//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. Note that the // loops identified may actually be several natural loops that share the same // header node... not just a single natural loop. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopInfo.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CFG.h" #include "Support/DepthFirstIterator.h" #include using namespace llvm; static RegisterAnalysis X("loops", "Natural Loop Construction", true); //===----------------------------------------------------------------------===// // Loop implementation // bool Loop::contains(const BasicBlock *BB) const { return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); } bool Loop::isLoopExit(const BasicBlock *BB) const { for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { if (!contains(*SI)) return true; } return false; } /// getNumBackEdges - Calculate the number of back edges to the loop header. /// unsigned Loop::getNumBackEdges() const { unsigned NumBackEdges = 0; BasicBlock *H = getHeader(); for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I) if (contains(*I)) ++NumBackEdges; return NumBackEdges; } /// isLoopInvariant - Return true if the specified value is loop invariant /// bool Loop::isLoopInvariant(Value *V) const { if (Instruction *I = dyn_cast(V)) return !contains(I->getParent()); return true; // All non-instructions are loop invariant } void Loop::print(std::ostream &OS, unsigned Depth) const { OS << std::string(Depth*2, ' ') << "Loop Containing: "; for (unsigned i = 0; i < getBlocks().size(); ++i) { if (i) OS << ","; WriteAsOperand(OS, getBlocks()[i], false); } OS << "\n"; for (iterator I = begin(), E = end(); I != E; ++I) (*I)->print(OS, Depth+2); } void Loop::dump() const { print(std::cerr); } //===----------------------------------------------------------------------===// // LoopInfo implementation // void LoopInfo::stub() {} bool LoopInfo::runOnFunction(Function &) { releaseMemory(); Calculate(getAnalysis()); // Update return false; } void LoopInfo::releaseMemory() { for (std::vector::iterator I = TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I) delete *I; // Delete all of the loops... BBMap.clear(); // Reset internal state of analysis TopLevelLoops.clear(); } void LoopInfo::Calculate(const DominatorSet &DS) { BasicBlock *RootNode = DS.getRoot(); for (df_iterator NI = df_begin(RootNode), NE = df_end(RootNode); NI != NE; ++NI) if (Loop *L = ConsiderForLoop(*NI, DS)) TopLevelLoops.push_back(L); for (unsigned i = 0; i < TopLevelLoops.size(); ++i) TopLevelLoops[i]->setLoopDepth(1); } void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } void LoopInfo::print(std::ostream &OS) const { for (unsigned i = 0; i < TopLevelLoops.size(); ++i) TopLevelLoops[i]->print(OS); #if 0 for (std::map::const_iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) OS << "BB '" << I->first->getName() << "' level = " << I->second->LoopDepth << "\n"; #endif } static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) { if (SubLoop == 0) return true; if (SubLoop == ParentLoop) return false; return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); } Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) { if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node? std::vector TodoStack; // Scan the predecessors of BB, checking to see if BB dominates any of // them. This identifies backedges which target this node... for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) if (DS.dominates(BB, *I)) // If BB dominates it's predecessor... TodoStack.push_back(*I); if (TodoStack.empty()) return 0; // No backedges to this block... // Create a new loop to represent this basic block... Loop *L = new Loop(BB); BBMap[BB] = L; BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock(); while (!TodoStack.empty()) { // Process all the nodes in the loop BasicBlock *X = TodoStack.back(); TodoStack.pop_back(); if (!L->contains(X) && // As of yet unprocessed?? DS.dominates(EntryBlock, X)) { // X is reachable from entry block? // Check to see if this block already belongs to a loop. If this occurs // then we have a case where a loop that is supposed to be a child of the // current loop was processed before the current loop. When this occurs, // this child loop gets added to a part of the current loop, making it a // sibling to the current loop. We have to reparent this loop. if (Loop *SubLoop = const_cast(getLoopFor(X))) if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { // Remove the subloop from it's current parent... assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); Loop *SLP = SubLoop->ParentLoop; // SubLoopParent std::vector::iterator I = std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); SLP->SubLoops.erase(I); // Remove from parent... // Add the subloop to THIS loop... SubLoop->ParentLoop = L; L->SubLoops.push_back(SubLoop); } // Normal case, add the block to our loop... L->Blocks.push_back(X); // Add all of the predecessors of X to the end of the work stack... TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); } } // If there are any loops nested within this loop, create them now! for (std::vector::iterator I = L->Blocks.begin(), E = L->Blocks.end(); I != E; ++I) if (Loop *NewLoop = ConsiderForLoop(*I, DS)) { L->SubLoops.push_back(NewLoop); NewLoop->ParentLoop = L; } // Add the basic blocks that comprise this loop to the BBMap so that this // loop can be found for them. // for (std::vector::iterator I = L->Blocks.begin(), E = L->Blocks.end(); I != E; ++I) { std::map::iterator BBMI = BBMap.lower_bound(*I); if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet... BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level } // Now that we have a list of all of the child loops of this loop, check to // see if any of them should actually be nested inside of each other. We can // accidentally pull loops our of their parents, so we must make sure to // organize the loop nests correctly now. { std::map ContainingLoops; for (unsigned i = 0; i != L->SubLoops.size(); ++i) { Loop *Child = L->SubLoops[i]; assert(Child->getParentLoop() == L && "Not proper child loop?"); if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) { // If there is already a loop which contains this loop, move this loop // into the containing loop. MoveSiblingLoopInto(Child, ContainingLoop); --i; // The loop got removed from the SubLoops list. } else { // This is currently considered to be a top-level loop. Check to see if // any of the contained blocks are loop headers for subloops we have // already processed. for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]]; if (BlockLoop == 0) { // Child block not processed yet... BlockLoop = Child; } else if (BlockLoop != Child) { Loop *SubLoop = BlockLoop; // Reparent all of the blocks which used to belong to BlockLoops for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j) ContainingLoops[SubLoop->Blocks[j]] = Child; // There is already a loop which contains this block, that means // that we should reparent the loop which the block is currently // considered to belong to to be a child of this loop. MoveSiblingLoopInto(SubLoop, Child); --i; // We just shrunk the SubLoops list. } } } } } return L; } /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of /// the NewParent Loop, instead of being a sibling of it. void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) { Loop *OldParent = NewChild->getParentLoop(); assert(OldParent && OldParent == NewParent->getParentLoop() && NewChild != NewParent && "Not sibling loops!"); // Remove NewChild from being a child of OldParent std::vector::iterator I = std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild); assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); OldParent->SubLoops.erase(I); // Remove from parent's subloops list NewChild->ParentLoop = 0; InsertLoopInto(NewChild, NewParent); } /// InsertLoopInto - This inserts loop L into the specified parent loop. If the /// parent loop contains a loop which should contain L, the loop gets inserted /// into L instead. void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) { BasicBlock *LHeader = L->getHeader(); assert(Parent->contains(LHeader) && "This loop should not be inserted here!"); // Check to see if it belongs in a child loop... for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i) if (Parent->SubLoops[i]->contains(LHeader)) { InsertLoopInto(L, Parent->SubLoops[i]); return; } // If not, insert it here! Parent->SubLoops.push_back(L); L->ParentLoop = Parent; } /// changeLoopFor - Change the top-level loop that contains BB to the /// specified loop. This should be used by transformations that restructure /// the loop hierarchy tree. void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) { Loop *&OldLoop = BBMap[BB]; assert(OldLoop && "Block not in a loop yet!"); OldLoop = L; } /// changeTopLevelLoop - Replace the specified loop in the top-level loops /// list with the indicated loop. void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { std::vector::iterator I = std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); assert(I != TopLevelLoops.end() && "Old loop not at top level!"); *I = NewLoop; assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && "Loops already embedded into a subloop!"); } /// removeLoop - This removes the specified top-level loop from this loop info /// object. The loop is not deleted, as it will presumably be inserted into /// another loop. Loop *LoopInfo::removeLoop(iterator I) { assert(I != end() && "Cannot remove end iterator!"); Loop *L = *I; assert(L->getParentLoop() == 0 && "Not a top-level loop!"); TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); return L; } /// removeBlock - This method completely removes BB from all data structures, /// including all of the Loop objects it is nested in and our mapping from /// BasicBlocks to loops. void LoopInfo::removeBlock(BasicBlock *BB) { std::map::iterator I = BBMap.find(BB); if (I != BBMap.end()) { for (Loop *L = I->second; L; L = L->getParentLoop()) L->removeBlockFromLoop(BB); BBMap.erase(I); } } //===----------------------------------------------------------------------===// // APIs for simple analysis of the loop. // /// getExitBlocks - Return all of the successor blocks of this loop. These /// are the blocks _outside of the current loop_ which are branched to. /// void Loop::getExitBlocks(std::vector &ExitBlocks) const { for (std::vector::const_iterator BI = Blocks.begin(), BE = Blocks.end(); BI != BE; ++BI) for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) if (!contains(*I)) // Not in current loop? ExitBlocks.push_back(*I); // It must be an exit block... } /// getLoopPreheader - If there is a preheader for this loop, return it. A /// loop has a preheader if there is only one edge to the header of the loop /// from outside of the loop. If this is the case, the block branching to the /// header of the loop is the preheader node. /// /// This method returns null if there is no preheader for the loop. /// BasicBlock *Loop::getLoopPreheader() const { // Keep track of nodes outside the loop branching to the header... BasicBlock *Out = 0; // Loop over the predecessors of the header node... BasicBlock *Header = getHeader(); for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); PI != PE; ++PI) if (!contains(*PI)) { // If the block is not in the loop... if (Out && Out != *PI) return 0; // Multiple predecessors outside the loop Out = *PI; } // Make sure there is only one exit out of the preheader... succ_iterator SI = succ_begin(Out); ++SI; if (SI != succ_end(Out)) return 0; // Multiple exits from the block, must not be a preheader. // If there is exactly one preheader, return it. If there was zero, then Out // is still null. return Out; } /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable: an integer recurrence that starts at 0 and increments by /// one each time through the loop. If so, return the phi node that corresponds /// to it. /// PHINode *Loop::getCanonicalInductionVariable() const { BasicBlock *H = getHeader(); BasicBlock *Incoming = 0, *Backedge = 0; pred_iterator PI = pred_begin(H); assert(PI != pred_end(H) && "Loop must have at least one backedge!"); Backedge = *PI++; if (PI == pred_end(H)) return 0; // dead loop Incoming = *PI++; if (PI != pred_end(H)) return 0; // multiple backedges? if (contains(Incoming)) { if (contains(Backedge)) return 0; std::swap(Incoming, Backedge); } else if (!contains(Backedge)) return 0; // Loop over all of the PHI nodes, looking for a canonical indvar. for (BasicBlock::iterator I = H->begin(); PHINode *PN = dyn_cast(I); ++I) if (Instruction *Inc = dyn_cast(PN->getIncomingValueForBlock(Backedge))) if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) if (ConstantInt *CI = dyn_cast(Inc->getOperand(1))) if (CI->equalsInt(1)) return PN; return 0; } /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds /// the canonical induction variable value for the "next" iteration of the loop. /// This always succeeds if getCanonicalInductionVariable succeeds. /// Instruction *Loop::getCanonicalInductionVariableIncrement() const { if (PHINode *PN = getCanonicalInductionVariable()) { bool P1InLoop = contains(PN->getIncomingBlock(1)); return cast(PN->getIncomingValue(P1InLoop)); } return 0; } /// getTripCount - Return a loop-invariant LLVM value indicating the number of /// times the loop will be executed. Note that this means that the backedge of /// the loop executes N-1 times. If the trip-count cannot be determined, this /// returns null. /// Value *Loop::getTripCount() const { // Canonical loops will end with a 'setne I, V', where I is the incremented // canonical induction variable and V is the trip count of the loop. Instruction *Inc = getCanonicalInductionVariableIncrement(); if (Inc == 0) return 0; PHINode *IV = cast(Inc->getOperand(0)); BasicBlock *BackedgeBlock = IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); if (BranchInst *BI = dyn_cast(BackedgeBlock->getTerminator())) if (SetCondInst *SCI = dyn_cast(BI->getCondition())) if (SCI->getOperand(0) == Inc) if (BI->getSuccessor(0) == getHeader()) { if (SCI->getOpcode() == Instruction::SetNE) return SCI->getOperand(1); } else if (SCI->getOpcode() == Instruction::SetEQ) { return SCI->getOperand(1); } return 0; } //===-------------------------------------------------------------------===// // APIs for updating loop information after changing the CFG // /// addBasicBlockToLoop - This function is used by other analyses to update loop /// information. NewBB is set to be a new member of the current loop. Because /// of this, it is added as a member of all parent loops, and is added to the /// specified LoopInfo object as being in the current basic block. It is not /// valid to replace the loop header with this method. /// void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) { assert((Blocks.empty() || LI[getHeader()] == this) && "Incorrect LI specified for this loop!"); assert(NewBB && "Cannot add a null basic block to the loop!"); assert(LI[NewBB] == 0 && "BasicBlock already in the loop!"); // Add the loop mapping to the LoopInfo object... LI.BBMap[NewBB] = this; // Add the basic block to this loop and all parent loops... Loop *L = this; while (L) { L->Blocks.push_back(NewBB); L = L->getParentLoop(); } } /// replaceChildLoopWith - This is used when splitting loops up. It replaces /// the OldChild entry in our children list with NewChild, and updates the /// parent pointers of the two loops as appropriate. void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) { assert(OldChild->ParentLoop == this && "This loop is already broken!"); assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); std::vector::iterator I = std::find(SubLoops.begin(), SubLoops.end(), OldChild); assert(I != SubLoops.end() && "OldChild not in loop!"); *I = NewChild; OldChild->ParentLoop = 0; NewChild->ParentLoop = this; // Update the loop depth of the new child. NewChild->setLoopDepth(LoopDepth+1); } /// addChildLoop - Add the specified loop to be a child of this loop. /// void Loop::addChildLoop(Loop *NewChild) { assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); NewChild->ParentLoop = this; SubLoops.push_back(NewChild); // Update the loop depth of the new child. NewChild->setLoopDepth(LoopDepth+1); } template static void RemoveFromVector(std::vector &V, T *N) { typename std::vector::iterator I = std::find(V.begin(), V.end(), N); assert(I != V.end() && "N is not in this list!"); V.erase(I); } /// removeChildLoop - This removes the specified child from being a subloop of /// this loop. The loop is not deleted, as it will presumably be inserted /// into another loop. Loop *Loop::removeChildLoop(iterator I) { assert(I != SubLoops.end() && "Cannot remove end iterator!"); Loop *Child = *I; assert(Child->ParentLoop == this && "Child is not a child of this loop!"); SubLoops.erase(SubLoops.begin()+(I-begin())); Child->ParentLoop = 0; return Child; } /// removeBlockFromLoop - This removes the specified basic block from the /// current loop, updating the Blocks and ExitBlocks lists as appropriate. This /// does not update the mapping in the LoopInfo class. void Loop::removeBlockFromLoop(BasicBlock *BB) { RemoveFromVector(Blocks, BB); }