//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the TargetLowering class. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetLowering.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/GlobalVariable.h" #include "llvm/DerivedTypes.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; namespace llvm { TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) { bool isLocal = GV->hasLocalLinkage(); bool isDeclaration = GV->isDeclaration(); // FIXME: what should we do for protected and internal visibility? // For variables, is internal different from hidden? bool isHidden = GV->hasHiddenVisibility(); if (reloc == Reloc::PIC_) { if (isLocal || isHidden) return TLSModel::LocalDynamic; else return TLSModel::GeneralDynamic; } else { if (!isDeclaration || isHidden) return TLSModel::LocalExec; else return TLSModel::InitialExec; } } } /// InitLibcallNames - Set default libcall names. /// static void InitLibcallNames(const char **Names) { Names[RTLIB::SHL_I16] = "__ashlhi3"; Names[RTLIB::SHL_I32] = "__ashlsi3"; Names[RTLIB::SHL_I64] = "__ashldi3"; Names[RTLIB::SHL_I128] = "__ashlti3"; Names[RTLIB::SRL_I16] = "__lshrhi3"; Names[RTLIB::SRL_I32] = "__lshrsi3"; Names[RTLIB::SRL_I64] = "__lshrdi3"; Names[RTLIB::SRL_I128] = "__lshrti3"; Names[RTLIB::SRA_I16] = "__ashrhi3"; Names[RTLIB::SRA_I32] = "__ashrsi3"; Names[RTLIB::SRA_I64] = "__ashrdi3"; Names[RTLIB::SRA_I128] = "__ashrti3"; Names[RTLIB::MUL_I8] = "__mulqi3"; Names[RTLIB::MUL_I16] = "__mulhi3"; Names[RTLIB::MUL_I32] = "__mulsi3"; Names[RTLIB::MUL_I64] = "__muldi3"; Names[RTLIB::MUL_I128] = "__multi3"; Names[RTLIB::SDIV_I8] = "__divqi3"; Names[RTLIB::SDIV_I16] = "__divhi3"; Names[RTLIB::SDIV_I32] = "__divsi3"; Names[RTLIB::SDIV_I64] = "__divdi3"; Names[RTLIB::SDIV_I128] = "__divti3"; Names[RTLIB::UDIV_I8] = "__udivqi3"; Names[RTLIB::UDIV_I16] = "__udivhi3"; Names[RTLIB::UDIV_I32] = "__udivsi3"; Names[RTLIB::UDIV_I64] = "__udivdi3"; Names[RTLIB::UDIV_I128] = "__udivti3"; Names[RTLIB::SREM_I8] = "__modqi3"; Names[RTLIB::SREM_I16] = "__modhi3"; Names[RTLIB::SREM_I32] = "__modsi3"; Names[RTLIB::SREM_I64] = "__moddi3"; Names[RTLIB::SREM_I128] = "__modti3"; Names[RTLIB::UREM_I8] = "__umodqi3"; Names[RTLIB::UREM_I16] = "__umodhi3"; Names[RTLIB::UREM_I32] = "__umodsi3"; Names[RTLIB::UREM_I64] = "__umoddi3"; Names[RTLIB::UREM_I128] = "__umodti3"; Names[RTLIB::NEG_I32] = "__negsi2"; Names[RTLIB::NEG_I64] = "__negdi2"; Names[RTLIB::ADD_F32] = "__addsf3"; Names[RTLIB::ADD_F64] = "__adddf3"; Names[RTLIB::ADD_F80] = "__addxf3"; Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; Names[RTLIB::SUB_F32] = "__subsf3"; Names[RTLIB::SUB_F64] = "__subdf3"; Names[RTLIB::SUB_F80] = "__subxf3"; Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; Names[RTLIB::MUL_F32] = "__mulsf3"; Names[RTLIB::MUL_F64] = "__muldf3"; Names[RTLIB::MUL_F80] = "__mulxf3"; Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; Names[RTLIB::DIV_F32] = "__divsf3"; Names[RTLIB::DIV_F64] = "__divdf3"; Names[RTLIB::DIV_F80] = "__divxf3"; Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; Names[RTLIB::REM_F32] = "fmodf"; Names[RTLIB::REM_F64] = "fmod"; Names[RTLIB::REM_F80] = "fmodl"; Names[RTLIB::REM_PPCF128] = "fmodl"; Names[RTLIB::POWI_F32] = "__powisf2"; Names[RTLIB::POWI_F64] = "__powidf2"; Names[RTLIB::POWI_F80] = "__powixf2"; Names[RTLIB::POWI_PPCF128] = "__powitf2"; Names[RTLIB::SQRT_F32] = "sqrtf"; Names[RTLIB::SQRT_F64] = "sqrt"; Names[RTLIB::SQRT_F80] = "sqrtl"; Names[RTLIB::SQRT_PPCF128] = "sqrtl"; Names[RTLIB::LOG_F32] = "logf"; Names[RTLIB::LOG_F64] = "log"; Names[RTLIB::LOG_F80] = "logl"; Names[RTLIB::LOG_PPCF128] = "logl"; Names[RTLIB::LOG2_F32] = "log2f"; Names[RTLIB::LOG2_F64] = "log2"; Names[RTLIB::LOG2_F80] = "log2l"; Names[RTLIB::LOG2_PPCF128] = "log2l"; Names[RTLIB::LOG10_F32] = "log10f"; Names[RTLIB::LOG10_F64] = "log10"; Names[RTLIB::LOG10_F80] = "log10l"; Names[RTLIB::LOG10_PPCF128] = "log10l"; Names[RTLIB::EXP_F32] = "expf"; Names[RTLIB::EXP_F64] = "exp"; Names[RTLIB::EXP_F80] = "expl"; Names[RTLIB::EXP_PPCF128] = "expl"; Names[RTLIB::EXP2_F32] = "exp2f"; Names[RTLIB::EXP2_F64] = "exp2"; Names[RTLIB::EXP2_F80] = "exp2l"; Names[RTLIB::EXP2_PPCF128] = "exp2l"; Names[RTLIB::SIN_F32] = "sinf"; Names[RTLIB::SIN_F64] = "sin"; Names[RTLIB::SIN_F80] = "sinl"; Names[RTLIB::SIN_PPCF128] = "sinl"; Names[RTLIB::COS_F32] = "cosf"; Names[RTLIB::COS_F64] = "cos"; Names[RTLIB::COS_F80] = "cosl"; Names[RTLIB::COS_PPCF128] = "cosl"; Names[RTLIB::POW_F32] = "powf"; Names[RTLIB::POW_F64] = "pow"; Names[RTLIB::POW_F80] = "powl"; Names[RTLIB::POW_PPCF128] = "powl"; Names[RTLIB::CEIL_F32] = "ceilf"; Names[RTLIB::CEIL_F64] = "ceil"; Names[RTLIB::CEIL_F80] = "ceill"; Names[RTLIB::CEIL_PPCF128] = "ceill"; Names[RTLIB::TRUNC_F32] = "truncf"; Names[RTLIB::TRUNC_F64] = "trunc"; Names[RTLIB::TRUNC_F80] = "truncl"; Names[RTLIB::TRUNC_PPCF128] = "truncl"; Names[RTLIB::RINT_F32] = "rintf"; Names[RTLIB::RINT_F64] = "rint"; Names[RTLIB::RINT_F80] = "rintl"; Names[RTLIB::RINT_PPCF128] = "rintl"; Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; Names[RTLIB::NEARBYINT_F64] = "nearbyint"; Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; Names[RTLIB::FLOOR_F32] = "floorf"; Names[RTLIB::FLOOR_F64] = "floor"; Names[RTLIB::FLOOR_F80] = "floorl"; Names[RTLIB::FLOOR_PPCF128] = "floorl"; Names[RTLIB::COPYSIGN_F32] = "copysignf"; Names[RTLIB::COPYSIGN_F64] = "copysign"; Names[RTLIB::COPYSIGN_F80] = "copysignl"; Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; Names[RTLIB::OEQ_F32] = "__eqsf2"; Names[RTLIB::OEQ_F64] = "__eqdf2"; Names[RTLIB::UNE_F32] = "__nesf2"; Names[RTLIB::UNE_F64] = "__nedf2"; Names[RTLIB::OGE_F32] = "__gesf2"; Names[RTLIB::OGE_F64] = "__gedf2"; Names[RTLIB::OLT_F32] = "__ltsf2"; Names[RTLIB::OLT_F64] = "__ltdf2"; Names[RTLIB::OLE_F32] = "__lesf2"; Names[RTLIB::OLE_F64] = "__ledf2"; Names[RTLIB::OGT_F32] = "__gtsf2"; Names[RTLIB::OGT_F64] = "__gtdf2"; Names[RTLIB::UO_F32] = "__unordsf2"; Names[RTLIB::UO_F64] = "__unorddf2"; Names[RTLIB::O_F32] = "__unordsf2"; Names[RTLIB::O_F64] = "__unorddf2"; Names[RTLIB::MEMCPY] = "memcpy"; Names[RTLIB::MEMMOVE] = "memmove"; Names[RTLIB::MEMSET] = "memset"; Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4"; Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; } /// InitLibcallCallingConvs - Set default libcall CallingConvs. /// static void InitLibcallCallingConvs(CallingConv::ID *CCs) { for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { CCs[i] = CallingConv::C; } } /// getFPEXT - Return the FPEXT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f32) { if (RetVT == MVT::f64) return FPEXT_F32_F64; } return UNKNOWN_LIBCALL; } /// getFPROUND - Return the FPROUND_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { if (RetVT == MVT::f32) { if (OpVT == MVT::f64) return FPROUND_F64_F32; if (OpVT == MVT::f80) return FPROUND_F80_F32; if (OpVT == MVT::ppcf128) return FPROUND_PPCF128_F32; } else if (RetVT == MVT::f64) { if (OpVT == MVT::f80) return FPROUND_F80_F64; if (OpVT == MVT::ppcf128) return FPROUND_PPCF128_F64; } return UNKNOWN_LIBCALL; } /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f32) { if (RetVT == MVT::i8) return FPTOSINT_F32_I8; if (RetVT == MVT::i16) return FPTOSINT_F32_I16; if (RetVT == MVT::i32) return FPTOSINT_F32_I32; if (RetVT == MVT::i64) return FPTOSINT_F32_I64; if (RetVT == MVT::i128) return FPTOSINT_F32_I128; } else if (OpVT == MVT::f64) { if (RetVT == MVT::i8) return FPTOSINT_F64_I8; if (RetVT == MVT::i16) return FPTOSINT_F64_I16; if (RetVT == MVT::i32) return FPTOSINT_F64_I32; if (RetVT == MVT::i64) return FPTOSINT_F64_I64; if (RetVT == MVT::i128) return FPTOSINT_F64_I128; } else if (OpVT == MVT::f80) { if (RetVT == MVT::i32) return FPTOSINT_F80_I32; if (RetVT == MVT::i64) return FPTOSINT_F80_I64; if (RetVT == MVT::i128) return FPTOSINT_F80_I128; } else if (OpVT == MVT::ppcf128) { if (RetVT == MVT::i32) return FPTOSINT_PPCF128_I32; if (RetVT == MVT::i64) return FPTOSINT_PPCF128_I64; if (RetVT == MVT::i128) return FPTOSINT_PPCF128_I128; } return UNKNOWN_LIBCALL; } /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f32) { if (RetVT == MVT::i8) return FPTOUINT_F32_I8; if (RetVT == MVT::i16) return FPTOUINT_F32_I16; if (RetVT == MVT::i32) return FPTOUINT_F32_I32; if (RetVT == MVT::i64) return FPTOUINT_F32_I64; if (RetVT == MVT::i128) return FPTOUINT_F32_I128; } else if (OpVT == MVT::f64) { if (RetVT == MVT::i8) return FPTOUINT_F64_I8; if (RetVT == MVT::i16) return FPTOUINT_F64_I16; if (RetVT == MVT::i32) return FPTOUINT_F64_I32; if (RetVT == MVT::i64) return FPTOUINT_F64_I64; if (RetVT == MVT::i128) return FPTOUINT_F64_I128; } else if (OpVT == MVT::f80) { if (RetVT == MVT::i32) return FPTOUINT_F80_I32; if (RetVT == MVT::i64) return FPTOUINT_F80_I64; if (RetVT == MVT::i128) return FPTOUINT_F80_I128; } else if (OpVT == MVT::ppcf128) { if (RetVT == MVT::i32) return FPTOUINT_PPCF128_I32; if (RetVT == MVT::i64) return FPTOUINT_PPCF128_I64; if (RetVT == MVT::i128) return FPTOUINT_PPCF128_I128; } return UNKNOWN_LIBCALL; } /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { if (OpVT == MVT::i32) { if (RetVT == MVT::f32) return SINTTOFP_I32_F32; else if (RetVT == MVT::f64) return SINTTOFP_I32_F64; else if (RetVT == MVT::f80) return SINTTOFP_I32_F80; else if (RetVT == MVT::ppcf128) return SINTTOFP_I32_PPCF128; } else if (OpVT == MVT::i64) { if (RetVT == MVT::f32) return SINTTOFP_I64_F32; else if (RetVT == MVT::f64) return SINTTOFP_I64_F64; else if (RetVT == MVT::f80) return SINTTOFP_I64_F80; else if (RetVT == MVT::ppcf128) return SINTTOFP_I64_PPCF128; } else if (OpVT == MVT::i128) { if (RetVT == MVT::f32) return SINTTOFP_I128_F32; else if (RetVT == MVT::f64) return SINTTOFP_I128_F64; else if (RetVT == MVT::f80) return SINTTOFP_I128_F80; else if (RetVT == MVT::ppcf128) return SINTTOFP_I128_PPCF128; } return UNKNOWN_LIBCALL; } /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { if (OpVT == MVT::i32) { if (RetVT == MVT::f32) return UINTTOFP_I32_F32; else if (RetVT == MVT::f64) return UINTTOFP_I32_F64; else if (RetVT == MVT::f80) return UINTTOFP_I32_F80; else if (RetVT == MVT::ppcf128) return UINTTOFP_I32_PPCF128; } else if (OpVT == MVT::i64) { if (RetVT == MVT::f32) return UINTTOFP_I64_F32; else if (RetVT == MVT::f64) return UINTTOFP_I64_F64; else if (RetVT == MVT::f80) return UINTTOFP_I64_F80; else if (RetVT == MVT::ppcf128) return UINTTOFP_I64_PPCF128; } else if (OpVT == MVT::i128) { if (RetVT == MVT::f32) return UINTTOFP_I128_F32; else if (RetVT == MVT::f64) return UINTTOFP_I128_F64; else if (RetVT == MVT::f80) return UINTTOFP_I128_F80; else if (RetVT == MVT::ppcf128) return UINTTOFP_I128_PPCF128; } return UNKNOWN_LIBCALL; } /// InitCmpLibcallCCs - Set default comparison libcall CC. /// static void InitCmpLibcallCCs(ISD::CondCode *CCs) { memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); CCs[RTLIB::OEQ_F32] = ISD::SETEQ; CCs[RTLIB::OEQ_F64] = ISD::SETEQ; CCs[RTLIB::UNE_F32] = ISD::SETNE; CCs[RTLIB::UNE_F64] = ISD::SETNE; CCs[RTLIB::OGE_F32] = ISD::SETGE; CCs[RTLIB::OGE_F64] = ISD::SETGE; CCs[RTLIB::OLT_F32] = ISD::SETLT; CCs[RTLIB::OLT_F64] = ISD::SETLT; CCs[RTLIB::OLE_F32] = ISD::SETLE; CCs[RTLIB::OLE_F64] = ISD::SETLE; CCs[RTLIB::OGT_F32] = ISD::SETGT; CCs[RTLIB::OGT_F64] = ISD::SETGT; CCs[RTLIB::UO_F32] = ISD::SETNE; CCs[RTLIB::UO_F64] = ISD::SETNE; CCs[RTLIB::O_F32] = ISD::SETEQ; CCs[RTLIB::O_F64] = ISD::SETEQ; } /// NOTE: The constructor takes ownership of TLOF. TargetLowering::TargetLowering(const TargetMachine &tm, const TargetLoweringObjectFile *tlof) : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) { // All operations default to being supported. memset(OpActions, 0, sizeof(OpActions)); memset(LoadExtActions, 0, sizeof(LoadExtActions)); memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); memset(CondCodeActions, 0, sizeof(CondCodeActions)); // Set default actions for various operations. for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { // Default all indexed load / store to expand. for (unsigned IM = (unsigned)ISD::PRE_INC; IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); } // These operations default to expand. setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); } // Most targets ignore the @llvm.prefetch intrinsic. setOperationAction(ISD::PREFETCH, MVT::Other, Expand); // ConstantFP nodes default to expand. Targets can either change this to // Legal, in which case all fp constants are legal, or use isFPImmLegal() // to optimize expansions for certain constants. setOperationAction(ISD::ConstantFP, MVT::f32, Expand); setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f80, Expand); // These library functions default to expand. setOperationAction(ISD::FLOG , MVT::f64, Expand); setOperationAction(ISD::FLOG2, MVT::f64, Expand); setOperationAction(ISD::FLOG10,MVT::f64, Expand); setOperationAction(ISD::FEXP , MVT::f64, Expand); setOperationAction(ISD::FEXP2, MVT::f64, Expand); setOperationAction(ISD::FLOG , MVT::f32, Expand); setOperationAction(ISD::FLOG2, MVT::f32, Expand); setOperationAction(ISD::FLOG10,MVT::f32, Expand); setOperationAction(ISD::FEXP , MVT::f32, Expand); setOperationAction(ISD::FEXP2, MVT::f32, Expand); // Default ISD::TRAP to expand (which turns it into abort). setOperationAction(ISD::TRAP, MVT::Other, Expand); IsLittleEndian = TD->isLittleEndian(); ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize()); memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; benefitFromCodePlacementOpt = false; UseUnderscoreSetJmp = false; UseUnderscoreLongJmp = false; SelectIsExpensive = false; IntDivIsCheap = false; Pow2DivIsCheap = false; JumpIsExpensive = false; StackPointerRegisterToSaveRestore = 0; ExceptionPointerRegister = 0; ExceptionSelectorRegister = 0; BooleanContents = UndefinedBooleanContent; SchedPreferenceInfo = Sched::Latency; JumpBufSize = 0; JumpBufAlignment = 0; PrefLoopAlignment = 0; MinStackArgumentAlignment = 1; ShouldFoldAtomicFences = false; InitLibcallNames(LibcallRoutineNames); InitCmpLibcallCCs(CmpLibcallCCs); InitLibcallCallingConvs(LibcallCallingConvs); } TargetLowering::~TargetLowering() { delete &TLOF; } /// canOpTrap - Returns true if the operation can trap for the value type. /// VT must be a legal type. bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const { assert(isTypeLegal(VT)); switch (Op) { default: return false; case ISD::FDIV: case ISD::FREM: case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: return true; } } static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, EVT &RegisterVT, TargetLowering *TLI) { // Figure out the right, legal destination reg to copy into. unsigned NumElts = VT.getVectorNumElements(); MVT EltTy = VT.getVectorElementType(); unsigned NumVectorRegs = 1; // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we // could break down into LHS/RHS like LegalizeDAG does. if (!isPowerOf2_32(NumElts)) { NumVectorRegs = NumElts; NumElts = 1; } // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { NumElts >>= 1; NumVectorRegs <<= 1; } NumIntermediates = NumVectorRegs; MVT NewVT = MVT::getVectorVT(EltTy, NumElts); if (!TLI->isTypeLegal(NewVT)) NewVT = EltTy; IntermediateVT = NewVT; EVT DestVT = TLI->getRegisterType(NewVT); RegisterVT = DestVT; if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits()); // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. return NumVectorRegs; } /// isLegalRC - Return true if the value types that can be represented by the /// specified register class are all legal. bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const { for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); I != E; ++I) { if (isTypeLegal(*I)) return true; } return false; } /// hasLegalSuperRegRegClasses - Return true if the specified register class /// has one or more super-reg register classes that are legal. bool TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{ if (*RC->superregclasses_begin() == 0) return false; for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), E = RC->superregclasses_end(); I != E; ++I) { const TargetRegisterClass *RRC = *I; if (isLegalRC(RRC)) return true; } return false; } /// findRepresentativeClass - Return the largest legal super-reg register class /// of the register class for the specified type and its associated "cost". std::pair TargetLowering::findRepresentativeClass(EVT VT) const { const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy]; if (!RC) return std::make_pair(RC, 0); const TargetRegisterClass *BestRC = RC; for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), E = RC->superregclasses_end(); I != E; ++I) { const TargetRegisterClass *RRC = *I; if (RRC->isASubClass() || !isLegalRC(RRC)) continue; if (!hasLegalSuperRegRegClasses(RRC)) return std::make_pair(RRC, 1); BestRC = RRC; } return std::make_pair(BestRC, 1); } /// computeRegisterProperties - Once all of the register classes are added, /// this allows us to compute derived properties we expose. void TargetLowering::computeRegisterProperties() { assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && "Too many value types for ValueTypeActions to hold!"); // Everything defaults to needing one register. for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { NumRegistersForVT[i] = 1; RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; } // ...except isVoid, which doesn't need any registers. NumRegistersForVT[MVT::isVoid] = 0; // Find the largest integer register class. unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); // Every integer value type larger than this largest register takes twice as // many registers to represent as the previous ValueType. for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) { EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg; if (!ExpandedVT.isInteger()) break; NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); ValueTypeActions.setTypeAction(ExpandedVT, Expand); } // Inspect all of the ValueType's smaller than the largest integer // register to see which ones need promotion. unsigned LegalIntReg = LargestIntReg; for (unsigned IntReg = LargestIntReg - 1; IntReg >= (unsigned)MVT::i1; --IntReg) { EVT IVT = (MVT::SimpleValueType)IntReg; if (isTypeLegal(IVT)) { LegalIntReg = IntReg; } else { RegisterTypeForVT[IntReg] = TransformToType[IntReg] = (MVT::SimpleValueType)LegalIntReg; ValueTypeActions.setTypeAction(IVT, Promote); } } // ppcf128 type is really two f64's. if (!isTypeLegal(MVT::ppcf128)) { NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; RegisterTypeForVT[MVT::ppcf128] = MVT::f64; TransformToType[MVT::ppcf128] = MVT::f64; ValueTypeActions.setTypeAction(MVT::ppcf128, Expand); } // Decide how to handle f64. If the target does not have native f64 support, // expand it to i64 and we will be generating soft float library calls. if (!isTypeLegal(MVT::f64)) { NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; TransformToType[MVT::f64] = MVT::i64; ValueTypeActions.setTypeAction(MVT::f64, Expand); } // Decide how to handle f32. If the target does not have native support for // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. if (!isTypeLegal(MVT::f32)) { if (isTypeLegal(MVT::f64)) { NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; TransformToType[MVT::f32] = MVT::f64; ValueTypeActions.setTypeAction(MVT::f32, Promote); } else { NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; TransformToType[MVT::f32] = MVT::i32; ValueTypeActions.setTypeAction(MVT::f32, Expand); } } // Loop over all of the vector value types to see which need transformations. for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { MVT VT = (MVT::SimpleValueType)i; if (isTypeLegal(VT)) continue; // Determine if there is a legal wider type. If so, we should promote to // that wider vector type. EVT EltVT = VT.getVectorElementType(); unsigned NElts = VT.getVectorNumElements(); if (NElts != 1) { bool IsLegalWiderType = false; for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { EVT SVT = (MVT::SimpleValueType)nVT; if (SVT.getVectorElementType() == EltVT && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { TransformToType[i] = SVT; RegisterTypeForVT[i] = SVT; NumRegistersForVT[i] = 1; ValueTypeActions.setTypeAction(VT, Promote); IsLegalWiderType = true; break; } } if (IsLegalWiderType) continue; } MVT IntermediateVT; EVT RegisterVT; unsigned NumIntermediates; NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, RegisterVT, this); RegisterTypeForVT[i] = RegisterVT; EVT NVT = VT.getPow2VectorType(); if (NVT == VT) { // Type is already a power of 2. The default action is to split. TransformToType[i] = MVT::Other; ValueTypeActions.setTypeAction(VT, Expand); } else { TransformToType[i] = NVT; ValueTypeActions.setTypeAction(VT, Promote); } } // Determine the 'representative' register class for each value type. // An representative register class is the largest (meaning one which is // not a sub-register class / subreg register class) legal register class for // a group of value types. For example, on i386, i8, i16, and i32 // representative would be GR32; while on x86_64 it's GR64. for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { const TargetRegisterClass* RRC; uint8_t Cost; tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); RepRegClassForVT[i] = RRC; RepRegClassCostForVT[i] = Cost; } } const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { return NULL; } MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const { return PointerTy.SimpleTy; } MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const { return MVT::i32; // return the default value } /// getVectorTypeBreakdown - Vector types are broken down into some number of /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. /// /// This method returns the number of registers needed, and the VT for each /// register. It also returns the VT and quantity of the intermediate values /// before they are promoted/expanded. /// unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, EVT &RegisterVT) const { unsigned NumElts = VT.getVectorNumElements(); // If there is a wider vector type with the same element type as this one, // we should widen to that legal vector type. This handles things like // <2 x float> -> <4 x float>. if (NumElts != 1 && getTypeAction(VT) == Promote) { RegisterVT = getTypeToTransformTo(Context, VT); if (isTypeLegal(RegisterVT)) { IntermediateVT = RegisterVT; NumIntermediates = 1; return 1; } } // Figure out the right, legal destination reg to copy into. EVT EltTy = VT.getVectorElementType(); unsigned NumVectorRegs = 1; // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we // could break down into LHS/RHS like LegalizeDAG does. if (!isPowerOf2_32(NumElts)) { NumVectorRegs = NumElts; NumElts = 1; } // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. while (NumElts > 1 && !isTypeLegal( EVT::getVectorVT(Context, EltTy, NumElts))) { NumElts >>= 1; NumVectorRegs <<= 1; } NumIntermediates = NumVectorRegs; EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); if (!isTypeLegal(NewVT)) NewVT = EltTy; IntermediateVT = NewVT; EVT DestVT = getRegisterType(Context, NewVT); RegisterVT = DestVT; if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits()); // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. return NumVectorRegs; } /// Get the EVTs and ArgFlags collections that represent the legalized return /// type of the given function. This does not require a DAG or a return value, /// and is suitable for use before any DAGs for the function are constructed. /// TODO: Move this out of TargetLowering.cpp. void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr, SmallVectorImpl &Outs, const TargetLowering &TLI, SmallVectorImpl *Offsets) { SmallVector ValueVTs; ComputeValueVTs(TLI, ReturnType, ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; unsigned Offset = 0; for (unsigned j = 0, f = NumValues; j != f; ++j) { EVT VT = ValueVTs[j]; ISD::NodeType ExtendKind = ISD::ANY_EXTEND; if (attr & Attribute::SExt) ExtendKind = ISD::SIGN_EXTEND; else if (attr & Attribute::ZExt) ExtendKind = ISD::ZERO_EXTEND; // FIXME: C calling convention requires the return type to be promoted to // at least 32-bit. But this is not necessary for non-C calling // conventions. The frontend should mark functions whose return values // require promoting with signext or zeroext attributes. if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); if (VT.bitsLT(MinVT)) VT = MinVT; } unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( PartVT.getTypeForEVT(ReturnType->getContext())); // 'inreg' on function refers to return value ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); if (attr & Attribute::InReg) Flags.setInReg(); // Propagate extension type if any if (attr & Attribute::SExt) Flags.setSExt(); else if (attr & Attribute::ZExt) Flags.setZExt(); for (unsigned i = 0; i < NumParts; ++i) { Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true)); if (Offsets) { Offsets->push_back(Offset); Offset += PartSize; } } } } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. This is the actual /// alignment, not its logarithm. unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const { return TD->getCallFrameTypeAlignment(Ty); } /// getJumpTableEncoding - Return the entry encoding for a jump table in the /// current function. The returned value is a member of the /// MachineJumpTableInfo::JTEntryKind enum. unsigned TargetLowering::getJumpTableEncoding() const { // In non-pic modes, just use the address of a block. if (getTargetMachine().getRelocationModel() != Reloc::PIC_) return MachineJumpTableInfo::EK_BlockAddress; // In PIC mode, if the target supports a GPRel32 directive, use it. if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) return MachineJumpTableInfo::EK_GPRel32BlockAddress; // Otherwise, use a label difference. return MachineJumpTableInfo::EK_LabelDifference32; } SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { // If our PIC model is GP relative, use the global offset table as the base. if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress) return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy()); return Table; } /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an /// MCExpr. const MCExpr * TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,MCContext &Ctx) const{ // The normal PIC reloc base is the label at the start of the jump table. return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); } bool TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // Assume that everything is safe in static mode. if (getTargetMachine().getRelocationModel() == Reloc::Static) return true; // In dynamic-no-pic mode, assume that known defined values are safe. if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && GA && !GA->getGlobal()->isDeclaration() && !GA->getGlobal()->isWeakForLinker()) return true; // Otherwise assume nothing is safe. return false; } //===----------------------------------------------------------------------===// // Optimization Methods //===----------------------------------------------------------------------===// /// ShrinkDemandedConstant - Check to see if the specified operand of the /// specified instruction is a constant integer. If so, check to see if there /// are any bits set in the constant that are not demanded. If so, shrink the /// constant and return true. bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded) { DebugLoc dl = Op.getDebugLoc(); // FIXME: ISD::SELECT, ISD::SELECT_CC switch (Op.getOpcode()) { default: break; case ISD::XOR: case ISD::AND: case ISD::OR: { ConstantSDNode *C = dyn_cast(Op.getOperand(1)); if (!C) return false; if (Op.getOpcode() == ISD::XOR && (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) return false; // if we can expand it to have all bits set, do it if (C->getAPIntValue().intersects(~Demanded)) { EVT VT = Op.getValueType(); SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), DAG.getConstant(Demanded & C->getAPIntValue(), VT)); return CombineTo(Op, New); } break; } } return false; } /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening /// cast, but it could be generalized for targets with other types of /// implicit widening casts. bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, DebugLoc dl) { assert(Op.getNumOperands() == 2 && "ShrinkDemandedOp only supports binary operators!"); assert(Op.getNode()->getNumValues() == 1 && "ShrinkDemandedOp only supports nodes with one result!"); // Don't do this if the node has another user, which may require the // full value. if (!Op.getNode()->hasOneUse()) return false; // Search for the smallest integer type with free casts to and from // Op's type. For expedience, just check power-of-2 integer types. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros(); if (!isPowerOf2_32(SmallVTBits)) SmallVTBits = NextPowerOf2(SmallVTBits); for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && TLI.isZExtFree(SmallVT, Op.getValueType())) { // We found a type with free casts. SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getNode()->getOperand(0)), DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getNode()->getOperand(1))); SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X); return CombineTo(Op, Z); } } return false; } /// SimplifyDemandedBits - Look at Op. At this point, we know that only the /// DemandedMask bits of the result of Op are ever used downstream. If we can /// use this information to simplify Op, create a new simplified DAG node and /// return true, returning the original and new nodes in Old and New. Otherwise, /// analyze the expression and return a mask of KnownOne and KnownZero bits for /// the expression (used to simplify the caller). The KnownZero/One bits may /// only be accurate for those bits in the DemandedMask. bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, APInt &KnownZero, APInt &KnownOne, TargetLoweringOpt &TLO, unsigned Depth) const { unsigned BitWidth = DemandedMask.getBitWidth(); assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && "Mask size mismatches value type size!"); APInt NewMask = DemandedMask; DebugLoc dl = Op.getDebugLoc(); // Don't know anything. KnownZero = KnownOne = APInt(BitWidth, 0); // Other users may use these bits. if (!Op.getNode()->hasOneUse()) { if (Depth != 0) { // If not at the root, Just compute the KnownZero/KnownOne bits to // simplify things downstream. TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); return false; } // If this is the root being simplified, allow it to have multiple uses, // just set the NewMask to all bits. NewMask = APInt::getAllOnesValue(BitWidth); } else if (DemandedMask == 0) { // Not demanding any bits from Op. if (Op.getOpcode() != ISD::UNDEF) return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); return false; } else if (Depth == 6) { // Limit search depth. return false; } APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; switch (Op.getOpcode()) { case ISD::Constant: // We know all of the bits for a constant! KnownOne = cast(Op)->getAPIntValue() & NewMask; KnownZero = ~KnownOne & NewMask; return false; // Don't fall through, will infinitely loop. case ISD::AND: // If the RHS is a constant, check to see if the LHS would be zero without // using the bits from the RHS. Below, we use knowledge about the RHS to // simplify the LHS, here we're using information from the LHS to simplify // the RHS. if (ConstantSDNode *RHSC = dyn_cast(Op.getOperand(1))) { APInt LHSZero, LHSOne; TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask, LHSZero, LHSOne, Depth+1); // If the LHS already has zeros where RHSC does, this and is dead. if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); // If any of the set bits in the RHS are known zero on the LHS, shrink // the constant. if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) return true; } if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known one on one side, return the other. // These bits cannot contribute to the result of the 'and'. if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) return TLO.CombineTo(Op, Op.getOperand(1)); // If all of the demanded bits in the inputs are known zeros, return zero. if ((NewMask & (KnownZero|KnownZero2)) == NewMask) return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); // If the RHS is a constant, see if we can simplify it. if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) return true; // If the operation can be done in a smaller type, do so. if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) return true; // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; break; case ISD::OR: if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) return TLO.CombineTo(Op, Op.getOperand(1)); // If all of the potentially set bits on one side are known to be set on // the other side, just use the 'other' side. if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) return TLO.CombineTo(Op, Op.getOperand(1)); // If the RHS is a constant, see if we can simplify it. if (TLO.ShrinkDemandedConstant(Op, NewMask)) return true; // If the operation can be done in a smaller type, do so. if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) return true; // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; break; case ISD::XOR: if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. if ((KnownZero & NewMask) == NewMask) return TLO.CombineTo(Op, Op.getOperand(0)); if ((KnownZero2 & NewMask) == NewMask) return TLO.CombineTo(Op, Op.getOperand(1)); // If the operation can be done in a smaller type, do so. if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) return true; // If all of the unknown bits are known to be zero on one side or the other // (but not both) turn this into an *inclusive* or. // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), Op.getOperand(0), Op.getOperand(1))); // Output known-0 bits are known if clear or set in both the LHS & RHS. KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); // If all of the demanded bits on one side are known, and all of the set // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known if ((KnownOne & KnownOne2) == KnownOne) { EVT VT = Op.getValueType(); SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), ANDC)); } } // If the RHS is a constant, see if we can simplify it. // for XOR, we prefer to force bits to 1 if they will make a -1. // if we can't force bits, try to shrink constant if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { APInt Expanded = C->getAPIntValue() | (~NewMask); // if we can expand it to have all bits set, do it if (Expanded.isAllOnesValue()) { if (Expanded != C->getAPIntValue()) { EVT VT = Op.getValueType(); SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), TLO.DAG.getConstant(Expanded, VT)); return TLO.CombineTo(Op, New); } // if it already has all the bits set, nothing to change // but don't shrink either! } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { return true; } } KnownZero = KnownZeroOut; KnownOne = KnownOneOut; break; case ISD::SELECT: if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. if (TLO.ShrinkDemandedConstant(Op, NewMask)) return true; // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; break; case ISD::SELECT_CC: if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. if (TLO.ShrinkDemandedConstant(Op, NewMask)) return true; // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; break; case ISD::SHL: if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { unsigned ShAmt = SA->getZExtValue(); SDValue InOp = Op.getOperand(0); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) break; // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a // single shift. We can do this if the bottom bits (which are shifted // out) are never demanded. if (InOp.getOpcode() == ISD::SRL && isa(InOp.getOperand(1))) { if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { unsigned C1= cast(InOp.getOperand(1))->getZExtValue(); unsigned Opc = ISD::SHL; int Diff = ShAmt-C1; if (Diff < 0) { Diff = -Diff; Opc = ISD::SRL; } SDValue NewSA = TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); EVT VT = Op.getValueType(); return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, InOp.getOperand(0), NewSA)); } } if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), KnownZero, KnownOne, TLO, Depth+1)) return true; // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits // are not demanded. This will likely allow the anyext to be folded away. if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { SDValue InnerOp = InOp.getNode()->getOperand(0); EVT InnerVT = InnerOp.getValueType(); if ((APInt::getHighBitsSet(BitWidth, BitWidth - InnerVT.getSizeInBits()) & DemandedMask) == 0 && isTypeDesirableForOp(ISD::SHL, InnerVT)) { EVT ShTy = getShiftAmountTy(); if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) ShTy = InnerVT; SDValue NarrowShl = TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, TLO.DAG.getConstant(ShAmt, ShTy)); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), NarrowShl)); } } KnownZero <<= SA->getZExtValue(); KnownOne <<= SA->getZExtValue(); // low bits known zero. KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); } break; case ISD::SRL: if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { EVT VT = Op.getValueType(); unsigned ShAmt = SA->getZExtValue(); unsigned VTSize = VT.getSizeInBits(); SDValue InOp = Op.getOperand(0); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) break; // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a // single shift. We can do this if the top bits (which are shifted out) // are never demanded. if (InOp.getOpcode() == ISD::SHL && isa(InOp.getOperand(1))) { if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { unsigned C1= cast(InOp.getOperand(1))->getZExtValue(); unsigned Opc = ISD::SRL; int Diff = ShAmt-C1; if (Diff < 0) { Diff = -Diff; Opc = ISD::SHL; } SDValue NewSA = TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, InOp.getOperand(0), NewSA)); } } // Compute the new bits that are at the top now. if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.lshr(ShAmt); KnownOne = KnownOne.lshr(ShAmt); APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); KnownZero |= HighBits; // High bits known zero. } break; case ISD::SRA: // If this is an arithmetic shift right and only the low-bit is set, we can // always convert this into a logical shr, even if the shift amount is // variable. The low bit of the shift cannot be an input sign bit unless // the shift amount is >= the size of the datatype, which is undefined. if (DemandedMask == 1) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op.getOperand(0), Op.getOperand(1))); if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { EVT VT = Op.getValueType(); unsigned ShAmt = SA->getZExtValue(); // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) break; APInt InDemandedMask = (NewMask << ShAmt); // If any of the demanded bits are produced by the sign extension, we also // demand the input sign bit. APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); if (HighBits.intersects(NewMask)) InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.lshr(ShAmt); KnownOne = KnownOne.lshr(ShAmt); // Handle the sign bit, adjusted to where it is now in the mask. APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), Op.getOperand(1))); } else if (KnownOne.intersects(SignBit)) { // New bits are known one. KnownOne |= HighBits; } } break; case ISD::SIGN_EXTEND_INREG: { EVT EVT = cast(Op.getOperand(1))->getVT(); // Sign extension. Compute the demanded bits in the result that are not // present in the input. APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EVT.getScalarType().getSizeInBits()); // If none of the extended bits are demanded, eliminate the sextinreg. if ((NewBits & NewMask) == 0) return TLO.CombineTo(Op, Op.getOperand(0)); APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth); APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EVT.getScalarType().getSizeInBits()) & NewMask; // Since the sign extended bits are demanded, we know that the sign // bit is demanded. InputDemandedBits |= InSignBit; if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. // If the input sign bit is known zero, convert this into a zero extension. if (KnownZero.intersects(InSignBit)) return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT)); if (KnownOne.intersects(InSignBit)) { // Input sign bit known set KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Input sign bit unknown KnownZero &= ~NewBits; KnownOne &= ~NewBits; } break; } case ISD::ZERO_EXTEND: { unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); APInt InMask = NewMask.trunc(OperandBitWidth); // If none of the top bits are demanded, convert this into an any_extend. APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; if (!NewBits.intersects(NewMask)) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Op.getOperand(0))); if (SimplifyDemandedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.zext(BitWidth); KnownOne = KnownOne.zext(BitWidth); KnownZero |= NewBits; break; } case ISD::SIGN_EXTEND: { EVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getScalarType().getSizeInBits(); APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); APInt NewBits = ~InMask & NewMask; // If none of the top bits are demanded, convert this into an any_extend. if (NewBits == 0) return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Op.getOperand(0))); // Since some of the sign extended bits are demanded, we know that the sign // bit is demanded. APInt InDemandedBits = InMask & NewMask; InDemandedBits |= InSignBit; InDemandedBits = InDemandedBits.trunc(InBits); if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, KnownOne, TLO, Depth+1)) return true; KnownZero = KnownZero.zext(BitWidth); KnownOne = KnownOne.zext(BitWidth); // If the sign bit is known zero, convert this to a zero extend. if (KnownZero.intersects(InSignBit)) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Op.getOperand(0))); // If the sign bit is known one, the top bits match. if (KnownOne.intersects(InSignBit)) { KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Otherwise, top bits aren't known. KnownOne &= ~NewBits; KnownZero &= ~NewBits; } break; } case ISD::ANY_EXTEND: { unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); APInt InMask = NewMask.trunc(OperandBitWidth); if (SimplifyDemandedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.zext(BitWidth); KnownOne = KnownOne.zext(BitWidth); break; } case ISD::TRUNCATE: { // Simplify the input, using demanded bit information, and compute the known // zero/one bits live out. unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); APInt TruncMask = NewMask.zext(OperandBitWidth); if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, KnownZero, KnownOne, TLO, Depth+1)) return true; KnownZero = KnownZero.trunc(BitWidth); KnownOne = KnownOne.trunc(BitWidth); // If the input is only used by this truncate, see if we can shrink it based // on the known demanded bits. if (Op.getOperand(0).getNode()->hasOneUse()) { SDValue In = Op.getOperand(0); switch (In.getOpcode()) { default: break; case ISD::SRL: // Shrink SRL by a constant if none of the high bits shifted in are // demanded. if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is // undesirable. break; ConstantSDNode *ShAmt = dyn_cast(In.getOperand(1)); if (!ShAmt) break; APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { // None of the shifted in bits are needed. Add a truncate of the // shift input, then shift it. SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), In.getOperand(0)); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), NewTrunc, In.getOperand(1))); } break; } } assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); break; } case ISD::AssertZext: { // Demand all the bits of the input that are demanded in the output. // The low bits are obvious; the high bits are demanded because we're // asserting that they're zero here. if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); EVT VT = cast(Op.getOperand(1))->getVT(); APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); KnownZero |= ~InMask & NewMask; break; } case ISD::BITCAST: #if 0 // If this is an FP->Int bitcast and if the sign bit is the only thing that // is demanded, turn this into a FGETSIGN. if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) && MVT::isFloatingPoint(Op.getOperand(0).getValueType()) && !MVT::isVector(Op.getOperand(0).getValueType())) { // Only do this xform if FGETSIGN is valid or if before legalize. if (!TLO.AfterLegalize || isOperationLegal(ISD::FGETSIGN, Op.getValueType())) { // Make a FGETSIGN + SHL to move the sign bit into the appropriate // place. We expect the SHL to be eliminated by other optimizations. SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), Op.getOperand(0)); unsigned ShVal = Op.getValueType().getSizeInBits()-1; SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy()); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(), Sign, ShAmt)); } } #endif break; case ISD::ADD: case ISD::MUL: case ISD::SUB: { // Add, Sub, and Mul don't demand any bits in positions beyond that // of the highest bit demanded of them. APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMask.countLeadingZeros()); if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; // See if the operation should be performed at a smaller bit width. if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) return true; } // FALL THROUGH default: // Just use ComputeMaskedBits to compute output bits. TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth); break; } // If we know the value of all of the demanded bits, return this as a // constant. if ((NewMask & (KnownZero|KnownOne)) == NewMask) return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); return false; } /// computeMaskedBitsForTargetNode - Determine which of the bits specified /// in Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && "Should use MaskedValueIsZero if you don't know whether Op" " is a target node!"); KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); } /// ComputeNumSignBitsForTargetNode - This method can be implemented by /// targets that want to expose additional information about sign bits to the /// DAG Combiner. unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, unsigned Depth) const { assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && "Should use ComputeNumSignBits if you don't know whether Op" " is a target node!"); return 1; } /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to /// determine which bit is set. /// static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { // A left-shift of a constant one will have exactly one bit set, because // shifting the bit off the end is undefined. if (Val.getOpcode() == ISD::SHL) if (ConstantSDNode *C = dyn_cast(Val.getNode()->getOperand(0))) if (C->getAPIntValue() == 1) return true; // Similarly, a right-shift of a constant sign-bit will have exactly // one bit set. if (Val.getOpcode() == ISD::SRL) if (ConstantSDNode *C = dyn_cast(Val.getNode()->getOperand(0))) if (C->getAPIntValue().isSignBit()) return true; // More could be done here, though the above checks are enough // to handle some common cases. // Fall back to ComputeMaskedBits to catch other known cases. EVT OpVT = Val.getValueType(); unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); APInt Mask = APInt::getAllOnesValue(BitWidth); APInt KnownZero, KnownOne; DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne); return (KnownZero.countPopulation() == BitWidth - 1) && (KnownOne.countPopulation() == 1); } /// SimplifySetCC - Try to simplify a setcc built with the specified operands /// and cc. If it is unable to simplify it, return a null SDValue. SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, DebugLoc dl) const { SelectionDAG &DAG = DCI.DAG; LLVMContext &Context = *DAG.getContext(); // These setcc operations always fold. switch (Cond) { default: break; case ISD::SETFALSE: case ISD::SETFALSE2: return DAG.getConstant(0, VT); case ISD::SETTRUE: case ISD::SETTRUE2: return DAG.getConstant(1, VT); } if (isa(N0.getNode())) { // Ensure that the constant occurs on the RHS, and fold constant // comparisons. return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); } if (ConstantSDNode *N1C = dyn_cast(N1.getNode())) { const APInt &C1 = N1C->getAPIntValue(); // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an // equality comparison, then we're just comparing whether X itself is // zero. if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && N0.getOperand(0).getOpcode() == ISD::CTLZ && N0.getOperand(1).getOpcode() == ISD::Constant) { const APInt &ShAmt = cast(N0.getOperand(1))->getAPIntValue(); if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { if ((C1 == 0) == (Cond == ISD::SETEQ)) { // (srl (ctlz x), 5) == 0 -> X != 0 // (srl (ctlz x), 5) != 1 -> X != 0 Cond = ISD::SETNE; } else { // (srl (ctlz x), 5) != 0 -> X == 0 // (srl (ctlz x), 5) == 1 -> X == 0 Cond = ISD::SETEQ; } SDValue Zero = DAG.getConstant(0, N0.getValueType()); return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, Cond); } } // If the LHS is '(and load, const)', the RHS is 0, // the test is for equality or unsigned, and all 1 bits of the const are // in the same partial word, see if we can shorten the load. if (DCI.isBeforeLegalize() && N0.getOpcode() == ISD::AND && C1 == 0 && N0.getNode()->hasOneUse() && isa(N0.getOperand(0)) && N0.getOperand(0).getNode()->hasOneUse() && isa(N0.getOperand(1))) { LoadSDNode *Lod = cast(N0.getOperand(0)); APInt bestMask; unsigned bestWidth = 0, bestOffset = 0; if (!Lod->isVolatile() && Lod->isUnindexed()) { unsigned origWidth = N0.getValueType().getSizeInBits(); unsigned maskWidth = origWidth; // We can narrow (e.g.) 16-bit extending loads on 32-bit target to // 8 bits, but have to be careful... if (Lod->getExtensionType() != ISD::NON_EXTLOAD) origWidth = Lod->getMemoryVT().getSizeInBits(); const APInt &Mask = cast(N0.getOperand(1))->getAPIntValue(); for (unsigned width = origWidth / 2; width>=8; width /= 2) { APInt newMask = APInt::getLowBitsSet(maskWidth, width); for (unsigned offset=0; offsetisLittleEndian()) bestOffset = (origWidth/width - offset - 1) * (width/8); else bestOffset = (uint64_t)offset * (width/8); bestMask = Mask.lshr(offset * (width/8) * 8); bestWidth = width; break; } newMask = newMask << width; } } } if (bestWidth) { EVT newVT = EVT::getIntegerVT(Context, bestWidth); if (newVT.isRound()) { EVT PtrType = Lod->getOperand(1).getValueType(); SDValue Ptr = Lod->getBasePtr(); if (bestOffset != 0) Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), DAG.getConstant(bestOffset, PtrType)); unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, Lod->getPointerInfo().getWithOffset(bestOffset), false, false, NewAlign); return DAG.getSetCC(dl, VT, DAG.getNode(ISD::AND, dl, newVT, NewLoad, DAG.getConstant(bestMask.trunc(bestWidth), newVT)), DAG.getConstant(0LL, newVT), Cond); } } } // If the LHS is a ZERO_EXTEND, perform the comparison on the input. if (N0.getOpcode() == ISD::ZERO_EXTEND) { unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); // If the comparison constant has bits in the upper part, the // zero-extended value could never match. if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), C1.getBitWidth() - InSize))) { switch (Cond) { case ISD::SETUGT: case ISD::SETUGE: case ISD::SETEQ: return DAG.getConstant(0, VT); case ISD::SETULT: case ISD::SETULE: case ISD::SETNE: return DAG.getConstant(1, VT); case ISD::SETGT: case ISD::SETGE: // True if the sign bit of C1 is set. return DAG.getConstant(C1.isNegative(), VT); case ISD::SETLT: case ISD::SETLE: // True if the sign bit of C1 isn't set. return DAG.getConstant(C1.isNonNegative(), VT); default: break; } } // Otherwise, we can perform the comparison with the low bits. switch (Cond) { case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGT: case ISD::SETUGE: case ISD::SETULT: case ISD::SETULE: { EVT newVT = N0.getOperand(0).getValueType(); if (DCI.isBeforeLegalizeOps() || (isOperationLegal(ISD::SETCC, newVT) && getCondCodeAction(Cond, newVT)==Legal)) return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(C1.trunc(InSize), newVT), Cond); break; } default: break; // todo, be more careful with signed comparisons } } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { EVT ExtSrcTy = cast(N0.getOperand(1))->getVT(); unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); EVT ExtDstTy = N0.getValueType(); unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); // If the constant doesn't fit into the number of bits for the source of // the sign extension, it is impossible for both sides to be equal. if (C1.getMinSignedBits() > ExtSrcTyBits) return DAG.getConstant(Cond == ISD::SETNE, VT); SDValue ZextOp; EVT Op0Ty = N0.getOperand(0).getValueType(); if (Op0Ty == ExtSrcTy) { ZextOp = N0.getOperand(0); } else { APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), DAG.getConstant(Imm, Op0Ty)); } if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(ZextOp.getNode()); // Otherwise, make this a use of a zext. return DAG.getSetCC(dl, VT, ZextOp, DAG.getConstant(C1 & APInt::getLowBitsSet( ExtDstTyBits, ExtSrcTyBits), ExtDstTy), Cond); } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC if (N0.getOpcode() == ISD::SETCC && isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); if (TrueWhenTrue) return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); // Invert the condition. ISD::CondCode CC = cast(N0.getOperand(2))->get(); CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType().isInteger()); return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); } if ((N0.getOpcode() == ISD::XOR || (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR && N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && isa(N0.getOperand(1)) && cast(N0.getOperand(1))->getAPIntValue() == 1) { // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We // can only do this if the top bits are known zero. unsigned BitWidth = N0.getValueSizeInBits(); if (DAG.MaskedValueIsZero(N0, APInt::getHighBitsSet(BitWidth, BitWidth-1))) { // Okay, get the un-inverted input value. SDValue Val; if (N0.getOpcode() == ISD::XOR) Val = N0.getOperand(0); else { assert(N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR); // ((X^1)&1)^1 -> X & 1 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), N0.getOperand(0).getOperand(0), N0.getOperand(1)); } return DAG.getSetCC(dl, VT, Val, N1, Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } } else if (N1C->getAPIntValue() == 1 && (VT == MVT::i1 || getBooleanContents() == ZeroOrOneBooleanContent)) { SDValue Op0 = N0; if (Op0.getOpcode() == ISD::TRUNCATE) Op0 = Op0.getOperand(0); if ((Op0.getOpcode() == ISD::XOR) && Op0.getOperand(0).getOpcode() == ISD::SETCC && Op0.getOperand(1).getOpcode() == ISD::SETCC) { // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), Cond); } else if (Op0.getOpcode() == ISD::AND && isa(Op0.getOperand(1)) && cast(Op0.getOperand(1))->getAPIntValue() == 1) { // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. if (Op0.getValueType().bitsGT(VT)) Op0 = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), DAG.getConstant(1, VT)); else if (Op0.getValueType().bitsLT(VT)) Op0 = DAG.getNode(ISD::AND, dl, VT, DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), DAG.getConstant(1, VT)); return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, Op0.getValueType()), Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } } } APInt MinVal, MaxVal; unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); if (ISD::isSignedIntSetCC(Cond)) { MinVal = APInt::getSignedMinValue(OperandBitSize); MaxVal = APInt::getSignedMaxValue(OperandBitSize); } else { MinVal = APInt::getMinValue(OperandBitSize); MaxVal = APInt::getMaxValue(OperandBitSize); } // Canonicalize GE/LE comparisons to use GT/LT comparisons. if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true // X >= C0 --> X > (C0-1) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(C1-1, N1.getValueType()), (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); } if (Cond == ISD::SETLE || Cond == ISD::SETULE) { if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true // X <= C0 --> X < (C0+1) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(C1+1, N1.getValueType()), (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); } if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) return DAG.getConstant(0, VT); // X < MIN --> false if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) return DAG.getConstant(0, VT); // X > MAX --> false if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true // Canonicalize setgt X, Min --> setne X, Min if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); // Canonicalize setlt X, Max --> setne X, Max if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); // If we have setult X, 1, turn it into seteq X, 0 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(MinVal, N0.getValueType()), ISD::SETEQ); // If we have setugt X, Max-1, turn it into seteq X, Max else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(MaxVal, N0.getValueType()), ISD::SETEQ); // If we have "setcc X, C0", check to see if we can shrink the immediate // by changing cc. // SETUGT X, SINTMAX -> SETLT X, 0 if (Cond == ISD::SETUGT && C1 == APInt::getSignedMaxValue(OperandBitSize)) return DAG.getSetCC(dl, VT, N0, DAG.getConstant(0, N1.getValueType()), ISD::SETLT); // SETULT X, SINTMIN -> SETGT X, -1 if (Cond == ISD::SETULT && C1 == APInt::getSignedMinValue(OperandBitSize)) { SDValue ConstMinusOne = DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), N1.getValueType()); return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); } // Fold bit comparisons when we can. if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && (VT == N0.getValueType() || (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && N0.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N0.getOperand(1))) { EVT ShiftTy = DCI.isBeforeLegalize() ? getPointerTy() : getShiftAmountTy(); if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 // Perform the xform if the AND RHS is a single bit. if (AndRHS->getAPIntValue().isPowerOf2()) { return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); } } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { // (X & 8) == 8 --> (X & 8) >> 3 // Perform the xform if C1 is a single bit. if (C1.isPowerOf2()) { return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, DAG.getConstant(C1.logBase2(), ShiftTy))); } } } } if (isa(N0.getNode())) { // Constant fold or commute setcc. SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); if (O.getNode()) return O; } else if (ConstantFPSDNode *CFP = dyn_cast(N1.getNode())) { // If the RHS of an FP comparison is a constant, simplify it away in // some cases. if (CFP->getValueAPF().isNaN()) { // If an operand is known to be a nan, we can fold it. switch (ISD::getUnorderedFlavor(Cond)) { default: llvm_unreachable("Unknown flavor!"); case 0: // Known false. return DAG.getConstant(0, VT); case 1: // Known true. return DAG.getConstant(1, VT); case 2: // Undefined. return DAG.getUNDEF(VT); } } // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the // constant if knowing that the operand is non-nan is enough. We prefer to // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to // materialize 0.0. if (Cond == ISD::SETO || Cond == ISD::SETUO) return DAG.getSetCC(dl, VT, N0, N0, Cond); // If the condition is not legal, see if we can find an equivalent one // which is legal. if (!isCondCodeLegal(Cond, N0.getValueType())) { // If the comparison was an awkward floating-point == or != and one of // the comparison operands is infinity or negative infinity, convert the // condition to a less-awkward <= or >=. if (CFP->getValueAPF().isInfinity()) { if (CFP->getValueAPF().isNegative()) { if (Cond == ISD::SETOEQ && isCondCodeLegal(ISD::SETOLE, N0.getValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); if (Cond == ISD::SETUEQ && isCondCodeLegal(ISD::SETOLE, N0.getValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); if (Cond == ISD::SETUNE && isCondCodeLegal(ISD::SETUGT, N0.getValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); if (Cond == ISD::SETONE && isCondCodeLegal(ISD::SETUGT, N0.getValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); } else { if (Cond == ISD::SETOEQ && isCondCodeLegal(ISD::SETOGE, N0.getValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); if (Cond == ISD::SETUEQ && isCondCodeLegal(ISD::SETOGE, N0.getValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); if (Cond == ISD::SETUNE && isCondCodeLegal(ISD::SETULT, N0.getValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); if (Cond == ISD::SETONE && isCondCodeLegal(ISD::SETULT, N0.getValueType())) return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); } } } } if (N0 == N1) { // We can always fold X == X for integer setcc's. if (N0.getValueType().isInteger()) return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); unsigned UOF = ISD::getUnorderedFlavor(Cond); if (UOF == 2) // FP operators that are undefined on NaNs. return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) return DAG.getConstant(UOF, VT); // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO // if it is not already. ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; if (NewCond != Cond) return DAG.getSetCC(dl, VT, N0, N1, NewCond); } if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && N0.getValueType().isInteger()) { if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || N0.getOpcode() == ISD::XOR) { // Simplify (X+Y) == (X+Z) --> Y == Z if (N0.getOpcode() == N1.getOpcode()) { if (N0.getOperand(0) == N1.getOperand(0)) return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); if (N0.getOperand(1) == N1.getOperand(1)) return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); if (DAG.isCommutativeBinOp(N0.getOpcode())) { // If X op Y == Y op X, try other combinations. if (N0.getOperand(0) == N1.getOperand(1)) return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), Cond); if (N0.getOperand(1) == N1.getOperand(0)) return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), Cond); } } if (ConstantSDNode *RHSC = dyn_cast(N1)) { if (ConstantSDNode *LHSR = dyn_cast(N0.getOperand(1))) { // Turn (X+C1) == C2 --> X == C2-C1 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(RHSC->getAPIntValue()- LHSR->getAPIntValue(), N0.getValueType()), Cond); } // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. if (N0.getOpcode() == ISD::XOR) // If we know that all of the inverted bits are zero, don't bother // performing the inversion. if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), N0.getValueType()), Cond); } // Turn (C1-X) == C2 --> X == C1-C2 if (ConstantSDNode *SUBC = dyn_cast(N0.getOperand(0))) { if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { return DAG.getSetCC(dl, VT, N0.getOperand(1), DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), N0.getValueType()), Cond); } } } // Simplify (X+Z) == X --> Z == 0 if (N0.getOperand(0) == N1) return DAG.getSetCC(dl, VT, N0.getOperand(1), DAG.getConstant(0, N0.getValueType()), Cond); if (N0.getOperand(1) == N1) { if (DAG.isCommutativeBinOp(N0.getOpcode())) return DAG.getSetCC(dl, VT, N0.getOperand(0), DAG.getConstant(0, N0.getValueType()), Cond); else if (N0.getNode()->hasOneUse()) { assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); // (Z-X) == X --> Z == X<<1 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, DAG.getConstant(1, getShiftAmountTy())); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(SH.getNode()); return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); } } } if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::XOR) { // Simplify X == (X+Z) --> Z == 0 if (N1.getOperand(0) == N0) { return DAG.getSetCC(dl, VT, N1.getOperand(1), DAG.getConstant(0, N1.getValueType()), Cond); } else if (N1.getOperand(1) == N0) { if (DAG.isCommutativeBinOp(N1.getOpcode())) { return DAG.getSetCC(dl, VT, N1.getOperand(0), DAG.getConstant(0, N1.getValueType()), Cond); } else if (N1.getNode()->hasOneUse()) { assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); // X == (Z-X) --> X<<1 == Z SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, DAG.getConstant(1, getShiftAmountTy())); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(SH.getNode()); return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); } } } // Simplify x&y == y to x&y != 0 if y has exactly one bit set. // Note that where y is variable and is known to have at most // one bit set (for example, if it is z&1) we cannot do this; // the expressions are not equivalent when y==0. if (N0.getOpcode() == ISD::AND) if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { if (ValueHasExactlyOneBitSet(N1, DAG)) { Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); SDValue Zero = DAG.getConstant(0, N1.getValueType()); return DAG.getSetCC(dl, VT, N0, Zero, Cond); } } if (N1.getOpcode() == ISD::AND) if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { if (ValueHasExactlyOneBitSet(N0, DAG)) { Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); SDValue Zero = DAG.getConstant(0, N0.getValueType()); return DAG.getSetCC(dl, VT, N1, Zero, Cond); } } } // Fold away ALL boolean setcc's. SDValue Temp; if (N0.getValueType() == MVT::i1 && foldBooleans) { switch (Cond) { default: llvm_unreachable("Unknown integer setcc!"); case ISD::SETEQ: // X == Y -> ~(X^Y) Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); N0 = DAG.getNOT(dl, Temp, MVT::i1); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETNE: // X != Y --> (X^Y) N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); break; case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y case ISD::SETULT: // X X == 0 & Y == 1 --> ~X & Y Temp = DAG.getNOT(dl, N0, MVT::i1); N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETLT: // X X == 1 & Y == 0 --> ~Y & X case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X Temp = DAG.getNOT(dl, N1, MVT::i1); N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y Temp = DAG.getNOT(dl, N0, MVT::i1); N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(Temp.getNode()); break; case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X Temp = DAG.getNOT(dl, N1, MVT::i1); N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); break; } if (VT != MVT::i1) { if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(N0.getNode()); // FIXME: If running after legalize, we probably can't do this. N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); } return N0; } // Could not fold it. return SDValue(); } /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the /// node is a GlobalAddress + offset. bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const { if (isa(N)) { GlobalAddressSDNode *GASD = cast(N); GA = GASD->getGlobal(); Offset += GASD->getOffset(); return true; } if (N->getOpcode() == ISD::ADD) { SDValue N1 = N->getOperand(0); SDValue N2 = N->getOperand(1); if (isGAPlusOffset(N1.getNode(), GA, Offset)) { ConstantSDNode *V = dyn_cast(N2); if (V) { Offset += V->getSExtValue(); return true; } } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { ConstantSDNode *V = dyn_cast(N1); if (V) { Offset += V->getSExtValue(); return true; } } } return false; } SDValue TargetLowering:: PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { // Default implementation: no optimization. return SDValue(); } //===----------------------------------------------------------------------===// // Inline Assembler Implementation Methods //===----------------------------------------------------------------------===// TargetLowering::ConstraintType TargetLowering::getConstraintType(const std::string &Constraint) const { // FIXME: lots more standard ones to handle. if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'r': return C_RegisterClass; case 'm': // memory case 'o': // offsetable case 'V': // not offsetable return C_Memory; case 'i': // Simple Integer or Relocatable Constant case 'n': // Simple Integer case 'E': // Floating Point Constant case 'F': // Floating Point Constant case 's': // Relocatable Constant case 'p': // Address. case 'X': // Allow ANY value. case 'I': // Target registers. case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case '<': case '>': return C_Other; } } if (Constraint.size() > 1 && Constraint[0] == '{' && Constraint[Constraint.size()-1] == '}') return C_Register; return C_Unknown; } /// LowerXConstraint - try to replace an X constraint, which matches anything, /// with another that has more specific requirements based on the type of the /// corresponding operand. const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ if (ConstraintVT.isInteger()) return "r"; if (ConstraintVT.isFloatingPoint()) return "f"; // works for many targets return 0; } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter, std::vector &Ops, SelectionDAG &DAG) const { switch (ConstraintLetter) { default: break; case 'X': // Allows any operand; labels (basic block) use this. if (Op.getOpcode() == ISD::BasicBlock) { Ops.push_back(Op); return; } // fall through case 'i': // Simple Integer or Relocatable Constant case 'n': // Simple Integer case 's': { // Relocatable Constant // These operands are interested in values of the form (GV+C), where C may // be folded in as an offset of GV, or it may be explicitly added. Also, it // is possible and fine if either GV or C are missing. ConstantSDNode *C = dyn_cast(Op); GlobalAddressSDNode *GA = dyn_cast(Op); // If we have "(add GV, C)", pull out GV/C if (Op.getOpcode() == ISD::ADD) { C = dyn_cast(Op.getOperand(1)); GA = dyn_cast(Op.getOperand(0)); if (C == 0 || GA == 0) { C = dyn_cast(Op.getOperand(0)); GA = dyn_cast(Op.getOperand(1)); } if (C == 0 || GA == 0) C = 0, GA = 0; } // If we find a valid operand, map to the TargetXXX version so that the // value itself doesn't get selected. if (GA) { // Either &GV or &GV+C if (ConstraintLetter != 'n') { int64_t Offs = GA->getOffset(); if (C) Offs += C->getZExtValue(); Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), C ? C->getDebugLoc() : DebugLoc(), Op.getValueType(), Offs)); return; } } if (C) { // just C, no GV. // Simple constants are not allowed for 's'. if (ConstraintLetter != 's') { // gcc prints these as sign extended. Sign extend value to 64 bits // now; without this it would get ZExt'd later in // ScheduleDAGSDNodes::EmitNode, which is very generic. Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), MVT::i64)); return; } } break; } } } std::vector TargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { return std::vector(); } std::pair TargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint[0] != '{') return std::make_pair(0u, static_cast(0)); assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); // Remove the braces from around the name. StringRef RegName(Constraint.data()+1, Constraint.size()-2); // Figure out which register class contains this reg. const TargetRegisterInfo *RI = TM.getRegisterInfo(); for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), E = RI->regclass_end(); RCI != E; ++RCI) { const TargetRegisterClass *RC = *RCI; // If none of the value types for this register class are valid, we // can't use it. For example, 64-bit reg classes on 32-bit targets. bool isLegal = false; for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); I != E; ++I) { if (isTypeLegal(*I)) { isLegal = true; break; } } if (!isLegal) continue; for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I != E; ++I) { if (RegName.equals_lower(RI->getName(*I))) return std::make_pair(*I, RC); } } return std::make_pair(0u, static_cast(0)); } //===----------------------------------------------------------------------===// // Constraint Selection. /// isMatchingInputConstraint - Return true of this is an input operand that is /// a matching constraint like "4". bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { assert(!ConstraintCode.empty() && "No known constraint!"); return isdigit(ConstraintCode[0]); } /// getMatchedOperand - If this is an input matching constraint, this method /// returns the output operand it matches. unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { assert(!ConstraintCode.empty() && "No known constraint!"); return atoi(ConstraintCode.c_str()); } /// ParseConstraints - Split up the constraint string from the inline /// assembly value into the specific constraints and their prefixes, /// and also tie in the associated operand values. /// If this returns an empty vector, and if the constraint string itself /// isn't empty, there was an error parsing. TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( ImmutableCallSite CS) const { /// ConstraintOperands - Information about all of the constraints. AsmOperandInfoVector ConstraintOperands; const InlineAsm *IA = cast(CS.getCalledValue()); unsigned maCount = 0; // Largest number of multiple alternative constraints. // Do a prepass over the constraints, canonicalizing them, and building up the // ConstraintOperands list. InlineAsm::ConstraintInfoVector ConstraintInfos = IA->ParseConstraints(); unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. unsigned ResNo = 0; // ResNo - The result number of the next output. for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); AsmOperandInfo &OpInfo = ConstraintOperands.back(); // Update multiple alternative constraint count. if (OpInfo.multipleAlternatives.size() > maCount) maCount = OpInfo.multipleAlternatives.size(); OpInfo.ConstraintVT = MVT::Other; // Compute the value type for each operand. switch (OpInfo.Type) { case InlineAsm::isOutput: // Indirect outputs just consume an argument. if (OpInfo.isIndirect) { OpInfo.CallOperandVal = const_cast(CS.getArgument(ArgNo++)); break; } // The return value of the call is this value. As such, there is no // corresponding argument. assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); if (const StructType *STy = dyn_cast(CS.getType())) { OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo)); } else { assert(ResNo == 0 && "Asm only has one result!"); OpInfo.ConstraintVT = getValueType(CS.getType()); } ++ResNo; break; case InlineAsm::isInput: OpInfo.CallOperandVal = const_cast(CS.getArgument(ArgNo++)); break; case InlineAsm::isClobber: // Nothing to do. break; } if (OpInfo.CallOperandVal) { const llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); if (OpInfo.isIndirect) { const llvm::PointerType *PtrTy = dyn_cast(OpTy); if (!PtrTy) report_fatal_error("Indirect operand for inline asm not a pointer!"); OpTy = PtrTy->getElementType(); } // If OpTy is not a single value, it may be a struct/union that we // can tile with integers. if (!OpTy->isSingleValueType() && OpTy->isSized()) { unsigned BitSize = TD->getTypeSizeInBits(OpTy); switch (BitSize) { default: break; case 1: case 8: case 16: case 32: case 64: case 128: OpInfo.ConstraintVT = EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true); break; } } else if (dyn_cast(OpTy)) { OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize()); } else { OpInfo.ConstraintVT = EVT::getEVT(OpTy, true); } } } // If we have multiple alternative constraints, select the best alternative. if (ConstraintInfos.size()) { if (maCount) { unsigned bestMAIndex = 0; int bestWeight = -1; // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. int weight = -1; unsigned maIndex; // Compute the sums of the weights for each alternative, keeping track // of the best (highest weight) one so far. for (maIndex = 0; maIndex < maCount; ++maIndex) { int weightSum = 0; for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); cIndex != eIndex; ++cIndex) { AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; if (OpInfo.Type == InlineAsm::isClobber) continue; // If this is an output operand with a matching input operand, // look up the matching input. If their types mismatch, e.g. one // is an integer, the other is floating point, or their sizes are // different, flag it as an maCantMatch. if (OpInfo.hasMatchingInput()) { AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; if (OpInfo.ConstraintVT != Input.ConstraintVT) { if ((OpInfo.ConstraintVT.isInteger() != Input.ConstraintVT.isInteger()) || (OpInfo.ConstraintVT.getSizeInBits() != Input.ConstraintVT.getSizeInBits())) { weightSum = -1; // Can't match. break; } } } weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); if (weight == -1) { weightSum = -1; break; } weightSum += weight; } // Update best. if (weightSum > bestWeight) { bestWeight = weightSum; bestMAIndex = maIndex; } } // Now select chosen alternative in each constraint. for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); cIndex != eIndex; ++cIndex) { AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; if (cInfo.Type == InlineAsm::isClobber) continue; cInfo.selectAlternative(bestMAIndex); } } } // Check and hook up tied operands, choose constraint code to use. for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); cIndex != eIndex; ++cIndex) { AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; // If this is an output operand with a matching input operand, look up the // matching input. If their types mismatch, e.g. one is an integer, the // other is floating point, or their sizes are different, flag it as an // error. if (OpInfo.hasMatchingInput()) { AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; if (OpInfo.ConstraintVT != Input.ConstraintVT) { if ((OpInfo.ConstraintVT.isInteger() != Input.ConstraintVT.isInteger()) || (OpInfo.ConstraintVT.getSizeInBits() != Input.ConstraintVT.getSizeInBits())) { report_fatal_error("Unsupported asm: input constraint" " with a matching output constraint of" " incompatible type!"); } } } } return ConstraintOperands; } /// getConstraintGenerality - Return an integer indicating how general CT /// is. static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { switch (CT) { default: llvm_unreachable("Unknown constraint type!"); case TargetLowering::C_Other: case TargetLowering::C_Unknown: return 0; case TargetLowering::C_Register: return 1; case TargetLowering::C_RegisterClass: return 2; case TargetLowering::C_Memory: return 3; } } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight TargetLowering::getMultipleConstraintMatchWeight( AsmOperandInfo &info, int maIndex) const { InlineAsm::ConstraintCodeVector *rCodes; if (maIndex >= (int)info.multipleAlternatives.size()) rCodes = &info.Codes; else rCodes = &info.multipleAlternatives[maIndex].Codes; ConstraintWeight BestWeight = CW_Invalid; // Loop over the options, keeping track of the most general one. for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { ConstraintWeight weight = getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); if (weight > BestWeight) BestWeight = weight; } return BestWeight; } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight TargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (CallOperandVal == NULL) return CW_Default; // Look at the constraint type. switch (*constraint) { case 'i': // immediate integer. case 'n': // immediate integer with a known value. if (isa(CallOperandVal)) weight = CW_Constant; break; case 's': // non-explicit intregal immediate. if (isa(CallOperandVal)) weight = CW_Constant; break; case 'E': // immediate float if host format. case 'F': // immediate float. if (isa(CallOperandVal)) weight = CW_Constant; break; case '<': // memory operand with autodecrement. case '>': // memory operand with autoincrement. case 'm': // memory operand. case 'o': // offsettable memory operand case 'V': // non-offsettable memory operand weight = CW_Memory; break; case 'r': // general register. case 'g': // general register, memory operand or immediate integer. // note: Clang converts "g" to "imr". if (CallOperandVal->getType()->isIntegerTy()) weight = CW_Register; break; case 'X': // any operand. default: weight = CW_Default; break; } return weight; } /// ChooseConstraint - If there are multiple different constraints that we /// could pick for this operand (e.g. "imr") try to pick the 'best' one. /// This is somewhat tricky: constraints fall into four classes: /// Other -> immediates and magic values /// Register -> one specific register /// RegisterClass -> a group of regs /// Memory -> memory /// Ideally, we would pick the most specific constraint possible: if we have /// something that fits into a register, we would pick it. The problem here /// is that if we have something that could either be in a register or in /// memory that use of the register could cause selection of *other* /// operands to fail: they might only succeed if we pick memory. Because of /// this the heuristic we use is: /// /// 1) If there is an 'other' constraint, and if the operand is valid for /// that constraint, use it. This makes us take advantage of 'i' /// constraints when available. /// 2) Otherwise, pick the most general constraint present. This prefers /// 'm' over 'r', for example. /// static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, const TargetLowering &TLI, SDValue Op, SelectionDAG *DAG) { assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); unsigned BestIdx = 0; TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; int BestGenerality = -1; // Loop over the options, keeping track of the most general one. for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[i]); // If this is an 'other' constraint, see if the operand is valid for it. // For example, on X86 we might have an 'rI' constraint. If the operand // is an integer in the range [0..31] we want to use I (saving a load // of a register), otherwise we must use 'r'. if (CType == TargetLowering::C_Other && Op.getNode()) { assert(OpInfo.Codes[i].size() == 1 && "Unhandled multi-letter 'other' constraint"); std::vector ResultOps; TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], ResultOps, *DAG); if (!ResultOps.empty()) { BestType = CType; BestIdx = i; break; } } // Things with matching constraints can only be registers, per gcc // documentation. This mainly affects "g" constraints. if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) continue; // This constraint letter is more general than the previous one, use it. int Generality = getConstraintGenerality(CType); if (Generality > BestGenerality) { BestType = CType; BestIdx = i; BestGenerality = Generality; } } OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; OpInfo.ConstraintType = BestType; } /// ComputeConstraintToUse - Determines the constraint code and constraint /// type to use for the specific AsmOperandInfo, setting /// OpInfo.ConstraintCode and OpInfo.ConstraintType. void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG) const { assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); // Single-letter constraints ('r') are very common. if (OpInfo.Codes.size() == 1) { OpInfo.ConstraintCode = OpInfo.Codes[0]; OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); } else { ChooseConstraint(OpInfo, *this, Op, DAG); } // 'X' matches anything. if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { // Labels and constants are handled elsewhere ('X' is the only thing // that matches labels). For Functions, the type here is the type of // the result, which is not what we want to look at; leave them alone. Value *v = OpInfo.CallOperandVal; if (isa(v) || isa(v) || isa(v)) { OpInfo.CallOperandVal = v; return; } // Otherwise, try to resolve it to something we know about by looking at // the actual operand type. if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { OpInfo.ConstraintCode = Repl; OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); } } } //===----------------------------------------------------------------------===// // Loop Strength Reduction hooks //===----------------------------------------------------------------------===// /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const { // The default implementation of this implements a conservative RISCy, r+r and // r+i addr mode. // Allows a sign-extended 16-bit immediate field. if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) return false; // No global is ever allowed as a base. if (AM.BaseGV) return false; // Only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. return false; // Otherwise we have r+r or r+i. break; case 2: if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. return false; // Allow 2*r as r+r. break; } return true; } /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, std::vector* Created) const { EVT VT = N->getValueType(0); DebugLoc dl= N->getDebugLoc(); // Check to see if we can do this. // FIXME: We should be more aggressive here. if (!isTypeLegal(VT)) return SDValue(); APInt d = cast(N->getOperand(1))->getAPIntValue(); APInt::ms magics = d.magic(); // Multiply the numerator (operand 0) by the magic value // FIXME: We should support doing a MUL in a wider type SDValue Q; if (isOperationLegalOrCustom(ISD::MULHS, VT)) Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), DAG.getConstant(magics.m, VT)); else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N->getOperand(0), DAG.getConstant(magics.m, VT)).getNode(), 1); else return SDValue(); // No mulhs or equvialent // If d > 0 and m < 0, add the numerator if (d.isStrictlyPositive() && magics.m.isNegative()) { Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); if (Created) Created->push_back(Q.getNode()); } // If d < 0 and m > 0, subtract the numerator. if (d.isNegative() && magics.m.isStrictlyPositive()) { Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); if (Created) Created->push_back(Q.getNode()); } // Shift right algebraic if shift value is nonzero if (magics.s > 0) { Q = DAG.getNode(ISD::SRA, dl, VT, Q, DAG.getConstant(magics.s, getShiftAmountTy())); if (Created) Created->push_back(Q.getNode()); } // Extract the sign bit and add it to the quotient SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, getShiftAmountTy())); if (Created) Created->push_back(T.getNode()); return DAG.getNode(ISD::ADD, dl, VT, Q, T); } /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, std::vector* Created) const { EVT VT = N->getValueType(0); DebugLoc dl = N->getDebugLoc(); // Check to see if we can do this. // FIXME: We should be more aggressive here. if (!isTypeLegal(VT)) return SDValue(); // FIXME: We should use a narrower constant when the upper // bits are known to be zero. ConstantSDNode *N1C = cast(N->getOperand(1)); APInt::mu magics = N1C->getAPIntValue().magicu(); // Multiply the numerator (operand 0) by the magic value // FIXME: We should support doing a MUL in a wider type SDValue Q; if (isOperationLegalOrCustom(ISD::MULHU, VT)) Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0), DAG.getConstant(magics.m, VT)); else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), N->getOperand(0), DAG.getConstant(magics.m, VT)).getNode(), 1); else return SDValue(); // No mulhu or equvialent if (Created) Created->push_back(Q.getNode()); if (magics.a == 0) { assert(magics.s < N1C->getAPIntValue().getBitWidth() && "We shouldn't generate an undefined shift!"); return DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(magics.s, getShiftAmountTy())); } else { SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); if (Created) Created->push_back(NPQ.getNode()); NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, getShiftAmountTy())); if (Created) Created->push_back(NPQ.getNode()); NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); if (Created) Created->push_back(NPQ.getNode()); return DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(magics.s-1, getShiftAmountTy())); } }