTList, Ops[0]); } else if (NumOps == 2) { N = NodeAllocator.Allocate(); new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); } else if (NumOps == 3) { N = NodeAllocator.Allocate(); new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); } else { N = NodeAllocator.Allocate(); new (N) SDNode(Opcode, VTList, Ops, NumOps); } } AllNodes.push_back(N); #ifndef NDEBUG VerifyNode(N); #endif return SDValue(N, 0); } SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) { return getNode(Opcode, VTList, 0, 0); } SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, SDValue N1) { SDValue Ops[] = { N1 }; return getNode(Opcode, VTList, Ops, 1); } SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, SDValue N1, SDValue N2) { SDValue Ops[] = { N1, N2 }; return getNode(Opcode, VTList, Ops, 2); } SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3) { SDValue Ops[] = { N1, N2, N3 }; return getNode(Opcode, VTList, Ops, 3); } SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3, SDValue N4) { SDValue Ops[] = { N1, N2, N3, N4 }; return getNode(Opcode, VTList, Ops, 4); } SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5) { SDValue Ops[] = { N1, N2, N3, N4, N5 }; return getNode(Opcode, VTList, Ops, 5); } SDVTList SelectionDAG::getVTList(MVT VT) { return makeVTList(SDNode::getValueTypeList(VT), 1); } SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) { for (std::vector::reverse_iterator I = VTList.rbegin(), E = VTList.rend(); I != E; ++I) if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2) return *I; MVT *Array = Allocator.Allocate(2); Array[0] = VT1; Array[1] = VT2; SDVTList Result = makeVTList(Array, 2); VTList.push_back(Result); return Result; } SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) { for (std::vector::reverse_iterator I = VTList.rbegin(), E = VTList.rend(); I != E; ++I) if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 && I->VTs[2] == VT3) return *I; MVT *Array = Allocator.Allocate(3); Array[0] = VT1; Array[1] = VT2; Array[2] = VT3; SDVTList Result = makeVTList(Array, 3); VTList.push_back(Result); return Result; } SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) { switch (NumVTs) { case 0: assert(0 && "Cannot have nodes without results!"); case 1: return getVTList(VTs[0]); case 2: return getVTList(VTs[0], VTs[1]); case 3: return getVTList(VTs[0], VTs[1], VTs[2]); default: break; } for (std::vector::reverse_iterator I = VTList.rbegin(), E = VTList.rend(); I != E; ++I) { if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1]) continue; bool NoMatch = false; for (unsigned i = 2; i != NumVTs; ++i) if (VTs[i] != I->VTs[i]) { NoMatch = true; break; } if (!NoMatch) return *I; } MVT *Array = Allocator.Allocate(NumVTs); std::copy(VTs, VTs+NumVTs, Array); SDVTList Result = makeVTList(Array, NumVTs); VTList.push_back(Result); return Result; } /// UpdateNodeOperands - *Mutate* the specified node in-place to have the /// specified operands. If the resultant node already exists in the DAG, /// this does not modify the specified node, instead it returns the node that /// already exists. If the resultant node does not exist in the DAG, the /// input node is returned. As a degenerate case, if you specify the same /// input operands as the node already has, the input node is returned. SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) { SDNode *N = InN.getNode(); assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); // Check to see if there is no change. if (Op == N->getOperand(0)) return InN; // See if the modified node already exists. void *InsertPos = 0; if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) return SDValue(Existing, InN.getResNo()); // Nope it doesn't. Remove the node from its current place in the maps. if (InsertPos) if (!RemoveNodeFromCSEMaps(N)) InsertPos = 0; // Now we update the operands. N->OperandList[0].getVal()->removeUser(0, N); N->OperandList[0] = Op; N->OperandList[0].setUser(N); Op.getNode()->addUser(0, N); // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return InN; } SDValue SelectionDAG:: UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) { SDNode *N = InN.getNode(); assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); // Check to see if there is no change. if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) return InN; // No operands changed, just return the input node. // See if the modified node already exists. void *InsertPos = 0; if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) return SDValue(Existing, InN.getResNo()); // Nope it doesn't. Remove the node from its current place in the maps. if (InsertPos) if (!RemoveNodeFromCSEMaps(N)) InsertPos = 0; // Now we update the operands. if (N->OperandList[0] != Op1) { N->OperandList[0].getVal()->removeUser(0, N); N->OperandList[0] = Op1; N->OperandList[0].setUser(N); Op1.getNode()->addUser(0, N); } if (N->OperandList[1] != Op2) { N->OperandList[1].getVal()->removeUser(1, N); N->OperandList[1] = Op2; N->OperandList[1].setUser(N); Op2.getNode()->addUser(1, N); } // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return InN; } SDValue SelectionDAG:: UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) { SDValue Ops[] = { Op1, Op2, Op3 }; return UpdateNodeOperands(N, Ops, 3); } SDValue SelectionDAG:: UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4) { SDValue Ops[] = { Op1, Op2, Op3, Op4 }; return UpdateNodeOperands(N, Ops, 4); } SDValue SelectionDAG:: UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4, SDValue Op5) { SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; return UpdateNodeOperands(N, Ops, 5); } SDValue SelectionDAG:: UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) { SDNode *N = InN.getNode(); assert(N->getNumOperands() == NumOps && "Update with wrong number of operands"); // Check to see if there is no change. bool AnyChange = false; for (unsigned i = 0; i != NumOps; ++i) { if (Ops[i] != N->getOperand(i)) { AnyChange = true; break; } } // No operands changed, just return the input node. if (!AnyChange) return InN; // See if the modified node already exists. void *InsertPos = 0; if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos)) return SDValue(Existing, InN.getResNo()); // Nope it doesn't. Remove the node from its current place in the maps. if (InsertPos) if (!RemoveNodeFromCSEMaps(N)) InsertPos = 0; // Now we update the operands. for (unsigned i = 0; i != NumOps; ++i) { if (N->OperandList[i] != Ops[i]) { N->OperandList[i].getVal()->removeUser(i, N); N->OperandList[i] = Ops[i]; N->OperandList[i].setUser(N); Ops[i].getNode()->addUser(i, N); } } // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return InN; } /// DropOperands - Release the operands and set this node to have /// zero operands. void SDNode::DropOperands() { // Unlike the code in MorphNodeTo that does this, we don't need to // watch for dead nodes here. for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) I->getVal()->removeUser(std::distance(op_begin(), I), this); NumOperands = 0; } /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a /// machine opcode. /// SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT) { SDVTList VTs = getVTList(VT); return SelectNodeTo(N, MachineOpc, VTs, 0, 0); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT, SDValue Op1) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1 }; return SelectNodeTo(N, MachineOpc, VTs, Ops, 1); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1, Op2 }; return SelectNodeTo(N, MachineOpc, VTs, Ops, 2); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT, SDValue Op1, SDValue Op2, SDValue Op3) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1, Op2, Op3 }; return SelectNodeTo(N, MachineOpc, VTs, Ops, 3); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT, const SDValue *Ops, unsigned NumOps) { SDVTList VTs = getVTList(VT); return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT1, MVT VT2, const SDValue *Ops, unsigned NumOps) { SDVTList VTs = getVTList(VT1, VT2); return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT1, MVT VT2) { SDVTList VTs = getVTList(VT1, VT2); return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT1, MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps) { SDVTList VTs = getVTList(VT1, VT2, VT3); return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT1, MVT VT2, SDValue Op1) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1 }; return SelectNodeTo(N, MachineOpc, VTs, Ops, 1); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1, Op2 }; return SelectNodeTo(N, MachineOpc, VTs, Ops, 2); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1, Op2, Op3 }; return SelectNodeTo(N, MachineOpc, VTs, Ops, 3); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs, const SDValue *Ops, unsigned NumOps) { return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT) { SDVTList VTs = getVTList(VT); return MorphNodeTo(N, Opc, VTs, 0, 0); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1 }; return MorphNodeTo(N, Opc, VTs, Ops, 1); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1, Op2 }; return MorphNodeTo(N, Opc, VTs, Ops, 2); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, SDValue Op1, SDValue Op2, SDValue Op3) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1, Op2, Op3 }; return MorphNodeTo(N, Opc, VTs, Ops, 3); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT, const SDValue *Ops, unsigned NumOps) { SDVTList VTs = getVTList(VT); return MorphNodeTo(N, Opc, VTs, Ops, NumOps); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, const SDValue *Ops, unsigned NumOps) { SDVTList VTs = getVTList(VT1, VT2); return MorphNodeTo(N, Opc, VTs, Ops, NumOps); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2) { SDVTList VTs = getVTList(VT1, VT2); return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps) { SDVTList VTs = getVTList(VT1, VT2, VT3); return MorphNodeTo(N, Opc, VTs, Ops, NumOps); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, SDValue Op1) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1 }; return MorphNodeTo(N, Opc, VTs, Ops, 1); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1, Op2 }; return MorphNodeTo(N, Opc, VTs, Ops, 2); } SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1, Op2, Op3 }; return MorphNodeTo(N, Opc, VTs, Ops, 3); } /// MorphNodeTo - These *mutate* the specified node to have the specified /// return type, opcode, and operands. /// /// Note that MorphNodeTo returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. /// /// Using MorphNodeTo is faster than creating a new node and swapping it in /// with ReplaceAllUsesWith both because it often avoids allocating a new /// node, and because it doesn't require CSE recalculation for any of /// the node's users. /// SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps) { // If an identical node already exists, use it. void *IP = 0; if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, VTs, Ops, NumOps); if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) return ON; } if (!RemoveNodeFromCSEMaps(N)) IP = 0; // Start the morphing. N->NodeType = Opc; N->ValueList = VTs.VTs; N->NumValues = VTs.NumVTs; // Clear the operands list, updating used nodes to remove this from their // use list. Keep track of any operands that become dead as a result. SmallPtrSet DeadNodeSet; for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end(); I != E; ++I) { SDNode *Used = I->getVal(); Used->removeUser(std::distance(B, I), N); if (Used->use_empty()) DeadNodeSet.insert(Used); } // If NumOps is larger than the # of operands we currently have, reallocate // the operand list. if (NumOps > N->NumOperands) { if (N->OperandsNeedDelete) delete[] N->OperandList; if (N->isMachineOpcode()) { // We're creating a final node that will live unmorphed for the // remainder of the current SelectionDAG iteration, so we can allocate // the operands directly out of a pool with no recycling metadata. N->OperandList = OperandAllocator.Allocate(NumOps); N->OperandsNeedDelete = false; } else { N->OperandList = new SDUse[NumOps]; N->OperandsNeedDelete = true; } } // Assign the new operands. N->NumOperands = NumOps; for (unsigned i = 0, e = NumOps; i != e; ++i) { N->OperandList[i] = Ops[i]; N->OperandList[i].setUser(N); SDNode *ToUse = N->OperandList[i].getVal(); ToUse->addUser(i, N); } // Delete any nodes that are still dead after adding the uses for the // new operands. SmallVector DeadNodes; for (SmallPtrSet::iterator I = DeadNodeSet.begin(), E = DeadNodeSet.end(); I != E; ++I) if ((*I)->use_empty()) DeadNodes.push_back(*I); RemoveDeadNodes(DeadNodes); if (IP) CSEMap.InsertNode(N, IP); // Memoize the new node. return N; } /// getTargetNode - These are used for target selectors to create a new node /// with specified return type(s), target opcode, and operands. /// /// Note that getTargetNode returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) { return getNode(~Opcode, VT).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) { return getNode(~Opcode, VT, Op1).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1, SDValue Op2) { return getNode(~Opcode, VT, Op1, Op2).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1, SDValue Op2, SDValue Op3) { return getNode(~Opcode, VT, Op1, Op2, Op3).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, const SDValue *Ops, unsigned NumOps) { return getNode(~Opcode, VT, Ops, NumOps).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) { const MVT *VTs = getNodeValueTypes(VT1, VT2); SDValue Op; return getNode(~Opcode, VTs, 2, &Op, 0).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1) { const MVT *VTs = getNodeValueTypes(VT1, VT2); return getNode(~Opcode, VTs, 2, &Op1, 1).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2) { const MVT *VTs = getNodeValueTypes(VT1, VT2); SDValue Ops[] = { Op1, Op2 }; return getNode(~Opcode, VTs, 2, Ops, 2).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDValue Op1, SDValue Op2, SDValue Op3) { const MVT *VTs = getNodeValueTypes(VT1, VT2); SDValue Ops[] = { Op1, Op2, Op3 }; return getNode(~Opcode, VTs, 2, Ops, 3).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, const SDValue *Ops, unsigned NumOps) { const MVT *VTs = getNodeValueTypes(VT1, VT2); return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, SDValue Op1, SDValue Op2) { const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3); SDValue Ops[] = { Op1, Op2 }; return getNode(~Opcode, VTs, 3, Ops, 2).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, SDValue Op1, SDValue Op2, SDValue Op3) { const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3); SDValue Ops[] = { Op1, Op2, Op3 }; return getNode(~Opcode, VTs, 3, Ops, 3).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, const SDValue *Ops, unsigned NumOps) { const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3); return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, MVT VT4, const SDValue *Ops, unsigned NumOps) { std::vector VTList; VTList.push_back(VT1); VTList.push_back(VT2); VTList.push_back(VT3); VTList.push_back(VT4); const MVT *VTs = getNodeValueTypes(VTList); return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode(); } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, const std::vector &ResultTys, const SDValue *Ops, unsigned NumOps) { const MVT *VTs = getNodeValueTypes(ResultTys); return getNode(~Opcode, VTs, ResultTys.size(), Ops, NumOps).getNode(); } /// getNodeIfExists - Get the specified node if it's already available, or /// else return NULL. SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, const SDValue *Ops, unsigned NumOps) { if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return E; } return NULL; } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version assumes From has a single result value. /// void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To, DAGUpdateListener *UpdateListener) { SDNode *From = FromN.getNode(); assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && "Cannot replace with this method!"); assert(From != To.getNode() && "Cannot replace uses of with self"); while (!From->use_empty()) { SDNode::use_iterator UI = From->use_begin(); SDNode *U = *UI; // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); int operandNum = 0; for (SDNode::op_iterator I = U->op_begin(), E = U->op_end(); I != E; ++I, ++operandNum) if (I->getVal() == From) { From->removeUser(operandNum, U); *I = To; I->setUser(U); To.getNode()->addUser(operandNum, U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, UpdateListener); // U is now dead. Inform the listener if it exists and delete it. if (UpdateListener) UpdateListener->NodeDeleted(U, Existing); DeleteNodeNotInCSEMaps(U); } else { // If the node doesn't already exist, we updated it. Inform a listener if // it exists. if (UpdateListener) UpdateListener->NodeUpdated(U); } } } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version assumes From/To have matching types and numbers of result /// values. /// void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To, DAGUpdateListener *UpdateListener) { assert(From->getVTList().VTs == To->getVTList().VTs && From->getNumValues() == To->getNumValues() && "Cannot use this version of ReplaceAllUsesWith!"); // Handle the trivial case. if (From == To) return; while (!From->use_empty()) { SDNode::use_iterator UI = From->use_begin(); SDNode *U = *UI; // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); int operandNum = 0; for (SDNode::op_iterator I = U->op_begin(), E = U->op_end(); I != E; ++I, ++operandNum) if (I->getVal() == From) { From->removeUser(operandNum, U); I->getSDValue().setNode(To); To->addUser(operandNum, U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, UpdateListener); // U is now dead. Inform the listener if it exists and delete it. if (UpdateListener) UpdateListener->NodeDeleted(U, Existing); DeleteNodeNotInCSEMaps(U); } else { // If the node doesn't already exist, we updated it. Inform a listener if // it exists. if (UpdateListener) UpdateListener->NodeUpdated(U); } } } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version can replace From with any result values. To must match the /// number and types of values returned by From. void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To, DAGUpdateListener *UpdateListener) { if (From->getNumValues() == 1) // Handle the simple case efficiently. return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener); while (!From->use_empty()) { SDNode::use_iterator UI = From->use_begin(); SDNode *U = *UI; // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); int operandNum = 0; for (SDNode::op_iterator I = U->op_begin(), E = U->op_end(); I != E; ++I, ++operandNum) if (I->getVal() == From) { const SDValue &ToOp = To[I->getSDValue().getResNo()]; From->removeUser(operandNum, U); *I = ToOp; I->setUser(U); ToOp.getNode()->addUser(operandNum, U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, UpdateListener); // U is now dead. Inform the listener if it exists and delete it. if (UpdateListener) UpdateListener->NodeDeleted(U, Existing); DeleteNodeNotInCSEMaps(U); } else { // If the node doesn't already exist, we updated it. Inform a listener if // it exists. if (UpdateListener) UpdateListener->NodeUpdated(U); } } } /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving /// uses of other values produced by From.getVal() alone. The Deleted vector is /// handled the same way as for ReplaceAllUsesWith. void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To, DAGUpdateListener *UpdateListener){ // Handle the really simple, really trivial case efficiently. if (From == To) return; // Handle the simple, trivial, case efficiently. if (From.getNode()->getNumValues() == 1) { ReplaceAllUsesWith(From, To, UpdateListener); return; } // Get all of the users of From.getNode(). We want these in a nice, // deterministically ordered and uniqued set, so we use a SmallSetVector. SmallSetVector Users(From.getNode()->use_begin(), From.getNode()->use_end()); while (!Users.empty()) { // We know that this user uses some value of From. If it is the right // value, update it. SDNode *User = Users.back(); Users.pop_back(); // Scan for an operand that matches From. SDNode::op_iterator Op = User->op_begin(), E = User->op_end(); for (; Op != E; ++Op) if (*Op == From) break; // If there are no matches, the user must use some other result of From. if (Op == E) continue; // Okay, we know this user needs to be updated. Remove its old self // from the CSE maps. RemoveNodeFromCSEMaps(User); // Update all operands that match "From" in case there are multiple uses. for (; Op != E; ++Op) { if (*Op == From) { From.getNode()->removeUser(Op-User->op_begin(), User); *Op = To; Op->setUser(User); To.getNode()->addUser(Op-User->op_begin(), User); } } // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. SDNode *Existing = AddNonLeafNodeToCSEMaps(User); if (!Existing) { if (UpdateListener) UpdateListener->NodeUpdated(User); continue; // Continue on to next user. } // If there was already an existing matching node, use ReplaceAllUsesWith // to replace the dead one with the existing one. This can cause // recursive merging of other unrelated nodes down the line. ReplaceAllUsesWith(User, Existing, UpdateListener); // User is now dead. Notify a listener if present. if (UpdateListener) UpdateListener->NodeDeleted(User, Existing); DeleteNodeNotInCSEMaps(User); } } /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving /// uses of other values produced by From.getVal() alone. The same value may /// appear in both the From and To list. The Deleted vector is /// handled the same way as for ReplaceAllUsesWith. void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num, DAGUpdateListener *UpdateListener){ // Handle the simple, trivial case efficiently. if (Num == 1) return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener); SmallVector, 16> Users; for (unsigned i = 0; i != Num; ++i) for (SDNode::use_iterator UI = From[i].getNode()->use_begin(), E = From[i].getNode()->use_end(); UI != E; ++UI) Users.push_back(std::make_pair(*UI, i)); while (!Users.empty()) { // We know that this user uses some value of From. If it is the right // value, update it. SDNode *User = Users.back().first; unsigned i = Users.back().second; Users.pop_back(); // Scan for an operand that matches From. SDNode::op_iterator Op = User->op_begin(), E = User->op_end(); for (; Op != E; ++Op) if (*Op == From[i]) break; // If there are no matches, the user must use some other result of From. if (Op == E) continue; // Okay, we know this user needs to be updated. Remove its old self // from the CSE maps. RemoveNodeFromCSEMaps(User); // Update all operands that match "From" in case there are multiple uses. for (; Op != E; ++Op) { if (*Op == From[i]) { From[i].getNode()->removeUser(Op-User->op_begin(), User); *Op = To[i]; Op->setUser(User); To[i].getNode()->addUser(Op-User->op_begin(), User); } } // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. SDNode *Existing = AddNonLeafNodeToCSEMaps(User); if (!Existing) { if (UpdateListener) UpdateListener->NodeUpdated(User); continue; // Continue on to next user. } // If there was already an existing matching node, use ReplaceAllUsesWith // to replace the dead one with the existing one. This can cause // recursive merging of other unrelated nodes down the line. ReplaceAllUsesWith(User, Existing, UpdateListener); // User is now dead. Notify a listener if present. if (UpdateListener) UpdateListener->NodeDeleted(User, Existing); DeleteNodeNotInCSEMaps(User); } } /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG /// based on their topological order. It returns the maximum id and a vector /// of the SDNodes* in assigned order by reference. unsigned SelectionDAG::AssignTopologicalOrder(std::vector &TopOrder) { unsigned DAGSize = AllNodes.size(); std::vector Sources; for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){ SDNode *N = I; unsigned Degree = N->use_size(); // Temporarily use the Node Id as scratch space for the degree count. N->setNodeId(Degree); if (Degree == 0) Sources.push_back(N); } TopOrder.clear(); TopOrder.reserve(DAGSize); int Id = 0; while (!Sources.empty()) { SDNode *N = Sources.back(); Sources.pop_back(); TopOrder.push_back(N); N->setNodeId(Id++); for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { SDNode *P = I->getVal(); unsigned Degree = P->getNodeId(); --Degree; P->setNodeId(Degree); if (Degree == 0) Sources.push_back(P); } } return Id; } //===----------------------------------------------------------------------===// // SDNode Class //===----------------------------------------------------------------------===// // Out-of-line virtual method to give class a home. void SDNode::ANCHOR() {} void UnarySDNode::ANCHOR() {} void BinarySDNode::ANCHOR() {} void TernarySDNode::ANCHOR() {} void HandleSDNode::ANCHOR() {} void ConstantSDNode::ANCHOR() {} void ConstantFPSDNode::ANCHOR() {} void GlobalAddressSDNode::ANCHOR() {} void FrameIndexSDNode::ANCHOR() {} void JumpTableSDNode::ANCHOR() {} void ConstantPoolSDNode::ANCHOR() {} void BasicBlockSDNode::ANCHOR() {} void SrcValueSDNode::ANCHOR() {} void MemOperandSDNode::ANCHOR() {} void RegisterSDNode::ANCHOR() {} void DbgStopPointSDNode::ANCHOR() {} void LabelSDNode::ANCHOR() {} void ExternalSymbolSDNode::ANCHOR() {} void CondCodeSDNode::ANCHOR() {} void ARG_FLAGSSDNode::ANCHOR() {} void VTSDNode::ANCHOR() {} void MemSDNode::ANCHOR() {} void LoadSDNode::ANCHOR() {} void StoreSDNode::ANCHOR() {} void AtomicSDNode::ANCHOR() {} void CallSDNode::ANCHOR() {} HandleSDNode::~HandleSDNode() { DropOperands(); } GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT, int o) : SDNode(isa(GA) && cast(GA)->isThreadLocal() ? // Thread Local (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) : // Non Thread Local (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress), getSDVTList(VT)), Offset(o) { TheGlobal = const_cast(GA); } MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt, const Value *srcValue, int SVO, unsigned alignment, bool vol) : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO), Flags(encodeMemSDNodeFlags(vol, alignment)) { assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!"); assert(getAlignment() == alignment && "Alignment representation error!"); assert(isVolatile() == vol && "Volatile representation error!"); } /// getMemOperand - Return a MachineMemOperand object describing the memory /// reference performed by this memory reference. MachineMemOperand MemSDNode::getMemOperand() const { int Flags; if (isa(this)) Flags = MachineMemOperand::MOLoad; else if (isa(this)) Flags = MachineMemOperand::MOStore; else { assert(isa(this) && "Unknown MemSDNode opcode!"); Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; } int Size = (getMemoryVT().getSizeInBits() + 7) >> 3; if (isVolatile()) Flags |= MachineMemOperand::MOVolatile; // Check if the memory reference references a frame index const FrameIndexSDNode *FI = dyn_cast(getBasePtr().getNode()); if (!getSrcValue() && FI) return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()), Flags, 0, Size, getAlignment()); else return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(), Size, getAlignment()); } /// Profile - Gather unique data for the node. /// void SDNode::Profile(FoldingSetNodeID &ID) const { AddNodeIDNode(ID, this); } /// getValueTypeList - Return a pointer to the specified value type. /// const MVT *SDNode::getValueTypeList(MVT VT) { if (VT.isExtended()) { static std::set EVTs; return &(*EVTs.insert(VT).first); } else { static MVT VTs[MVT::LAST_VALUETYPE]; VTs[VT.getSimpleVT()] = VT; return &VTs[VT.getSimpleVT()]; } } /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the /// indicated value. This method ignores uses of other values defined by this /// operation. bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { assert(Value < getNumValues() && "Bad value!"); // TODO: Only iterate over uses of a given value of the node for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { if (UI.getUse().getSDValue().getResNo() == Value) { if (NUses == 0) return false; --NUses; } } // Found exactly the right number of uses? return NUses == 0; } /// hasAnyUseOfValue - Return true if there are any use of the indicated /// value. This method ignores uses of other values defined by this operation. bool SDNode::hasAnyUseOfValue(unsigned Value) const { assert(Value < getNumValues() && "Bad value!"); for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) if (UI.getUse().getSDValue().getResNo() == Value) return true; return false; } /// isOnlyUserOf - Return true if this node is the only use of N. /// bool SDNode::isOnlyUserOf(SDNode *N) const { bool Seen = false; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDNode *User = *I; if (User == this) Seen = true; else return false; } return Seen; } /// isOperand - Return true if this node is an operand of N. /// bool SDValue::isOperandOf(SDNode *N) const { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (*this == N->getOperand(i)) return true; return false; } bool SDNode::isOperandOf(SDNode *N) const { for (unsigned i = 0, e = N->NumOperands; i != e; ++i) if (this == N->OperandList[i].getVal()) return true; return false; } /// reachesChainWithoutSideEffects - Return true if this operand (which must /// be a chain) reaches the specified operand without crossing any /// side-effecting instructions. In practice, this looks through token /// factors and non-volatile loads. In order to remain efficient, this only /// looks a couple of nodes in, it does not do an exhaustive search. bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth) const { if (*this == Dest) return true; // Don't search too deeply, we just want to be able to see through // TokenFactor's etc. if (Depth == 0) return false; // If this is a token factor, all inputs to the TF happen in parallel. If any // of the operands of the TF reach dest, then we can do the xform. if (getOpcode() == ISD::TokenFactor) { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) return true; return false; } // Loads don't have side effects, look through them. if (LoadSDNode *Ld = dyn_cast(*this)) { if (!Ld->isVolatile()) return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); } return false; } static void findPredecessor(SDNode *N, const SDNode *P, bool &found, SmallPtrSet &Visited) { if (found || !Visited.insert(N)) return; for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) { SDNode *Op = N->getOperand(i).getNode(); if (Op == P) { found = true; return; } findPredecessor(Op, P, found, Visited); } } /// isPredecessorOf - Return true if this node is a predecessor of N. This node /// is either an operand of N or it can be reached by recursively traversing /// up the operands. /// NOTE: this is an expensive method. Use it carefully. bool SDNode::isPredecessorOf(SDNode *N) const { SmallPtrSet Visited; bool found = false; findPredecessor(N, this, found, Visited); return found; } uint64_t SDNode::getConstantOperandVal(unsigned Num) const { assert(Num < NumOperands && "Invalid child # of SDNode!"); return cast(OperandList[Num])->getZExtValue(); } std::string SDNode::getOperationName(const SelectionDAG *G) const { switch (getOpcode()) { default: if (getOpcode() < ISD::BUILTIN_OP_END) return "<>"; if (isMachineOpcode()) { if (G) if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) if (getMachineOpcode() < TII->getNumOpcodes()) return TII->get(getMachineOpcode()).getName(); return "<>"; } if (G) { TargetLowering &TLI = G->getTargetLoweringInfo(); const char *Name = TLI.getTargetNodeName(getOpcode()); if (Name) return Name; return "<>"; } return "<>"; #ifndef NDEBUG case ISD::DELETED_NODE: return "<>"; #endif case ISD::PREFETCH: return "Prefetch"; case ISD::MEMBARRIER: return "MemBarrier"; case ISD::ATOMIC_CMP_SWAP_8: return "AtomicCmpSwap8"; case ISD::ATOMIC_SWAP_8: return "AtomicSwap8"; case ISD::ATOMIC_LOAD_ADD_8: return "AtomicLoadAdd8"; case ISD::ATOMIC_LOAD_SUB_8: return "AtomicLoadSub8"; case ISD::ATOMIC_LOAD_AND_8: return "AtomicLoadAnd8"; case ISD::ATOMIC_LOAD_OR_8: return "AtomicLoadOr8"; case ISD::ATOMIC_LOAD_XOR_8: return "AtomicLoadXor8"; case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8"; case ISD::ATOMIC_LOAD_MIN_8: return "AtomicLoadMin8"; case ISD::ATOMIC_LOAD_MAX_8: return "AtomicLoadMax8"; case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8"; case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8"; case ISD::ATOMIC_CMP_SWAP_16: return "AtomicCmpSwap16"; case ISD::ATOMIC_SWAP_16: return "AtomicSwap16"; case ISD::ATOMIC_LOAD_ADD_16: return "AtomicLoadAdd16"; case ISD::ATOMIC_LOAD_SUB_16: return "AtomicLoadSub16"; case ISD::ATOMIC_LOAD_AND_16: return "AtomicLoadAnd16"; case ISD::ATOMIC_LOAD_OR_16: return "AtomicLoadOr16"; case ISD::ATOMIC_LOAD_XOR_16: return "AtomicLoadXor16"; case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16"; case ISD::ATOMIC_LOAD_MIN_16: return "AtomicLoadMin16"; case ISD::ATOMIC_LOAD_MAX_16: return "AtomicLoadMax16"; case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16"; case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16"; case ISD::ATOMIC_CMP_SWAP_32: return "AtomicCmpSwap32"; case ISD::ATOMIC_SWAP_32: return "AtomicSwap32"; case ISD::ATOMIC_LOAD_ADD_32: return "AtomicLoadAdd32"; case ISD::ATOMIC_LOAD_SUB_32: return "AtomicLoadSub32"; case ISD::ATOMIC_LOAD_AND_32: return "AtomicLoadAnd32"; case ISD::ATOMIC_LOAD_OR_32: return "AtomicLoadOr32"; case ISD::ATOMIC_LOAD_XOR_32: return "AtomicLoadXor32"; case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32"; case ISD::ATOMIC_LOAD_MIN_32: return "AtomicLoadMin32"; case ISD::ATOMIC_LOAD_MAX_32: return "AtomicLoadMax32"; case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32"; case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32"; case ISD::ATOMIC_CMP_SWAP_64: return "AtomicCmpSwap64"; case ISD::ATOMIC_SWAP_64: return "AtomicSwap64"; case ISD::ATOMIC_LOAD_ADD_64: return "AtomicLoadAdd64"; case ISD::ATOMIC_LOAD_SUB_64: return "AtomicLoadSub64"; case ISD::ATOMIC_LOAD_AND_64: return "AtomicLoadAnd64"; case ISD::ATOMIC_LOAD_OR_64: return "AtomicLoadOr64"; case ISD::ATOMIC_LOAD_XOR_64: return "AtomicLoadXor64"; case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64"; case ISD::ATOMIC_LOAD_MIN_64: return "AtomicLoadMin64"; case ISD::ATOMIC_LOAD_MAX_64: return "AtomicLoadMax64"; case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64"; case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64"; case ISD::PCMARKER: return "PCMarker"; case ISD::READCYCLECOUNTER: return "ReadCycleCounter"; case ISD::SRCVALUE: return "SrcValue"; case ISD::MEMOPERAND: return "MemOperand"; case ISD::EntryToken: return "EntryToken"; case ISD::TokenFactor: return "TokenFactor"; case ISD::AssertSext: return "AssertSext"; case ISD::AssertZext: return "AssertZext"; case ISD::BasicBlock: return "BasicBlock"; case ISD::ARG_FLAGS: return "ArgFlags"; case ISD::VALUETYPE: return "ValueType"; case ISD::Register: return "Register"; case ISD::Constant: return "Constant"; case ISD::ConstantFP: return "ConstantFP"; case ISD::GlobalAddress: return "GlobalAddress"; case ISD::GlobalTLSAddress: return "GlobalTLSAddress"; case ISD::FrameIndex: return "FrameIndex"; case ISD::JumpTable: return "JumpTable"; case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE"; case ISD::RETURNADDR: return "RETURNADDR"; case ISD::FRAMEADDR: return "FRAMEADDR"; case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET"; case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR"; case ISD::EHSELECTION: return "EHSELECTION"; case ISD::EH_RETURN: return "EH_RETURN"; case ISD::ConstantPool: return "ConstantPool"; case ISD::ExternalSymbol: return "ExternalSymbol"; case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = cast(getOperand(0))->getZExtValue(); return Intrinsic::getName((Intrinsic::ID)IID); } case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: { unsigned IID = cast(getOperand(1))->getZExtValue(); return Intrinsic::getName((Intrinsic::ID)IID); } case ISD::BUILD_VECTOR: return "BUILD_VECTOR"; case ISD::TargetConstant: return "TargetConstant"; case ISD::TargetConstantFP:return "TargetConstantFP"; case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress"; case ISD::TargetFrameIndex: return "TargetFrameIndex"; case ISD::TargetJumpTable: return "TargetJumpTable"; case ISD::TargetConstantPool: return "TargetConstantPool"; case ISD::TargetExternalSymbol: return "TargetExternalSymbol"; case ISD::CopyToReg: return "CopyToReg"; case ISD::CopyFromReg: return "CopyFromReg"; case ISD::UNDEF: return "undef"; case ISD::MERGE_VALUES: return "merge_values"; case ISD::INLINEASM: return "inlineasm"; case ISD::DBG_LABEL: return "dbg_label"; case ISD::EH_LABEL: return "eh_label"; case ISD::DECLARE: return "declare"; case ISD::HANDLENODE: return "handlenode"; case ISD::FORMAL_ARGUMENTS: return "formal_arguments"; case ISD::CALL: return "call"; // Unary operators case ISD::FABS: return "fabs"; case ISD::FNEG: return "fneg"; case ISD::FSQRT: return "fsqrt"; case ISD::FSIN: return "fsin"; case ISD::FCOS: return "fcos"; case ISD::FPOWI: return "fpowi"; case ISD::FPOW: return "fpow"; case ISD::FTRUNC: return "ftrunc"; case ISD::FFLOOR: return "ffloor"; case ISD::FCEIL: return "fceil"; case ISD::FRINT: return "frint"; case ISD::FNEARBYINT: return "fnearbyint"; // Binary operators case ISD::ADD: return "add"; case ISD::SUB: return "sub"; case ISD::MUL: return "mul"; case ISD::MULHU: return "mulhu"; case ISD::MULHS: return "mulhs"; case ISD::SDIV: return "sdiv"; case ISD::UDIV: return "udiv"; case ISD::SREM: return "srem"; case ISD::UREM: return "urem"; case ISD::SMUL_LOHI: return "smul_lohi"; case ISD::UMUL_LOHI: return "umul_lohi"; case ISD::SDIVREM: return "sdivrem"; case ISD::UDIVREM: return "udivrem"; case ISD::AND: return "and"; case ISD::OR: return "or"; case ISD::XOR: return "xor"; case ISD::SHL: return "shl"; case ISD::SRA: return "sra"; case ISD::SRL: return "srl"; case ISD::ROTL: return "rotl"; case ISD::ROTR: return "rotr"; case ISD::FADD: return "fadd"; case ISD::FSUB: return "fsub"; case ISD::FMUL: return "fmul"; case ISD::FDIV: return "fdiv"; case ISD::FREM: return "frem"; case ISD::FCOPYSIGN: return "fcopysign"; case ISD::FGETSIGN: return "fgetsign"; case ISD::SETCC: return "setcc"; case ISD::VSETCC: return "vsetcc"; case ISD::SELECT: return "select"; case ISD::SELECT_CC: return "select_cc"; case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt"; case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt"; case ISD::CONCAT_VECTORS: return "concat_vectors"; case ISD::EXTRACT_SUBVECTOR: return "extract_subvector"; case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector"; case ISD::VECTOR_SHUFFLE: return "vector_shuffle"; case ISD::CARRY_FALSE: return "carry_false"; case ISD::ADDC: return "addc"; case ISD::ADDE: return "adde"; case ISD::SUBC: return "subc"; case ISD::SUBE: return "sube"; case ISD::SHL_PARTS: return "shl_parts"; case ISD::SRA_PARTS: return "sra_parts"; case ISD::SRL_PARTS: return "srl_parts"; case ISD::EXTRACT_SUBREG: return "extract_subreg"; case ISD::INSERT_SUBREG: return "insert_subreg"; // Conversion operators. case ISD::SIGN_EXTEND: return "sign_extend"; case ISD::ZERO_EXTEND: return "zero_extend"; case ISD::ANY_EXTEND: return "any_extend"; case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; case ISD::TRUNCATE: return "truncate"; case ISD::FP_ROUND: return "fp_round"; case ISD::FLT_ROUNDS_: return "flt_rounds"; case ISD::FP_ROUND_INREG: return "fp_round_inreg"; case ISD::FP_EXTEND: return "fp_extend"; case ISD::SINT_TO_FP: return "sint_to_fp"; case ISD::UINT_TO_FP: return "uint_to_fp"; case ISD::FP_TO_SINT: return "fp_to_sint"; case ISD::FP_TO_UINT: return "fp_to_uint"; case ISD::BIT_CONVERT: return "bit_convert"; // Control flow instructions case ISD::BR: return "br"; case ISD::BRIND: return "brind"; case ISD::BR_JT: return "br_jt"; case ISD::BRCOND: return "brcond"; case ISD::BR_CC: return "br_cc"; case ISD::RET: return "ret"; case ISD::CALLSEQ_START: return "callseq_start"; case ISD::CALLSEQ_END: return "callseq_end"; // Other operators case ISD::LOAD: return "load"; case ISD::STORE: return "store"; case ISD::VAARG: return "vaarg"; case ISD::VACOPY: return "vacopy"; case ISD::VAEND: return "vaend"; case ISD::VASTART: return "vastart"; case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; case ISD::EXTRACT_ELEMENT: return "extract_element"; case ISD::BUILD_PAIR: return "build_pair"; case ISD::STACKSAVE: return "stacksave"; case ISD::STACKRESTORE: return "stackrestore"; case ISD::TRAP: return "trap"; // Bit manipulation case ISD::BSWAP: return "bswap"; case ISD::CTPOP: return "ctpop"; case ISD::CTTZ: return "cttz"; case ISD::CTLZ: return "ctlz"; // Debug info case ISD::DBG_STOPPOINT: return "dbg_stoppoint"; case ISD::DEBUG_LOC: return "debug_loc"; // Trampolines case ISD::TRAMPOLINE: return "trampoline"; case ISD::CONDCODE: switch (cast(this)->get()) { default: assert(0 && "Unknown setcc condition!"); case ISD::SETOEQ: return "setoeq"; case ISD::SETOGT: return "setogt"; case ISD::SETOGE: return "setoge"; case ISD::SETOLT: return "setolt"; case ISD::SETOLE: return "setole"; case ISD::SETONE: return "setone"; case ISD::SETO: return "seto"; case ISD::SETUO: return "setuo"; case ISD::SETUEQ: return "setue"; case ISD::SETUGT: return "setugt"; case ISD::SETUGE: return "setuge"; case ISD::SETULT: return "setult"; case ISD::SETULE: return "setule"; case ISD::SETUNE: return "setune"; case ISD::SETEQ: return "seteq"; case ISD::SETGT: return "setgt"; case ISD::SETGE: return "setge"; case ISD::SETLT: return "setlt"; case ISD::SETLE: return "setle"; case ISD::SETNE: return "setne"; } } } const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) { switch (AM) { default: return ""; case ISD::PRE_INC: return ""; case ISD::PRE_DEC: return ""; case ISD::POST_INC: return ""; case ISD::POST_DEC: return ""; } } std::string ISD::ArgFlagsTy::getArgFlagsString() { std::string S = "< "; if (isZExt()) S += "zext "; if (isSExt()) S += "sext "; if (isInReg()) S += "inreg "; if (isSRet()) S += "sret "; if (isByVal()) S += "byval "; if (isNest()) S += "nest "; if (getByValAlign()) S += "byval-align:" + utostr(getByValAlign()) + " "; if (getOrigAlign()) S += "orig-align:" + utostr(getOrigAlign()) + " "; if (getByValSize()) S += "byval-size:" + utostr(getByValSize()) + " "; return S + ">"; } void SDNode::dump() const { dump(0); } void SDNode::dump(const SelectionDAG *G) const { print(errs(), G); errs().flush(); } void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const { OS << (void*)this << ": "; for (unsigned i = 0, e = getNumValues(); i != e; ++i) { if (i) OS << ","; if (getValueType(i) == MVT::Other) OS << "ch"; else OS << getValueType(i).getMVTString(); } OS << " = " << getOperationName(G); OS << " "; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { if (i) OS << ", "; OS << (void*)getOperand(i).getNode(); if (unsigned RN = getOperand(i).getResNo()) OS << ":" << RN; } if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) { SDNode *Mask = getOperand(2).getNode(); OS << "<"; for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) { if (i) OS << ","; if (Mask->getOperand(i).getOpcode() == ISD::UNDEF) OS << "u"; else OS << cast(Mask->getOperand(i))->getZExtValue(); } OS << ">"; } if (const ConstantSDNode *CSDN = dyn_cast(this)) { OS << '<' << CSDN->getAPIntValue() << '>'; } else if (const ConstantFPSDNode *CSDN = dyn_cast(this)) { if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle) OS << '<' << CSDN->getValueAPF().convertToFloat() << '>'; else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble) OS << '<' << CSDN->getValueAPF().convertToDouble() << '>'; else { OS << "getValueAPF().convertToAPInt().dump(); OS << ")>"; } } else if (const GlobalAddressSDNode *GADN = dyn_cast(this)) { int offset = GADN->getOffset(); OS << '<'; WriteAsOperand(OS, GADN->getGlobal()); OS << '>'; if (offset > 0) OS << " + " << offset; else OS << " " << offset; } else if (const FrameIndexSDNode *FIDN = dyn_cast(this)) { OS << "<" << FIDN->getIndex() << ">"; } else if (const JumpTableSDNode *JTDN = dyn_cast(this)) { OS << "<" << JTDN->getIndex() << ">"; } else if (const ConstantPoolSDNode *CP = dyn_cast(this)){ int offset = CP->getOffset(); if (CP->isMachineConstantPoolEntry()) OS << "<" << *CP->getMachineCPVal() << ">"; else OS << "<" << *CP->getConstVal() << ">"; if (offset > 0) OS << " + " << offset; else OS << " " << offset; } else if (const BasicBlockSDNode *BBDN = dyn_cast(this)) { OS << "<"; const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); if (LBB) OS << LBB->getName() << " "; OS << (const void*)BBDN->getBasicBlock() << ">"; } else if (const RegisterSDNode *R = dyn_cast(this)) { if (G && R->getReg() && TargetRegisterInfo::isPhysicalRegister(R->getReg())) { OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg()); } else { OS << " #" << R->getReg(); } } else if (const ExternalSymbolSDNode *ES = dyn_cast(this)) { OS << "'" << ES->getSymbol() << "'"; } else if (const SrcValueSDNode *M = dyn_cast(this)) { if (M->getValue()) OS << "<" << M->getValue() << ">"; else OS << ""; } else if (const MemOperandSDNode *M = dyn_cast(this)) { if (M->MO.getValue()) OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">"; else OS << "MO.getOffset() << ">"; } else if (const ARG_FLAGSSDNode *N = dyn_cast(this)) { OS << N->getArgFlags().getArgFlagsString(); } else if (const VTSDNode *N = dyn_cast(this)) { OS << ":" << N->getVT().getMVTString(); } else if (const LoadSDNode *LD = dyn_cast(this)) { const Value *SrcValue = LD->getSrcValue(); int SrcOffset = LD->getSrcValueOffset(); OS << " <"; if (SrcValue) OS << SrcValue; else OS << "null"; OS << ":" << SrcOffset << ">"; bool doExt = true; switch (LD->getExtensionType()) { default: doExt = false; break; case ISD::EXTLOAD: OS << " getMemoryVT().getMVTString() << ">"; const char *AM = getIndexedModeName(LD->getAddressingMode()); if (*AM) OS << " " << AM; if (LD->isVolatile()) OS << " "; OS << " alignment=" << LD->getAlignment(); } else if (const StoreSDNode *ST = dyn_cast(this)) { const Value *SrcValue = ST->getSrcValue(); int SrcOffset = ST->getSrcValueOffset(); OS << " <"; if (SrcValue) OS << SrcValue; else OS << "null"; OS << ":" << SrcOffset << ">"; if (ST->isTruncatingStore()) OS << " getMemoryVT().getMVTString() << ">"; const char *AM = getIndexedModeName(ST->getAddressingMode()); if (*AM) OS << " " << AM; if (ST->isVolatile()) OS << " "; OS << " alignment=" << ST->getAlignment(); } else if (const AtomicSDNode* AT = dyn_cast(this)) { const Value *SrcValue = AT->getSrcValue(); int SrcOffset = AT->getSrcValueOffset(); OS << " <"; if (SrcValue) OS << SrcValue; else OS << "null"; OS << ":" << SrcOffset << ">"; if (AT->isVolatile()) OS << " "; OS << " alignment=" << AT->getAlignment(); } } static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i).getNode()->hasOneUse()) DumpNodes(N->getOperand(i).getNode(), indent+2, G); else cerr << "\n" << std::string(indent+2, ' ') << (void*)N->getOperand(i).getNode() << ": "; cerr << "\n" << std::string(indent, ' '); N->dump(G); } void SelectionDAG::dump() const { cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) { const SDNode *N = I; if (!N->hasOneUse() && N != getRoot().getNode()) DumpNodes(N, 2, this); } if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this); cerr << "\n\n"; } const Type *ConstantPoolSDNode::getType() const { if (isMachineConstantPoolEntry()) return Val.MachineCPVal->getType(); return Val.ConstVal->getType(); }