//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the X86 specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "subtarget" #include "X86Subtarget.h" #include "X86InstrInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "X86GenSubtargetInfo.inc" using namespace llvm; #if defined(_MSC_VER) #include #endif /// ClassifyBlockAddressReference - Classify a blockaddress reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. unsigned char X86Subtarget::ClassifyBlockAddressReference() const { if (isPICStyleGOT()) // 32-bit ELF targets. return X86II::MO_GOTOFF; if (isPICStyleStubPIC()) // Darwin/32 in PIC mode. return X86II::MO_PIC_BASE_OFFSET; // Direct static reference to label. return X86II::MO_NO_FLAG; } /// ClassifyGlobalReference - Classify a global variable reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. unsigned char X86Subtarget:: ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { // DLLImport only exists on windows, it is implemented as a load from a // DLLIMPORT stub. if (GV->hasDLLImportLinkage()) return X86II::MO_DLLIMPORT; // Determine whether this is a reference to a definition or a declaration. // Materializable GVs (in JIT lazy compilation mode) do not require an extra // load from stub. bool isDecl = GV->hasAvailableExternallyLinkage(); if (GV->isDeclaration() && !GV->isMaterializable()) isDecl = true; // X86-64 in PIC mode. if (isPICStyleRIPRel()) { // Large model never uses stubs. if (TM.getCodeModel() == CodeModel::Large) return X86II::MO_NO_FLAG; if (isTargetDarwin()) { // If symbol visibility is hidden, the extra load is not needed if // target is x86-64 or the symbol is definitely defined in the current // translation unit. if (GV->hasDefaultVisibility() && (isDecl || GV->isWeakForLinker())) return X86II::MO_GOTPCREL; } else if (!isTargetWin64()) { assert(isTargetELF() && "Unknown rip-relative target"); // Extra load is needed for all externally visible. if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility()) return X86II::MO_GOTPCREL; } return X86II::MO_NO_FLAG; } if (isPICStyleGOT()) { // 32-bit ELF targets. // Extra load is needed for all externally visible. if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return X86II::MO_GOTOFF; return X86II::MO_GOT; } if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode. // Determine whether we have a stub reference and/or whether the reference // is relative to the PIC base or not. // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return X86II::MO_PIC_BASE_OFFSET; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_NONLAZY_PIC_BASE; // If symbol visibility is hidden, we have a stub for common symbol // references and external declarations. if (isDecl || GV->hasCommonLinkage()) { // Hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE; } // Otherwise, no stub. return X86II::MO_PIC_BASE_OFFSET; } if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode. // Determine whether we have a stub reference. // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return X86II::MO_NO_FLAG; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_NONLAZY; // Otherwise, no stub. return X86II::MO_NO_FLAG; } // Direct static reference to global. return X86II::MO_NO_FLAG; } /// getBZeroEntry - This function returns the name of a function which has an /// interface like the non-standard bzero function, if such a function exists on /// the current subtarget and it is considered prefereable over memset with zero /// passed as the second argument. Otherwise it returns null. const char *X86Subtarget::getBZeroEntry() const { // Darwin 10 has a __bzero entry point for this purpose. if (getTargetTriple().isMacOSX() && !getTargetTriple().isMacOSXVersionLT(10, 6)) return "__bzero"; return 0; } bool X86Subtarget::hasSinCos() const { return getTargetTriple().isMacOSX() && !getTargetTriple().isMacOSXVersionLT(10, 9) && is64Bit(); } /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls /// to immediate address. bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { if (In64BitMode) return false; return isTargetELF() || TM.getRelocationModel() == Reloc::Static; } static bool OSHasAVXSupport() { #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) #if defined(__GNUC__) // Check xgetbv; this uses a .byte sequence instead of the instruction // directly because older assemblers do not include support for xgetbv and // there is no easy way to conditionally compile based on the assembler used. int rEAX, rEDX; __asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (rEAX), "=d" (rEDX) : "c" (0)); #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) unsigned long long rEAX = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); #else int rEAX = 0; // Ensures we return false #endif return (rEAX & 6) == 6; #else return false; #endif } void X86Subtarget::AutoDetectSubtargetFeatures() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; unsigned MaxLevel; union { unsigned u[3]; char c[12]; } text; if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) || MaxLevel < 1) return; X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); if ((EDX >> 15) & 1) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); } if ((EDX >> 23) & 1) { X86SSELevel = MMX; ToggleFeature(X86::FeatureMMX); } if ((EDX >> 25) & 1) { X86SSELevel = SSE1; ToggleFeature(X86::FeatureSSE1); } if ((EDX >> 26) & 1) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE2); } if (ECX & 0x1) { X86SSELevel = SSE3; ToggleFeature(X86::FeatureSSE3); } if ((ECX >> 9) & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);} if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);} if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);} if (((ECX >> 27) & 1) && ((ECX >> 28) & 1) && OSHasAVXSupport()) { X86SSELevel = AVX; ToggleFeature(X86::FeatureAVX); } bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0; bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0; if ((ECX >> 1) & 0x1) { HasPCLMUL = true; ToggleFeature(X86::FeaturePCLMUL); } if ((ECX >> 12) & 0x1) { HasFMA = true; ToggleFeature(X86::FeatureFMA); } if (IsIntel && ((ECX >> 22) & 0x1)) { HasMOVBE = true; ToggleFeature(X86::FeatureMOVBE); } if ((ECX >> 23) & 0x1) { HasPOPCNT = true; ToggleFeature(X86::FeaturePOPCNT); } if ((ECX >> 25) & 0x1) { HasAES = true; ToggleFeature(X86::FeatureAES); } if ((ECX >> 29) & 0x1) { HasF16C = true; ToggleFeature(X86::FeatureF16C); } if (IsIntel && ((ECX >> 30) & 0x1)) { HasRDRAND = true; ToggleFeature(X86::FeatureRDRAND); } if ((ECX >> 13) & 0x1) { HasCmpxchg16b = true; ToggleFeature(X86::FeatureCMPXCHG16B); } if (IsIntel || IsAMD) { // Determine if bit test memory instructions are slow. unsigned Family = 0; unsigned Model = 0; X86_MC::DetectFamilyModel(EAX, Family, Model); if (IsAMD || (Family == 6 && Model >= 13)) { IsBTMemSlow = true; ToggleFeature(X86::FeatureSlowBTMem); } // Determine if SHLD/SHRD instructions have higher latency then the // equivalent series of shifts/or instructions. // FIXME: Add Intel's processors that have SHLD instructions with very // poor latency. if (IsAMD) { IsSHLDSlow = true; ToggleFeature(X86::FeatureSlowSHLD); } // If it's an Intel chip since Nehalem and not an Atom chip, unaligned // memory access is fast. We hard code model numbers here because they // aren't strictly increasing for Intel chips it seems. if (IsIntel && ((Family == 6 && Model == 0x1E) || // Nehalem: Clarksfield, Lynnfield, // Jasper Froest (Family == 6 && Model == 0x1A) || // Nehalem: Bloomfield, Nehalem-EP (Family == 6 && Model == 0x2E) || // Nehalem: Nehalem-EX (Family == 6 && Model == 0x25) || // Westmere: Arrandale, Clarksdale (Family == 6 && Model == 0x2C) || // Westmere: Gulftown, Westmere-EP (Family == 6 && Model == 0x2F) || // Westmere: Westmere-EX (Family == 6 && Model == 0x2A) || // SandyBridge (Family == 6 && Model == 0x2D) || // SandyBridge: SandyBridge-E* (Family == 6 && Model == 0x3A))) {// IvyBridge IsUAMemFast = true; ToggleFeature(X86::FeatureFastUAMem); } // Set processor type. Currently only Atom or Silvermont (SLM) is detected. if (Family == 6 && (Model == 28 || Model == 38 || Model == 39 || Model == 53 || Model == 54)) { X86ProcFamily = IntelAtom; UseLeaForSP = true; ToggleFeature(X86::FeatureLeaForSP); } else if (Family == 6 && (Model == 55 || Model == 74 || Model == 77)) { X86ProcFamily = IntelSLM; } unsigned MaxExtLevel; X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); if (MaxExtLevel >= 0x80000001) { X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); if ((EDX >> 29) & 0x1) { HasX86_64 = true; ToggleFeature(X86::Feature64Bit); } if ((ECX >> 5) & 0x1) { HasLZCNT = true; ToggleFeature(X86::FeatureLZCNT); } if (IsIntel && ((ECX >> 8) & 0x1)) { HasPRFCHW = true; ToggleFeature(X86::FeaturePRFCHW); } if (IsAMD) { if ((ECX >> 6) & 0x1) { HasSSE4A = true; ToggleFeature(X86::FeatureSSE4A); } if ((ECX >> 11) & 0x1) { HasXOP = true; ToggleFeature(X86::FeatureXOP); } if ((ECX >> 16) & 0x1) { HasFMA4 = true; ToggleFeature(X86::FeatureFMA4); } } } } if (MaxLevel >= 7) { if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) { if (IsIntel && (EBX & 0x1)) { HasFSGSBase = true; ToggleFeature(X86::FeatureFSGSBase); } if ((EBX >> 3) & 0x1) { HasBMI = true; ToggleFeature(X86::FeatureBMI); } if ((EBX >> 4) & 0x1) { HasHLE = true; ToggleFeature(X86::FeatureHLE); } if (IsIntel && ((EBX >> 5) & 0x1)) { X86SSELevel = AVX2; ToggleFeature(X86::FeatureAVX2); } if (IsIntel && ((EBX >> 8) & 0x1)) { HasBMI2 = true; ToggleFeature(X86::FeatureBMI2); } if (IsIntel && ((EBX >> 11) & 0x1)) { HasRTM = true; ToggleFeature(X86::FeatureRTM); } if (IsIntel && ((EBX >> 16) & 0x1)) { X86SSELevel = AVX512F; ToggleFeature(X86::FeatureAVX512); } if (IsIntel && ((EBX >> 18) & 0x1)) { HasRDSEED = true; ToggleFeature(X86::FeatureRDSEED); } if (IsIntel && ((EBX >> 19) & 0x1)) { HasADX = true; ToggleFeature(X86::FeatureADX); } if (IsIntel && ((EBX >> 26) & 0x1)) { HasPFI = true; ToggleFeature(X86::FeaturePFI); } if (IsIntel && ((EBX >> 27) & 0x1)) { HasERI = true; ToggleFeature(X86::FeatureERI); } if (IsIntel && ((EBX >> 28) & 0x1)) { HasCDI = true; ToggleFeature(X86::FeatureCDI); } if (IsIntel && ((EBX >> 29) & 0x1)) { HasSHA = true; ToggleFeature(X86::FeatureSHA); } } if (IsAMD && ((ECX >> 21) & 0x1)) { HasTBM = true; ToggleFeature(X86::FeatureTBM); } } } void X86Subtarget::resetSubtargetFeatures(const MachineFunction *MF) { AttributeSet FnAttrs = MF->getFunction()->getAttributes(); Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu"); Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features"); std::string CPU = !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : ""; std::string FS = !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : ""; if (!FS.empty()) { initializeEnvironment(); resetSubtargetFeatures(CPU, FS); } } void X86Subtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) { std::string CPUName = CPU; if (!FS.empty() || !CPU.empty()) { if (CPUName.empty()) { #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) CPUName = sys::getHostCPUName(); #else CPUName = "generic"; #endif } // Make sure 64-bit features are available in 64-bit mode. (But make sure // SSE2 can be turned off explicitly.) std::string FullFS = FS; if (In64BitMode) { if (!FullFS.empty()) FullFS = "+64bit,+sse2," + FullFS; else FullFS = "+64bit,+sse2"; } // If feature string is not empty, parse features string. ParseSubtargetFeatures(CPUName, FullFS); } else { if (CPUName.empty()) { #if defined (__x86_64__) || defined(__i386__) CPUName = sys::getHostCPUName(); #else CPUName = "generic"; #endif } // Otherwise, use CPUID to auto-detect feature set. AutoDetectSubtargetFeatures(); // Make sure 64-bit features are available in 64-bit mode. if (In64BitMode) { if (!HasX86_64) { HasX86_64 = true; ToggleFeature(X86::Feature64Bit); } if (!HasCMov) { HasCMov = true; ToggleFeature(X86::FeatureCMOV); } if (X86SSELevel < SSE2) { X86SSELevel = SSE2; ToggleFeature(X86::FeatureSSE1); ToggleFeature(X86::FeatureSSE2); } } } // CPUName may have been set by the CPU detection code. Make sure the // new MCSchedModel is used. InitCPUSchedModel(CPUName); if (X86ProcFamily == IntelAtom || X86ProcFamily == IntelSLM) PostRAScheduler = true; InstrItins = getInstrItineraryForCPU(CPUName); // It's important to keep the MCSubtargetInfo feature bits in sync with // target data structure which is shared with MC code emitter, etc. if (In64BitMode) ToggleFeature(X86::Mode64Bit); DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel << ", 3DNowLevel " << X863DNowLevel << ", 64bit " << HasX86_64 << "\n"); assert((!In64BitMode || HasX86_64) && "64-bit code requested on a subtarget that doesn't support it!"); // Stack alignment is 16 bytes on Darwin, Linux and Solaris (both // 32 and 64 bit) and for all 64-bit targets. if (StackAlignOverride) stackAlignment = StackAlignOverride; else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() || In64BitMode) stackAlignment = 16; } void X86Subtarget::initializeEnvironment() { X86SSELevel = NoMMXSSE; X863DNowLevel = NoThreeDNow; HasCMov = false; HasX86_64 = false; HasPOPCNT = false; HasSSE4A = false; HasAES = false; HasPCLMUL = false; HasFMA = false; HasFMA4 = false; HasXOP = false; HasTBM = false; HasMOVBE = false; HasRDRAND = false; HasF16C = false; HasFSGSBase = false; HasLZCNT = false; HasBMI = false; HasBMI2 = false; HasRTM = false; HasHLE = false; HasERI = false; HasCDI = false; HasPFI = false; HasADX = false; HasSHA = false; HasPRFCHW = false; HasRDSEED = false; IsBTMemSlow = false; IsSHLDSlow = false; IsUAMemFast = false; HasVectorUAMem = false; HasCmpxchg16b = false; UseLeaForSP = false; HasSlowDivide = false; PostRAScheduler = false; PadShortFunctions = false; CallRegIndirect = false; LEAUsesAG = false; stackAlignment = 4; // FIXME: this is a known good value for Yonah. How about others? MaxInlineSizeThreshold = 128; } X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU, const std::string &FS, unsigned StackAlignOverride, bool is64Bit) : X86GenSubtargetInfo(TT, CPU, FS) , X86ProcFamily(Others) , PICStyle(PICStyles::None) , TargetTriple(TT) , StackAlignOverride(StackAlignOverride) , In64BitMode(is64Bit) { initializeEnvironment(); resetSubtargetFeatures(CPU, FS); } bool X86Subtarget::enablePostRAScheduler( CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const { Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL; CriticalPathRCs.clear(); return PostRAScheduler && OptLevel >= CodeGenOpt::Default; }