//===-- Local.cpp - Functions to perform local transformations ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This family of functions perform various local transformations to the // program. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Local.h" #include "llvm/Constants.h" #include "llvm/GlobalAlias.h" #include "llvm/GlobalVariable.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===----------------------------------------------------------------------===// // Local analysis. // /// isSafeToLoadUnconditionally - Return true if we know that executing a load /// from this value cannot trap. If it is not obviously safe to load from the /// specified pointer, we do a quick local scan of the basic block containing /// ScanFrom, to determine if the address is already accessed. bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { // If it is an alloca it is always safe to load from. if (isa(V)) return true; // If it is a global variable it is mostly safe to load from. if (const GlobalValue *GV = dyn_cast(V)) // Don't try to evaluate aliases. External weak GV can be null. return !isa(GV) && !GV->hasExternalWeakLinkage(); // Otherwise, be a little bit agressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); while (BBI != E) { --BBI; // If we see a free or a call which may write to memory (i.e. which might do // a free) the pointer could be marked invalid. if (isa(BBI) && BBI->mayWriteToMemory() && !isa(BBI)) return false; if (LoadInst *LI = dyn_cast(BBI)) { if (LI->getOperand(0) == V) return true; } else if (StoreInst *SI = dyn_cast(BBI)) { if (SI->getOperand(1) == V) return true; } } return false; } //===----------------------------------------------------------------------===// // Local constant propagation. // // ConstantFoldTerminator - If a terminator instruction is predicated on a // constant value, convert it into an unconditional branch to the constant // destination. // bool llvm::ConstantFoldTerminator(BasicBlock *BB) { TerminatorInst *T = BB->getTerminator(); // Branch - See if we are conditional jumping on constant if (BranchInst *BI = dyn_cast(T)) { if (BI->isUnconditional()) return false; // Can't optimize uncond branch BasicBlock *Dest1 = BI->getSuccessor(0); BasicBlock *Dest2 = BI->getSuccessor(1); if (ConstantInt *Cond = dyn_cast(BI->getCondition())) { // Are we branching on constant? // YES. Change to unconditional branch... BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; //cerr << "Function: " << T->getParent()->getParent() // << "\nRemoving branch from " << T->getParent() // << "\n\nTo: " << OldDest << endl; // Let the basic block know that we are letting go of it. Based on this, // it will adjust it's PHI nodes. assert(BI->getParent() && "Terminator not inserted in block!"); OldDest->removePredecessor(BI->getParent()); // Set the unconditional destination, and change the insn to be an // unconditional branch. BI->setUnconditionalDest(Destination); return true; } if (Dest2 == Dest1) { // Conditional branch to same location? // This branch matches something like this: // br bool %cond, label %Dest, label %Dest // and changes it into: br label %Dest // Let the basic block know that we are letting go of one copy of it. assert(BI->getParent() && "Terminator not inserted in block!"); Dest1->removePredecessor(BI->getParent()); // Change a conditional branch to unconditional. BI->setUnconditionalDest(Dest1); return true; } return false; } if (SwitchInst *SI = dyn_cast(T)) { // If we are switching on a constant, we can convert the switch into a // single branch instruction! ConstantInt *CI = dyn_cast(SI->getCondition()); BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest BasicBlock *DefaultDest = TheOnlyDest; assert(TheOnlyDest == SI->getDefaultDest() && "Default destination is not successor #0?"); // Figure out which case it goes to. for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { // Found case matching a constant operand? if (SI->getSuccessorValue(i) == CI) { TheOnlyDest = SI->getSuccessor(i); break; } // Check to see if this branch is going to the same place as the default // dest. If so, eliminate it as an explicit compare. if (SI->getSuccessor(i) == DefaultDest) { // Remove this entry. DefaultDest->removePredecessor(SI->getParent()); SI->removeCase(i); --i; --e; // Don't skip an entry... continue; } // Otherwise, check to see if the switch only branches to one destination. // We do this by reseting "TheOnlyDest" to null when we find two non-equal // destinations. if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0; } if (CI && !TheOnlyDest) { // Branching on a constant, but not any of the cases, go to the default // successor. TheOnlyDest = SI->getDefaultDest(); } // If we found a single destination that we can fold the switch into, do so // now. if (TheOnlyDest) { // Insert the new branch. BranchInst::Create(TheOnlyDest, SI); BasicBlock *BB = SI->getParent(); // Remove entries from PHI nodes which we no longer branch to... for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { // Found case matching a constant operand? BasicBlock *Succ = SI->getSuccessor(i); if (Succ == TheOnlyDest) TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest else Succ->removePredecessor(BB); } // Delete the old switch. BB->getInstList().erase(SI); return true; } if (SI->getNumSuccessors() == 2) { // Otherwise, we can fold this switch into a conditional branch // instruction if it has only one non-default destination. Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(), SI->getSuccessorValue(1), "cond"); // Insert the new branch. BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI); // Delete the old switch. SI->eraseFromParent(); return true; } return false; } if (IndirectBrInst *IBI = dyn_cast(T)) { // indirectbr blockaddress(@F, @BB) -> br label @BB if (BlockAddress *BA = dyn_cast(IBI->getAddress()->stripPointerCasts())) { BasicBlock *TheOnlyDest = BA->getBasicBlock(); // Insert the new branch. BranchInst::Create(TheOnlyDest, IBI); for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { if (IBI->getDestination(i) == TheOnlyDest) TheOnlyDest = 0; else IBI->getDestination(i)->removePredecessor(IBI->getParent()); } IBI->eraseFromParent(); // If we didn't find our destination in the IBI successor list, then we // have undefined behavior. Replace the unconditional branch with an // 'unreachable' instruction. if (TheOnlyDest) { BB->getTerminator()->eraseFromParent(); new UnreachableInst(BB->getContext(), BB); } return true; } } return false; } //===----------------------------------------------------------------------===// // Local dead code elimination... // /// isInstructionTriviallyDead - Return true if the result produced by the /// instruction is not used, and the instruction has no side effects. /// bool llvm::isInstructionTriviallyDead(Instruction *I) { if (!I->use_empty() || isa(I)) return false; // We don't want debug info removed by anything this general. if (isa(I)) return false; if (!I->mayHaveSideEffects()) return true; // Special case intrinsics that "may have side effects" but can be deleted // when dead. if (IntrinsicInst *II = dyn_cast(I)) // Safe to delete llvm.stacksave if dead. if (II->getIntrinsicID() == Intrinsic::stacksave) return true; return false; } /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a /// trivially dead instruction, delete it. If that makes any of its operands /// trivially dead, delete them too, recursively. void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) { Instruction *I = dyn_cast(V); if (!I || !I->use_empty() || !isInstructionTriviallyDead(I)) return; SmallVector DeadInsts; DeadInsts.push_back(I); while (!DeadInsts.empty()) { I = DeadInsts.pop_back_val(); // Null out all of the instruction's operands to see if any operand becomes // dead as we go. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { Value *OpV = I->getOperand(i); I->setOperand(i, 0); if (!OpV->use_empty()) continue; // If the operand is an instruction that became dead as we nulled out the // operand, and if it is 'trivially' dead, delete it in a future loop // iteration. if (Instruction *OpI = dyn_cast(OpV)) if (isInstructionTriviallyDead(OpI)) DeadInsts.push_back(OpI); } I->eraseFromParent(); } } /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively /// dead PHI node, due to being a def-use chain of single-use nodes that /// either forms a cycle or is terminated by a trivially dead instruction, /// delete it. If that makes any of its operands trivially dead, delete them /// too, recursively. void llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) { // We can remove a PHI if it is on a cycle in the def-use graph // where each node in the cycle has degree one, i.e. only one use, // and is an instruction with no side effects. if (!PN->hasOneUse()) return; SmallPtrSet PHIs; PHIs.insert(PN); for (Instruction *J = cast(*PN->use_begin()); J->hasOneUse() && !J->mayHaveSideEffects(); J = cast(*J->use_begin())) // If we find a PHI more than once, we're on a cycle that // won't prove fruitful. if (PHINode *JP = dyn_cast(J)) if (!PHIs.insert(cast(JP))) { // Break the cycle and delete the PHI and its operands. JP->replaceAllUsesWith(UndefValue::get(JP->getType())); RecursivelyDeleteTriviallyDeadInstructions(JP); break; } } //===----------------------------------------------------------------------===// // Control Flow Graph Restructuring... // /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its /// predecessor is known to have one successor (DestBB!). Eliminate the edge /// between them, moving the instructions in the predecessor into DestBB and /// deleting the predecessor block. /// void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { // If BB has single-entry PHI nodes, fold them. while (PHINode *PN = dyn_cast(DestBB->begin())) { Value *NewVal = PN->getIncomingValue(0); // Replace self referencing PHI with undef, it must be dead. if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); PN->replaceAllUsesWith(NewVal); PN->eraseFromParent(); } BasicBlock *PredBB = DestBB->getSinglePredecessor(); assert(PredBB && "Block doesn't have a single predecessor!"); // Splice all the instructions from PredBB to DestBB. PredBB->getTerminator()->eraseFromParent(); DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); // Anything that branched to PredBB now branches to DestBB. PredBB->replaceAllUsesWith(DestBB); if (P) { ProfileInfo *PI = P->getAnalysisIfAvailable(); if (PI) { PI->replaceAllUses(PredBB, DestBB); PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); } } // Nuke BB. PredBB->eraseFromParent(); } /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an /// almost-empty BB ending in an unconditional branch to Succ, into succ. /// /// Assumption: Succ is the single successor for BB. /// static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); DEBUG(errs() << "Looking to fold " << BB->getName() << " into " << Succ->getName() << "\n"); // Shortcut, if there is only a single predecessor it must be BB and merging // is always safe if (Succ->getSinglePredecessor()) return true; // Make a list of the predecessors of BB typedef SmallPtrSet BlockSet; BlockSet BBPreds(pred_begin(BB), pred_end(BB)); // Use that list to make another list of common predecessors of BB and Succ BlockSet CommonPreds; for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI) if (BBPreds.count(*PI)) CommonPreds.insert(*PI); // Shortcut, if there are no common predecessors, merging is always safe if (CommonPreds.empty()) return true; // Look at all the phi nodes in Succ, to see if they present a conflict when // merging these blocks for (BasicBlock::iterator I = Succ->begin(); isa(I); ++I) { PHINode *PN = cast(I); // If the incoming value from BB is again a PHINode in // BB which has the same incoming value for *PI as PN does, we can // merge the phi nodes and then the blocks can still be merged PHINode *BBPN = dyn_cast(PN->getIncomingValueForBlock(BB)); if (BBPN && BBPN->getParent() == BB) { for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); PI != PE; PI++) { if (BBPN->getIncomingValueForBlock(*PI) != PN->getIncomingValueForBlock(*PI)) { DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in " << Succ->getName() << " is conflicting with " << BBPN->getName() << " with regard to common predecessor " << (*PI)->getName() << "\n"); return false; } } } else { Value* Val = PN->getIncomingValueForBlock(BB); for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); PI != PE; PI++) { // See if the incoming value for the common predecessor is equal to the // one for BB, in which case this phi node will not prevent the merging // of the block. if (Val != PN->getIncomingValueForBlock(*PI)) { DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in " << Succ->getName() << " is conflicting with regard to common " << "predecessor " << (*PI)->getName() << "\n"); return false; } } } } return true; } /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an /// unconditional branch, and contains no instructions other than PHI nodes, /// potential debug intrinsics and the branch. If possible, eliminate BB by /// rewriting all the predecessors to branch to the successor block and return /// true. If we can't transform, return false. bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { // We can't eliminate infinite loops. BasicBlock *Succ = cast(BB->getTerminator())->getSuccessor(0); if (BB == Succ) return false; // Check to see if merging these blocks would cause conflicts for any of the // phi nodes in BB or Succ. If not, we can safely merge. if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; // Check for cases where Succ has multiple predecessors and a PHI node in BB // has uses which will not disappear when the PHI nodes are merged. It is // possible to handle such cases, but difficult: it requires checking whether // BB dominates Succ, which is non-trivial to calculate in the case where // Succ has multiple predecessors. Also, it requires checking whether // constructing the necessary self-referential PHI node doesn't intoduce any // conflicts; this isn't too difficult, but the previous code for doing this // was incorrect. // // Note that if this check finds a live use, BB dominates Succ, so BB is // something like a loop pre-header (or rarely, a part of an irreducible CFG); // folding the branch isn't profitable in that case anyway. if (!Succ->getSinglePredecessor()) { BasicBlock::iterator BBI = BB->begin(); while (isa(*BBI)) { for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); UI != E; ++UI) { if (PHINode* PN = dyn_cast(*UI)) { if (PN->getIncomingBlock(UI) != BB) return false; } else { return false; } } ++BBI; } } DEBUG(errs() << "Killing Trivial BB: \n" << *BB); if (isa(Succ->begin())) { // If there is more than one pred of succ, and there are PHI nodes in // the successor, then we need to add incoming edges for the PHI nodes // const SmallVector BBPreds(pred_begin(BB), pred_end(BB)); // Loop over all of the PHI nodes in the successor of BB. for (BasicBlock::iterator I = Succ->begin(); isa(I); ++I) { PHINode *PN = cast(I); Value *OldVal = PN->removeIncomingValue(BB, false); assert(OldVal && "No entry in PHI for Pred BB!"); // If this incoming value is one of the PHI nodes in BB, the new entries // in the PHI node are the entries from the old PHI. if (isa(OldVal) && cast(OldVal)->getParent() == BB) { PHINode *OldValPN = cast(OldVal); for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) // Note that, since we are merging phi nodes and BB and Succ might // have common predecessors, we could end up with a phi node with // identical incoming branches. This will be cleaned up later (and // will trigger asserts if we try to clean it up now, without also // simplifying the corresponding conditional branch). PN->addIncoming(OldValPN->getIncomingValue(i), OldValPN->getIncomingBlock(i)); } else { // Add an incoming value for each of the new incoming values. for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) PN->addIncoming(OldVal, BBPreds[i]); } } } while (PHINode *PN = dyn_cast(&BB->front())) { if (Succ->getSinglePredecessor()) { // BB is the only predecessor of Succ, so Succ will end up with exactly // the same predecessors BB had. Succ->getInstList().splice(Succ->begin(), BB->getInstList(), BB->begin()); } else { // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. assert(PN->use_empty() && "There shouldn't be any uses here!"); PN->eraseFromParent(); } } // Everything that jumped to BB now goes to Succ. BB->replaceAllUsesWith(Succ); if (!Succ->hasName()) Succ->takeName(BB); BB->eraseFromParent(); // Delete the old basic block. return true; } /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled /// with the DbgInfoIntrinsic that use the instruction I. bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I, SmallVectorImpl *DbgInUses) { if (DbgInUses) DbgInUses->clear(); for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { if (DbgInfoIntrinsic *DI = dyn_cast(*UI)) { if (DbgInUses) DbgInUses->push_back(DI); } else { if (DbgInUses) DbgInUses->clear(); return false; } } return true; }