//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrBuilder.h" #include "X86ISelLowering.h" #include "X86TargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/VectorExtras.h" using namespace llvm; // FIXME: temporary. #include "llvm/Support/CommandLine.h" static cl::opt EnableFastCC("enable-x86-fastcc", cl::Hidden, cl::desc("Enable fastcc on X86")); X86TargetLowering::X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) { Subtarget = &TM.getSubtarget(); X86ScalarSSE = Subtarget->hasSSE2(); // Set up the TargetLowering object. // X86 is weird, it always uses i8 for shift amounts and setcc results. setShiftAmountType(MVT::i8); setSetCCResultType(MVT::i8); setSetCCResultContents(ZeroOrOneSetCCResult); setSchedulingPreference(SchedulingForRegPressure); setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 setStackPointerRegisterToSaveRestore(X86::ESP); // Set up the register classes. addRegisterClass(MVT::i8, X86::R8RegisterClass); addRegisterClass(MVT::i16, X86::R16RegisterClass); addRegisterClass(MVT::i32, X86::R32RegisterClass); // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this // operation. setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); if (X86ScalarSSE) // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead. setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); else setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have // this operation. setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); if (X86ScalarSSE) // SSE has no i16 to fp conversion, only i32 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); else if (!X86PatIsel) { setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); } // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64 // isn't legal. setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have // this operation. setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); if (X86ScalarSSE) { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); } else { setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); } // Handle FP_TO_UINT by promoting the destination to a larger signed // conversion. setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); if (X86ScalarSSE) // Expand FP_TO_UINT into a select. // FIXME: We would like to use a Custom expander here eventually to do // the optimal thing for SSE vs. the default expansion in the legalizer. setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); else setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); if (!X86PatIsel) { setOperationAction(ISD::BRCOND , MVT::Other, Custom); } setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand); setOperationAction(ISD::BR_CC , MVT::Other, Expand); setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); setOperationAction(ISD::FREM , MVT::f64 , Expand); setOperationAction(ISD::CTPOP , MVT::i8 , Expand); setOperationAction(ISD::CTTZ , MVT::i8 , Expand); setOperationAction(ISD::CTLZ , MVT::i8 , Expand); setOperationAction(ISD::CTPOP , MVT::i16 , Expand); setOperationAction(ISD::CTTZ , MVT::i16 , Expand); setOperationAction(ISD::CTLZ , MVT::i16 , Expand); setOperationAction(ISD::CTPOP , MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::CTLZ , MVT::i32 , Expand); setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); if (X86PatIsel) { setOperationAction(ISD::BSWAP , MVT::i32 , Expand); setOperationAction(ISD::ROTL , MVT::i8 , Expand); setOperationAction(ISD::ROTR , MVT::i8 , Expand); setOperationAction(ISD::ROTL , MVT::i16 , Expand); setOperationAction(ISD::ROTR , MVT::i16 , Expand); setOperationAction(ISD::ROTL , MVT::i32 , Expand); setOperationAction(ISD::ROTR , MVT::i32 , Expand); } setOperationAction(ISD::BSWAP , MVT::i16 , Expand); setOperationAction(ISD::READIO , MVT::i1 , Expand); setOperationAction(ISD::READIO , MVT::i8 , Expand); setOperationAction(ISD::READIO , MVT::i16 , Expand); setOperationAction(ISD::READIO , MVT::i32 , Expand); setOperationAction(ISD::WRITEIO , MVT::i1 , Expand); setOperationAction(ISD::WRITEIO , MVT::i8 , Expand); setOperationAction(ISD::WRITEIO , MVT::i16 , Expand); setOperationAction(ISD::WRITEIO , MVT::i32 , Expand); // These should be promoted to a larger select which is supported. setOperationAction(ISD::SELECT , MVT::i1 , Promote); setOperationAction(ISD::SELECT , MVT::i8 , Promote); if (!X86PatIsel) { // X86 wants to expand cmov itself. setOperationAction(ISD::SELECT , MVT::i16 , Custom); setOperationAction(ISD::SELECT , MVT::i32 , Custom); setOperationAction(ISD::SELECT , MVT::f32 , Custom); setOperationAction(ISD::SELECT , MVT::f64 , Custom); setOperationAction(ISD::SETCC , MVT::i8 , Custom); setOperationAction(ISD::SETCC , MVT::i16 , Custom); setOperationAction(ISD::SETCC , MVT::i32 , Custom); setOperationAction(ISD::SETCC , MVT::f32 , Custom); setOperationAction(ISD::SETCC , MVT::f64 , Custom); // X86 ret instruction may pop stack. setOperationAction(ISD::RET , MVT::Other, Custom); // Darwin ABI issue. setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) setOperationAction(ISD::ADD_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SUB_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); // X86 wants to expand memset / memcpy itself. setOperationAction(ISD::MEMSET , MVT::Other, Custom); setOperationAction(ISD::MEMCPY , MVT::Other, Custom); } // We don't have line number support yet. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); // Use the default implementation. setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); if (X86ScalarSSE) { // Set up the FP register classes. addRegisterClass(MVT::f32, X86::FR32RegisterClass); addRegisterClass(MVT::f64, X86::FR64RegisterClass); // SSE has no load+extend ops setOperationAction(ISD::EXTLOAD, MVT::f32, Expand); setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand); // Use ANDPD to simulate FABS. setOperationAction(ISD::FABS , MVT::f64, Custom); setOperationAction(ISD::FABS , MVT::f32, Custom); // Use XORP to simulate FNEG. setOperationAction(ISD::FNEG , MVT::f64, Custom); setOperationAction(ISD::FNEG , MVT::f32, Custom); // We don't support sin/cos/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); // Expand FP immediates into loads from the stack, except for the special // cases we handle. setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); addLegalFPImmediate(+0.0); // xorps / xorpd } else { // Set up the FP register classes. addRegisterClass(MVT::f64, X86::RFPRegisterClass); setOperationAction(ISD::UNDEF, MVT::f64, Expand); if (!UnsafeFPMath) { setOperationAction(ISD::FSIN , MVT::f64 , Expand); setOperationAction(ISD::FCOS , MVT::f64 , Expand); } setOperationAction(ISD::ConstantFP, MVT::f64, Expand); addLegalFPImmediate(+0.0); // FLD0 addLegalFPImmediate(+1.0); // FLD1 addLegalFPImmediate(-0.0); // FLD0/FCHS addLegalFPImmediate(-1.0); // FLD1/FCHS } computeRegisterProperties(); // FIXME: These should be based on subtarget info. Plus, the values should // be smaller when we are in optimizing for size mode. maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores allowUnalignedMemoryAccesses = true; // x86 supports it! } std::vector X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) return LowerFastCCArguments(F, DAG); return LowerCCCArguments(F, DAG); } std::pair X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { assert((!isVarArg || CallingConv == CallingConv::C) && "Only C takes varargs!"); // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); if (CallingConv == CallingConv::Fast && EnableFastCC) return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); return LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); } //===----------------------------------------------------------------------===// // C Calling Convention implementation //===----------------------------------------------------------------------===// std::vector X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) { std::vector ArgValues; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); // Add DAG nodes to load the arguments... On entry to a function on the X86, // the stack frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first argument (leftmost lexically) // [ESP + 8] -- second argument, if first argument is four bytes in size // ... // unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { MVT::ValueType ObjectVT = getValueType(I->getType()); unsigned ArgIncrement = 4; unsigned ObjSize; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: ObjSize = 1; break; case MVT::i16: ObjSize = 2; break; case MVT::i32: ObjSize = 4; break; case MVT::i64: ObjSize = ArgIncrement = 8; break; case MVT::f32: ObjSize = 4; break; case MVT::f64: ObjSize = ArgIncrement = 8; break; } // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); // Create the SelectionDAG nodes corresponding to a load from this parameter SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); // Don't codegen dead arguments. FIXME: remove this check when we can nuke // dead loads. SDOperand ArgValue; if (!I->use_empty()) ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); else { if (MVT::isInteger(ObjectVT)) ArgValue = DAG.getConstant(0, ObjectVT); else ArgValue = DAG.getConstantFP(0, ObjectVT); } ArgValues.push_back(ArgValue); ArgOffset += ArgIncrement; // Move on to the next argument... } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (F.isVarArg()) VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); ReturnAddrIndex = 0; // No return address slot generated yet. BytesToPopOnReturn = 0; // Callee pops nothing. BytesCallerReserves = ArgOffset; // Finally, inform the code generator which regs we return values in. switch (getValueType(F.getReturnType())) { default: assert(0 && "Unknown type!"); case MVT::isVoid: break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: MF.addLiveOut(X86::EAX); break; case MVT::i64: MF.addLiveOut(X86::EAX); MF.addLiveOut(X86::EDX); break; case MVT::f32: case MVT::f64: MF.addLiveOut(X86::ST0); break; } return ArgValues; } std::pair X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; if (Args.empty()) { // Save zero bytes. Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(0, getPointerTy())); } else { for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getValueType(Args[i].second)) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: NumBytes += 4; break; case MVT::i64: case MVT::f64: NumBytes += 8; break; } Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, getPointerTy())); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); std::vector Stores; for (unsigned i = 0, e = Args.size(); i != e; ++i) { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); switch (getValueType(Args[i].second)) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: case MVT::i8: case MVT::i16: // Promote the integer to 32 bits. If the input type is signed use a // sign extend, otherwise use a zero extend. if (Args[i].second->isSigned()) Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); else Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); // FALL THROUGH case MVT::i32: case MVT::f32: Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 4; break; case MVT::i64: case MVT::f64: Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 8; break; } } Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); RetVals.push_back(MVT::Other); // The result values produced have to be legal. Promote the result. switch (RetTyVT) { case MVT::isVoid: break; default: RetVals.push_back(RetTyVT); break; case MVT::i1: case MVT::i8: case MVT::i16: RetVals.push_back(MVT::i32); break; case MVT::f32: if (X86ScalarSSE) RetVals.push_back(MVT::f32); else RetVals.push_back(MVT::f64); break; case MVT::i64: RetVals.push_back(MVT::i32); RetVals.push_back(MVT::i32); break; } if (!X86PatIsel) { std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // FIXME: Do not generate X86ISD::TAILCALL for now. Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); SDOperand InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); Ops.push_back(DAG.getConstant(0, getPointerTy())); Ops.push_back(InFlag); Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); InFlag = Chain.getValue(1); SDOperand RetVal; if (RetTyVT != MVT::isVoid) { switch (RetTyVT) { default: assert(0 && "Unknown value type to return!"); case MVT::i1: case MVT::i8: RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); Chain = RetVal.getValue(1); if (RetTyVT == MVT::i1) RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); break; case MVT::i16: RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); Chain = RetVal.getValue(1); break; case MVT::i32: RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); Chain = RetVal.getValue(1); break; case MVT::i64: { SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, Lo.getValue(2)); RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); Chain = Hi.getValue(1); break; } case MVT::f32: case MVT::f64: { std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(InFlag); RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); Chain = RetVal.getValue(1); InFlag = RetVal.getValue(2); if (X86ScalarSSE) { // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys.clear(); Tys.push_back(MVT::Other); Ops.clear(); Ops.push_back(Chain); Ops.push_back(RetVal); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(RetTyVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, Ops); RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, DAG.getSrcValue(NULL)); Chain = RetVal.getValue(1); } if (RetTyVT == MVT::f32 && !X86ScalarSSE) // FIXME: we would really like to remember that this FP_ROUND // operation is okay to eliminate if we allow excess FP precision. RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); break; } } } return std::make_pair(RetVal, Chain); } else { std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); Ops.push_back(DAG.getConstant(0, getPointerTy())); SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL :X86ISD::CALL, RetVals, Ops); SDOperand ResultVal; switch (RetTyVT) { case MVT::isVoid: break; default: ResultVal = TheCall.getValue(1); break; case MVT::i1: case MVT::i8: case MVT::i16: ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); break; case MVT::f32: // FIXME: we would really like to remember that this FP_ROUND operation is // okay to eliminate if we allow excess FP precision. ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); break; case MVT::i64: ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), TheCall.getValue(2)); break; } Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); return std::make_pair(ResultVal, Chain); } } //===----------------------------------------------------------------------===// // Fast Calling Convention implementation //===----------------------------------------------------------------------===// // // The X86 'fast' calling convention passes up to two integer arguments in // registers (an appropriate portion of EAX/EDX), passes arguments in C order, // and requires that the callee pop its arguments off the stack (allowing proper // tail calls), and has the same return value conventions as C calling convs. // // This calling convention always arranges for the callee pop value to be 8n+4 // bytes, which is needed for tail recursion elimination and stack alignment // reasons. // // Note that this can be enhanced in the future to pass fp vals in registers // (when we have a global fp allocator) and do other tricks. // /// AddLiveIn - This helper function adds the specified physical register to the /// MachineFunction as a live in value. It also creates a corresponding virtual /// register for it. static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC) { assert(RC->contains(PReg) && "Not the correct regclass!"); unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); MF.addLiveIn(PReg, VReg); return VReg; } std::vector X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) { std::vector ArgValues; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); // Add DAG nodes to load the arguments... On entry to a function the stack // frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first nonreg argument (leftmost lexically) // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size // ... unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot // Keep track of the number of integer regs passed so far. This can be either // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both // used). unsigned NumIntRegs = 0; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { MVT::ValueType ObjectVT = getValueType(I->getType()); unsigned ArgIncrement = 4; unsigned ObjSize = 0; SDOperand ArgValue; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: if (NumIntRegs < 2) { if (!I->use_empty()) { unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, X86::R8RegisterClass); ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i8); DAG.setRoot(ArgValue.getValue(1)); if (ObjectVT == MVT::i1) // FIXME: Should insert a assertzext here. ArgValue = DAG.getNode(ISD::TRUNCATE, MVT::i1, ArgValue); } ++NumIntRegs; break; } ObjSize = 1; break; case MVT::i16: if (NumIntRegs < 2) { if (!I->use_empty()) { unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, X86::R16RegisterClass); ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i16); DAG.setRoot(ArgValue.getValue(1)); } ++NumIntRegs; break; } ObjSize = 2; break; case MVT::i32: if (NumIntRegs < 2) { if (!I->use_empty()) { unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX, X86::R32RegisterClass); ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); DAG.setRoot(ArgValue.getValue(1)); } ++NumIntRegs; break; } ObjSize = 4; break; case MVT::i64: if (NumIntRegs == 0) { if (!I->use_empty()) { unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass); unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); SDOperand Hi = DAG.getCopyFromReg(Low.getValue(1), TopReg, MVT::i32); DAG.setRoot(Hi.getValue(1)); ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); } NumIntRegs = 2; break; } else if (NumIntRegs == 1) { if (!I->use_empty()) { unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); DAG.setRoot(Low.getValue(1)); // Load the high part from memory. // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(4, ArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); } ArgOffset += 4; NumIntRegs = 2; break; } ObjSize = ArgIncrement = 8; break; case MVT::f32: ObjSize = 4; break; case MVT::f64: ObjSize = ArgIncrement = 8; break; } // Don't codegen dead arguments. FIXME: remove this check when we can nuke // dead loads. if (ObjSize && !I->use_empty()) { // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); // Create the SelectionDAG nodes corresponding to a load from this // parameter. SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); } else if (ArgValue.Val == 0) { if (MVT::isInteger(ObjectVT)) ArgValue = DAG.getConstant(0, ObjectVT); else ArgValue = DAG.getConstantFP(0, ObjectVT); } ArgValues.push_back(ArgValue); if (ObjSize) ArgOffset += ArgIncrement; // Move on to the next argument. } // Make sure the instruction takes 8n+4 bytes to make sure the start of the // arguments and the arguments after the retaddr has been pushed are aligned. if ((ArgOffset & 7) == 0) ArgOffset += 4; VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. ReturnAddrIndex = 0; // No return address slot generated yet. BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. BytesCallerReserves = 0; // Finally, inform the code generator which regs we return values in. switch (getValueType(F.getReturnType())) { default: assert(0 && "Unknown type!"); case MVT::isVoid: break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: MF.addLiveOut(X86::EAX); break; case MVT::i64: MF.addLiveOut(X86::EAX); MF.addLiveOut(X86::EDX); break; case MVT::f32: case MVT::f64: MF.addLiveOut(X86::ST0); break; } return ArgValues; } std::pair X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; // Keep track of the number of integer regs passed so far. This can be either // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both // used). unsigned NumIntRegs = 0; for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getValueType(Args[i].second)) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (NumIntRegs < 2) { ++NumIntRegs; break; } // fall through case MVT::f32: NumBytes += 4; break; case MVT::i64: if (NumIntRegs == 0) { NumIntRegs = 2; break; } else if (NumIntRegs == 1) { NumIntRegs = 2; NumBytes += 4; break; } // fall through case MVT::f64: NumBytes += 8; break; } // Make sure the instruction takes 8n+4 bytes to make sure the start of the // arguments and the arguments after the retaddr has been pushed are aligned. if ((NumBytes & 7) == 0) NumBytes += 4; Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); NumIntRegs = 0; std::vector Stores; std::vector RegValuesToPass; for (unsigned i = 0, e = Args.size(); i != e; ++i) { switch (getValueType(Args[i].second)) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: Args[i].first = DAG.getNode(ISD::ANY_EXTEND, MVT::i8, Args[i].first); // Fall through. case MVT::i8: case MVT::i16: case MVT::i32: if (NumIntRegs < 2) { RegValuesToPass.push_back(Args[i].first); ++NumIntRegs; break; } // Fall through case MVT::f32: { SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 4; break; } case MVT::i64: if (NumIntRegs < 2) { // Can pass part of it in regs? SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Args[i].first, DAG.getConstant(1, MVT::i32)); SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Args[i].first, DAG.getConstant(0, MVT::i32)); RegValuesToPass.push_back(Lo); ++NumIntRegs; if (NumIntRegs < 2) { // Pass both parts in regs? RegValuesToPass.push_back(Hi); ++NumIntRegs; } else { // Pass the high part in memory. SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Hi, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 4; } break; } // Fall through case MVT::f64: SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); ArgOffset += 8; break; } } if (!Stores.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); // Make sure the instruction takes 8n+4 bytes to make sure the start of the // arguments and the arguments after the retaddr has been pushed are aligned. if ((ArgOffset & 7) == 0) ArgOffset += 4; std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); RetVals.push_back(MVT::Other); // The result values produced have to be legal. Promote the result. switch (RetTyVT) { case MVT::isVoid: break; default: RetVals.push_back(RetTyVT); break; case MVT::i1: case MVT::i8: case MVT::i16: RetVals.push_back(MVT::i32); break; case MVT::f32: if (X86ScalarSSE) RetVals.push_back(MVT::f32); else RetVals.push_back(MVT::f64); break; case MVT::i64: RetVals.push_back(MVT::i32); RetVals.push_back(MVT::i32); break; } if (!X86PatIsel) { // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into registers. SDOperand InFlag; for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { unsigned CCReg; SDOperand RegToPass = RegValuesToPass[i]; switch (RegToPass.getValueType()) { default: assert(0 && "Bad thing to pass in regs"); case MVT::i8: CCReg = (i == 0) ? X86::AL : X86::DL; break; case MVT::i16: CCReg = (i == 0) ? X86::AX : X86::DX; break; case MVT::i32: CCReg = (i == 0) ? X86::EAX : X86::EDX; break; } Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag); InFlag = Chain.getValue(1); } std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (InFlag.Val) Ops.push_back(InFlag); // FIXME: Do not generate X86ISD::TAILCALL for now. Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. Ops.clear(); Ops.push_back(Chain); Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); Ops.push_back(InFlag); Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); InFlag = Chain.getValue(1); SDOperand RetVal; if (RetTyVT != MVT::isVoid) { switch (RetTyVT) { default: assert(0 && "Unknown value type to return!"); case MVT::i1: case MVT::i8: RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); Chain = RetVal.getValue(1); if (RetTyVT == MVT::i1) RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); break; case MVT::i16: RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); Chain = RetVal.getValue(1); break; case MVT::i32: RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); Chain = RetVal.getValue(1); break; case MVT::i64: { SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, Lo.getValue(2)); RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); Chain = Hi.getValue(1); break; } case MVT::f32: case MVT::f64: { std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(InFlag); RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); Chain = RetVal.getValue(1); InFlag = RetVal.getValue(2); if (X86ScalarSSE) { // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); Tys.clear(); Tys.push_back(MVT::Other); Ops.clear(); Ops.push_back(Chain); Ops.push_back(RetVal); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(RetTyVT)); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, Ops); RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, DAG.getSrcValue(NULL)); Chain = RetVal.getValue(1); } if (RetTyVT == MVT::f32 && !X86ScalarSSE) // FIXME: we would really like to remember that this FP_ROUND // operation is okay to eliminate if we allow excess FP precision. RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); break; } } } return std::make_pair(RetVal, Chain); } else { std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); // Callee pops all arg values on the stack. Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); // Pass register arguments as needed. Ops.insert(Ops.end(), RegValuesToPass.begin(), RegValuesToPass.end()); SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL :X86ISD::CALL, RetVals, Ops); Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); SDOperand ResultVal; switch (RetTyVT) { case MVT::isVoid: break; default: ResultVal = TheCall.getValue(1); break; case MVT::i1: case MVT::i8: case MVT::i16: ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); break; case MVT::f32: // FIXME: we would really like to remember that this FP_ROUND operation is // okay to eliminate if we allow excess FP precision. ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); break; case MVT::i64: ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), TheCall.getValue(2)); break; } return std::make_pair(ResultVal, Chain); } } SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { if (ReturnAddrIndex == 0) { // Set up a frame object for the return address. MachineFunction &MF = DAG.getMachineFunction(); ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); } return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); } std::pair X86TargetLowering:: LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { SDOperand Result; if (Depth) // Depths > 0 not supported yet! Result = DAG.getConstant(0, getPointerTy()); else { SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); if (!isFrameAddress) // Just load the return address Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, DAG.getSrcValue(NULL)); else Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, DAG.getConstant(4, MVT::i32)); } return std::make_pair(Result, Chain); } /// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode /// which corresponds to the condition code. static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) { switch (X86CC) { default: assert(0 && "Unknown X86 conditional code!"); case X86ISD::COND_A: return X86::JA; case X86ISD::COND_AE: return X86::JAE; case X86ISD::COND_B: return X86::JB; case X86ISD::COND_BE: return X86::JBE; case X86ISD::COND_E: return X86::JE; case X86ISD::COND_G: return X86::JG; case X86ISD::COND_GE: return X86::JGE; case X86ISD::COND_L: return X86::JL; case X86ISD::COND_LE: return X86::JLE; case X86ISD::COND_NE: return X86::JNE; case X86ISD::COND_NO: return X86::JNO; case X86ISD::COND_NP: return X86::JNP; case X86ISD::COND_NS: return X86::JNS; case X86ISD::COND_O: return X86::JO; case X86ISD::COND_P: return X86::JP; case X86ISD::COND_S: return X86::JS; } } /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 /// specific condition code. It returns a false if it cannot do a direct /// translation. X86CC is the translated CondCode. Flip is set to true if the /// the order of comparison operands should be flipped. static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC, bool &Flip) { ISD::CondCode SetCCOpcode = cast(CC)->get(); Flip = false; X86CC = X86ISD::COND_INVALID; if (!isFP) { switch (SetCCOpcode) { default: break; case ISD::SETEQ: X86CC = X86ISD::COND_E; break; case ISD::SETGT: X86CC = X86ISD::COND_G; break; case ISD::SETGE: X86CC = X86ISD::COND_GE; break; case ISD::SETLT: X86CC = X86ISD::COND_L; break; case ISD::SETLE: X86CC = X86ISD::COND_LE; break; case ISD::SETNE: X86CC = X86ISD::COND_NE; break; case ISD::SETULT: X86CC = X86ISD::COND_B; break; case ISD::SETUGT: X86CC = X86ISD::COND_A; break; case ISD::SETULE: X86CC = X86ISD::COND_BE; break; case ISD::SETUGE: X86CC = X86ISD::COND_AE; break; } } else { // On a floating point condition, the flags are set as follows: // ZF PF CF op // 0 | 0 | 0 | X > Y // 0 | 0 | 1 | X < Y // 1 | 0 | 0 | X == Y // 1 | 1 | 1 | unordered switch (SetCCOpcode) { default: break; case ISD::SETUEQ: case ISD::SETEQ: X86CC = X86ISD::COND_E; break; case ISD::SETOLE: Flip = true; // Fallthrough case ISD::SETOGT: case ISD::SETGT: X86CC = X86ISD::COND_A; break; case ISD::SETOLT: Flip = true; // Fallthrough case ISD::SETOGE: case ISD::SETGE: X86CC = X86ISD::COND_AE; break; case ISD::SETUGE: Flip = true; // Fallthrough case ISD::SETULT: case ISD::SETLT: X86CC = X86ISD::COND_B; break; case ISD::SETUGT: Flip = true; // Fallthrough case ISD::SETULE: case ISD::SETLE: X86CC = X86ISD::COND_BE; break; case ISD::SETONE: case ISD::SETNE: X86CC = X86ISD::COND_NE; break; case ISD::SETUO: X86CC = X86ISD::COND_P; break; case ISD::SETO: X86CC = X86ISD::COND_NP; break; } } return X86CC != X86ISD::COND_INVALID; } /// hasFPCMov - is there a floating point cmov for the specific X86 condition /// code. Current x86 isa includes the following FP cmov instructions: /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. static bool hasFPCMov(unsigned X86CC) { switch (X86CC) { default: return false; case X86ISD::COND_B: case X86ISD::COND_BE: case X86ISD::COND_E: case X86ISD::COND_P: case X86ISD::COND_A: case X86ISD::COND_AE: case X86ISD::COND_NE: case X86ISD::COND_NP: return true; } } MachineBasicBlock * X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *BB) { switch (MI->getOpcode()) { default: assert(false && "Unexpected instr type to insert"); case X86::CMOV_FR32: case X86::CMOV_FR64: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue()); BuildMI(BB, Opc, 1).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); delete MI; // The pseudo instruction is gone now. return BB; } case X86::FP_TO_INT16_IN_MEM: case X86::FP_TO_INT32_IN_MEM: case X86::FP_TO_INT64_IN_MEM: { // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. MachineFunction *F = BB->getParent(); int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned OldCW = F->getSSARegMap()->createVirtualRegister(X86::R16RegisterClass); addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); // Set the high part to be round to zero... addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); // Reload the modified control word now... addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); // Get the X86 opcode to use. unsigned Opc; switch (MI->getOpcode()) { default: assert(0 && "illegal opcode!"); case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; } X86AddressMode AM; MachineOperand &Op = MI->getOperand(0); if (Op.isRegister()) { AM.BaseType = X86AddressMode::RegBase; AM.Base.Reg = Op.getReg(); } else { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = Op.getFrameIndex(); } Op = MI->getOperand(1); if (Op.isImmediate()) AM.Scale = Op.getImmedValue(); Op = MI->getOperand(2); if (Op.isImmediate()) AM.IndexReg = Op.getImmedValue(); Op = MI->getOperand(3); if (Op.isGlobalAddress()) { AM.GV = Op.getGlobal(); } else { AM.Disp = Op.getImmedValue(); } addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg()); // Reload the original control word now. addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); delete MI; // The pseudo instruction is gone now. return BB; } } } //===----------------------------------------------------------------------===// // X86 Custom Lowering Hooks //===----------------------------------------------------------------------===// /// LowerOperation - Provide custom lowering hooks for some operations. /// SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Should not custom lower this!"); case ISD::ADD_PARTS: case ISD::SUB_PARTS: { assert(Op.getNumOperands() == 4 && Op.getValueType() == MVT::i32 && "Not an i64 add/sub!"); bool isAdd = Op.getOpcode() == ISD::ADD_PARTS; std::vector Tys; Tys.push_back(MVT::i32); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Op.getOperand(0)); Ops.push_back(Op.getOperand(2)); SDOperand Lo = DAG.getNode(isAdd ? X86ISD::ADD_FLAG : X86ISD::SUB_FLAG, Tys, Ops); SDOperand Hi = DAG.getNode(isAdd ? X86ISD::ADC : X86ISD::SBB, MVT::i32, Op.getOperand(1), Op.getOperand(3), Lo.getValue(1)); Tys.clear(); Tys.push_back(MVT::i32); Tys.push_back(MVT::i32); Ops.clear(); Ops.push_back(Lo); Ops.push_back(Hi); return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); } case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: { assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && "Not an i64 shift!"); bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; SDOperand ShOpLo = Op.getOperand(0); SDOperand ShOpHi = Op.getOperand(1); SDOperand ShAmt = Op.getOperand(2); SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) : DAG.getConstant(0, MVT::i32); SDOperand Tmp2, Tmp3; if (Op.getOpcode() == ISD::SHL_PARTS) { Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); } else { Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); } SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag, ShAmt, DAG.getConstant(32, MVT::i8)); SDOperand Hi, Lo; SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); std::vector Tys; Tys.push_back(MVT::i32); Tys.push_back(MVT::Flag); std::vector Ops; if (Op.getOpcode() == ISD::SHL_PARTS) { Ops.push_back(Tmp2); Ops.push_back(Tmp3); Ops.push_back(CC); Ops.push_back(InFlag); Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); InFlag = Hi.getValue(1); Ops.clear(); Ops.push_back(Tmp3); Ops.push_back(Tmp1); Ops.push_back(CC); Ops.push_back(InFlag); Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); } else { Ops.push_back(Tmp2); Ops.push_back(Tmp3); Ops.push_back(CC); Ops.push_back(InFlag); Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); InFlag = Lo.getValue(1); Ops.clear(); Ops.push_back(Tmp3); Ops.push_back(Tmp1); Ops.push_back(CC); Ops.push_back(InFlag); Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); } Tys.clear(); Tys.push_back(MVT::i32); Tys.push_back(MVT::i32); Ops.clear(); Ops.push_back(Lo); Ops.push_back(Hi); return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); } case ISD::SINT_TO_FP: { assert(Op.getOperand(0).getValueType() <= MVT::i64 && Op.getOperand(0).getValueType() >= MVT::i16 && "Unknown SINT_TO_FP to lower!"); SDOperand Result; MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); unsigned Size = MVT::getSizeInBits(SrcVT)/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(), Op.getOperand(0), StackSlot, DAG.getSrcValue(NULL)); // Build the FILD std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); if (X86ScalarSSE) Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Chain); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(SrcVT)); Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, Tys, Ops); if (X86ScalarSSE) { Chain = Result.getValue(1); SDOperand InFlag = Result.getValue(2); // FIXME: Currently the FST is flagged to the FILD_FLAG. This // shouldn't be necessary except that RFP cannot be live across // multiple blocks. When stackifier is fixed, they can be uncoupled. MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); std::vector Tys; Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(Result); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(Op.getValueType())); Ops.push_back(InFlag); Chain = DAG.getNode(X86ISD::FST, Tys, Ops); Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, DAG.getSrcValue(NULL)); } return Result; } case ISD::FP_TO_SINT: { assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && "Unknown FP_TO_SINT to lower!"); // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary // stack slot. MachineFunction &MF = DAG.getMachineFunction(); unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); unsigned Opc; switch (Op.getValueType()) { default: assert(0 && "Invalid FP_TO_SINT to lower!"); case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; } SDOperand Chain = DAG.getEntryNode(); SDOperand Value = Op.getOperand(0); if (X86ScalarSSE) { assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot, DAG.getSrcValue(0)); std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(StackSlot); Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType())); Value = DAG.getNode(X86ISD::FLD, Tys, Ops); Chain = Value.getValue(1); SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); } // Build the FP_TO_INT*_IN_MEM std::vector Ops; Ops.push_back(Chain); Ops.push_back(Value); Ops.push_back(StackSlot); SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); // Load the result. return DAG.getLoad(Op.getValueType(), FIST, StackSlot, DAG.getSrcValue(NULL)); } case ISD::READCYCLECOUNTER: { std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Op.getOperand(0)); SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops); Ops.clear(); Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1))); Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX, MVT::i32, Ops[0].getValue(2))); Ops.push_back(Ops[1].getValue(1)); Tys[0] = Tys[1] = MVT::i32; Tys.push_back(MVT::Other); return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); } case ISD::FABS: { MVT::ValueType VT = Op.getValueType(); const Type *OpNTy = MVT::getTypeForValueType(VT); std::vector CV; if (VT == MVT::f64) { CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } else { CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } Constant *CS = ConstantStruct::get(CV); SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); } case ISD::FNEG: { MVT::ValueType VT = Op.getValueType(); const Type *OpNTy = MVT::getTypeForValueType(VT); std::vector CV; if (VT == MVT::f64) { CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } else { CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31))); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); CV.push_back(ConstantFP::get(OpNTy, 0.0)); } Constant *CS = ConstantStruct::get(CV); SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); } case ISD::SETCC: { assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); SDOperand Cond; SDOperand CC = Op.getOperand(2); ISD::CondCode SetCCOpcode = cast(CC)->get(); bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); bool Flip; unsigned X86CC; if (translateX86CC(CC, isFP, X86CC, Flip)) { if (Flip) Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Op.getOperand(1), Op.getOperand(0)); else Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(X86ISD::SETCC, MVT::i8, DAG.getConstant(X86CC, MVT::i8), Cond); } else { assert(isFP && "Illegal integer SetCC!"); Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Op.getOperand(0), Op.getOperand(1)); std::vector Tys; std::vector Ops; switch (SetCCOpcode) { default: assert(false && "Illegal floating point SetCC!"); case ISD::SETOEQ: { // !PF & ZF Tys.push_back(MVT::i8); Tys.push_back(MVT::Flag); Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); Ops.push_back(Cond); SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, DAG.getConstant(X86ISD::COND_E, MVT::i8), Tmp1.getValue(1)); return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); } case ISD::SETUNE: { // PF | !ZF Tys.push_back(MVT::i8); Tys.push_back(MVT::Flag); Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); Ops.push_back(Cond); SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, DAG.getConstant(X86ISD::COND_NE, MVT::i8), Tmp1.getValue(1)); return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); } } } } case ISD::SELECT: { MVT::ValueType VT = Op.getValueType(); bool isFP = MVT::isFloatingPoint(VT); bool isFPStack = isFP && !X86ScalarSSE; bool isFPSSE = isFP && X86ScalarSSE; bool addTest = false; SDOperand Op0 = Op.getOperand(0); SDOperand Cond, CC; if (Op0.getOpcode() == ISD::SETCC) Op0 = LowerOperation(Op0, DAG); if (Op0.getOpcode() == X86ISD::SETCC) { // If condition flag is set by a X86ISD::CMP, then make a copy of it // (since flag operand cannot be shared). If the X86ISD::SETCC does not // have another use it will be eliminated. // If the X86ISD::SETCC has more than one use, then it's probably better // to use a test instead of duplicating the X86ISD::CMP (for register // pressure reason). if (Op0.getOperand(1).getOpcode() == X86ISD::CMP) { if (!Op0.hasOneUse()) { std::vector Tys; for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i) Tys.push_back(Op0.Val->getValueType(i)); std::vector Ops; for (unsigned i = 0; i < Op0.getNumOperands(); ++i) Ops.push_back(Op0.getOperand(i)); Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops); } CC = Op0.getOperand(0); Cond = Op0.getOperand(1); // Make a copy as flag result cannot be used by more than one. Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Cond.getOperand(0), Cond.getOperand(1)); addTest = isFPStack && !hasFPCMov(cast(CC)->getSignExtended()); } else addTest = true; } else addTest = true; if (addTest) { CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0); } std::vector Tys; Tys.push_back(Op.getValueType()); Tys.push_back(MVT::Flag); std::vector Ops; // X86ISD::CMOV means set the result (which is operand 1) to the RHS if // condition is true. Ops.push_back(Op.getOperand(2)); Ops.push_back(Op.getOperand(1)); Ops.push_back(CC); Ops.push_back(Cond); return DAG.getNode(X86ISD::CMOV, Tys, Ops); } case ISD::BRCOND: { bool addTest = false; SDOperand Cond = Op.getOperand(1); SDOperand Dest = Op.getOperand(2); SDOperand CC; if (Cond.getOpcode() == ISD::SETCC) Cond = LowerOperation(Cond, DAG); if (Cond.getOpcode() == X86ISD::SETCC) { // If condition flag is set by a X86ISD::CMP, then make a copy of it // (since flag operand cannot be shared). If the X86ISD::SETCC does not // have another use it will be eliminated. // If the X86ISD::SETCC has more than one use, then it's probably better // to use a test instead of duplicating the X86ISD::CMP (for register // pressure reason). if (Cond.getOperand(1).getOpcode() == X86ISD::CMP) { if (!Cond.hasOneUse()) { std::vector Tys; for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i) Tys.push_back(Cond.Val->getValueType(i)); std::vector Ops; for (unsigned i = 0; i < Cond.getNumOperands(); ++i) Ops.push_back(Cond.getOperand(i)); Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops); } CC = Cond.getOperand(0); Cond = Cond.getOperand(1); // Make a copy as flag result cannot be used by more than one. Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Cond.getOperand(0), Cond.getOperand(1)); } else addTest = true; } else addTest = true; if (addTest) { CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond); } return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), Op.getOperand(0), Op.getOperand(2), CC, Cond); } case ISD::MEMSET: { SDOperand InFlag; SDOperand Chain = Op.getOperand(0); unsigned Align = (unsigned)cast(Op.getOperand(4))->getValue(); if (Align == 0) Align = 1; ConstantSDNode *I = dyn_cast(Op.getOperand(3)); // If not DWORD aligned, call memset if size is less than the threshold. // It knows how to align to the right boundary first. if ((Align & 3) != 0 && !(I && I->getValue() >= Subtarget->getMinRepStrSizeThreshold())) { MVT::ValueType IntPtr = getPointerTy(); const Type *IntPtrTy = getTargetData().getIntPtrType(); std::vector > Args; Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); // Extend the ubyte argument to be an int value for the call. SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); Args.push_back(std::make_pair(Val, IntPtrTy)); Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); std::pair CallResult = LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, DAG.getExternalSymbol("memset", IntPtr), Args, DAG); return CallResult.second; } MVT::ValueType AVT; SDOperand Count; if (ConstantSDNode *ValC = dyn_cast(Op.getOperand(2))) { unsigned ValReg; unsigned Val = ValC->getValue() & 255; // If the value is a constant, then we can potentially use larger sets. switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; if (I) Count = DAG.getConstant(I->getValue() / 2, MVT::i32); else Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), DAG.getConstant(1, MVT::i8)); Val = (Val << 8) | Val; ValReg = X86::AX; break; case 0: // DWORD aligned AVT = MVT::i32; if (I) Count = DAG.getConstant(I->getValue() / 4, MVT::i32); else Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), DAG.getConstant(2, MVT::i8)); Val = (Val << 8) | Val; Val = (Val << 16) | Val; ValReg = X86::EAX; break; default: // Byte aligned AVT = MVT::i8; Count = Op.getOperand(3); ValReg = X86::AL; break; } Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), InFlag); InFlag = Chain.getValue(1); } else { AVT = MVT::i8; Count = Op.getOperand(3); Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); InFlag = Chain.getValue(1); } Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); InFlag = Chain.getValue(1); return DAG.getNode(X86ISD::REP_STOS, MVT::Other, Chain, DAG.getValueType(AVT), InFlag); } case ISD::MEMCPY: { SDOperand Chain = Op.getOperand(0); unsigned Align = (unsigned)cast(Op.getOperand(4))->getValue(); if (Align == 0) Align = 1; ConstantSDNode *I = dyn_cast(Op.getOperand(3)); // If not DWORD aligned, call memcpy if size is less than the threshold. // It knows how to align to the right boundary first. if ((Align & 3) != 0 && !(I && I->getValue() >= Subtarget->getMinRepStrSizeThreshold())) { MVT::ValueType IntPtr = getPointerTy(); const Type *IntPtrTy = getTargetData().getIntPtrType(); std::vector > Args; Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy)); Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); std::pair CallResult = LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); return CallResult.second; } MVT::ValueType AVT; SDOperand Count; switch (Align & 3) { case 2: // WORD aligned AVT = MVT::i16; if (I) Count = DAG.getConstant(I->getValue() / 2, MVT::i32); else Count = DAG.getConstant(I->getValue() / 2, MVT::i32); break; case 0: // DWORD aligned AVT = MVT::i32; if (I) Count = DAG.getConstant(I->getValue() / 4, MVT::i32); else Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), DAG.getConstant(2, MVT::i8)); break; default: // Byte aligned AVT = MVT::i8; Count = Op.getOperand(3); break; } SDOperand InFlag; Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag); InFlag = Chain.getValue(1); return DAG.getNode(X86ISD::REP_MOVS, MVT::Other, Chain, DAG.getValueType(AVT), InFlag); } case ISD::GlobalAddress: { SDOperand Result; GlobalValue *GV = cast(Op)->getGlobal(); // For Darwin, external and weak symbols are indirect, so we want to load // the value at address GV, not the value of GV itself. This means that // the GlobalAddress must be in the base or index register of the address, // not the GV offset field. if (getTargetMachine(). getSubtarget().getIndirectExternAndWeakGlobals()) { if (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || (GV->isExternal() && !GV->hasNotBeenReadFromBytecode())) Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), DAG.getTargetGlobalAddress(GV, getPointerTy()), DAG.getSrcValue(NULL)); } return Result; } case ISD::VASTART: { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. // FIXME: Replace MVT::i32 with PointerTy SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, Op.getOperand(1), Op.getOperand(2)); } case ISD::RET: { SDOperand Copy; switch(Op.getNumOperands()) { default: assert(0 && "Do not know how to return this many arguments!"); abort(); case 1: return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); case 2: { MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); if (MVT::isInteger(ArgVT)) Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1), SDOperand()); else if (!X86ScalarSSE) { std::vector Tys; Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); std::vector Ops; Ops.push_back(Op.getOperand(0)); Ops.push_back(Op.getOperand(1)); Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); } else { SDOperand MemLoc; SDOperand Chain = Op.getOperand(0); SDOperand Value = Op.getOperand(1); if (Value.getOpcode() == ISD::LOAD && (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { Chain = Value.getOperand(0); MemLoc = Value.getOperand(1); } else { // Spill the value to memory and reload it into top of stack. unsigned Size = MVT::getSizeInBits(ArgVT)/8; MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), Value, MemLoc, DAG.getSrcValue(0)); } std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(MemLoc); Ops.push_back(DAG.getValueType(ArgVT)); Copy = DAG.getNode(X86ISD::FLD, Tys, Ops); Tys.clear(); Tys.push_back(MVT::Other); Tys.push_back(MVT::Flag); Ops.clear(); Ops.push_back(Copy.getValue(1)); Ops.push_back(Copy); Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); } break; } case 3: Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(2), SDOperand()); Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1)); break; } return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), Copy.getValue(1)); } } } const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return NULL; case X86ISD::ADD_FLAG: return "X86ISD::ADD_FLAG"; case X86ISD::SUB_FLAG: return "X86ISD::SUB_FLAG"; case X86ISD::ADC: return "X86ISD::ADC"; case X86ISD::SBB: return "X86ISD::SBB"; case X86ISD::SHLD: return "X86ISD::SHLD"; case X86ISD::SHRD: return "X86ISD::SHRD"; case X86ISD::FAND: return "X86ISD::FAND"; case X86ISD::FXOR: return "X86ISD::FXOR"; case X86ISD::FILD: return "X86ISD::FILD"; case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; case X86ISD::FLD: return "X86ISD::FLD"; case X86ISD::FST: return "X86ISD::FST"; case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT"; case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; case X86ISD::CALL: return "X86ISD::CALL"; case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; case X86ISD::CMP: return "X86ISD::CMP"; case X86ISD::TEST: return "X86ISD::TEST"; case X86ISD::SETCC: return "X86ISD::SETCC"; case X86ISD::CMOV: return "X86ISD::CMOV"; case X86ISD::BRCOND: return "X86ISD::BRCOND"; case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; case X86ISD::REP_STOS: return "X86ISD::RET_STOS"; case X86ISD::REP_MOVS: return "X86ISD::RET_MOVS"; case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK"; } } void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth) const { unsigned Opc = Op.getOpcode(); KnownZero = KnownOne = 0; // Don't know anything. switch (Opc) { default: assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node"); break; case X86ISD::SETCC: KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); break; } } std::vector X86TargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint) const { if (Constraint.size() == 1) { // FIXME: not handling fp-stack yet! // FIXME: not handling MMX registers yet ('y' constraint). switch (Constraint[0]) { // GCC X86 Constraint Letters default: break; // Unknown constriant letter case 'r': // GENERAL_REGS case 'R': // LEGACY_REGS return make_vector(X86::EAX, X86::EBX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0); case 'l': // INDEX_REGS return make_vector(X86::EAX, X86::EBX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBP, 0); case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) case 'Q': // Q_REGS return make_vector(X86::EAX, X86::EBX, X86::ECX, X86::EDX, 0); case 'x': // SSE_REGS if SSE1 allowed if (Subtarget->hasSSE1()) return make_vector(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, 0); return std::vector(); case 'Y': // SSE_REGS if SSE2 allowed if (Subtarget->hasSSE2()) return make_vector(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, 0); return std::vector(); } } // Handle explicit register names. return TargetLowering::getRegForInlineAsmConstraint(Constraint); }