//===-- FastISel.cpp - Implementation of the FastISel class ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the implementation of the FastISel class. // // "Fast" instruction selection is designed to emit very poor code quickly. // Also, it is not designed to be able to do much lowering, so most illegal // types (e.g. i64 on 32-bit targets) and operations are not supported. It is // also not intended to be able to do much optimization, except in a few cases // where doing optimizations reduces overall compile time. For example, folding // constants into immediate fields is often done, because it's cheap and it // reduces the number of instructions later phases have to examine. // // "Fast" instruction selection is able to fail gracefully and transfer // control to the SelectionDAG selector for operations that it doesn't // support. In many cases, this allows us to avoid duplicating a lot of // the complicated lowering logic that SelectionDAG currently has. // // The intended use for "fast" instruction selection is "-O0" mode // compilation, where the quality of the generated code is irrelevant when // weighed against the speed at which the code can be generated. Also, // at -O0, the LLVM optimizers are not running, and this makes the // compile time of codegen a much higher portion of the overall compile // time. Despite its limitations, "fast" instruction selection is able to // handle enough code on its own to provide noticeable overall speedups // in -O0 compiles. // // Basic operations are supported in a target-independent way, by reading // the same instruction descriptions that the SelectionDAG selector reads, // and identifying simple arithmetic operations that can be directly selected // from simple operators. More complicated operations currently require // target-specific code. // //===----------------------------------------------------------------------===// #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Operator.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Analysis/Loads.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Debug.h" using namespace llvm; /// startNewBlock - Set the current block to which generated machine /// instructions will be appended, and clear the local CSE map. /// void FastISel::startNewBlock() { LocalValueMap.clear(); // Start out as null, meaining no local-value instructions have // been emitted. LastLocalValue = 0; // Advance the last local value past any EH_LABEL instructions. MachineBasicBlock::iterator I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { LastLocalValue = I; ++I; } } bool FastISel::hasTrivialKill(const Value *V) const { // Don't consider constants or arguments to have trivial kills. const Instruction *I = dyn_cast(V); if (!I) return false; // No-op casts are trivially coalesced by fast-isel. if (const CastInst *Cast = dyn_cast(I)) if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && !hasTrivialKill(Cast->getOperand(0))) return false; // Only instructions with a single use in the same basic block are considered // to have trivial kills. return I->hasOneUse() && !(I->getOpcode() == Instruction::BitCast || I->getOpcode() == Instruction::PtrToInt || I->getOpcode() == Instruction::IntToPtr) && cast(*I->use_begin())->getParent() == I->getParent(); } unsigned FastISel::getRegForValue(const Value *V) { EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); // Don't handle non-simple values in FastISel. if (!RealVT.isSimple()) return 0; // Ignore illegal types. We must do this before looking up the value // in ValueMap because Arguments are given virtual registers regardless // of whether FastISel can handle them. MVT VT = RealVT.getSimpleVT(); if (!TLI.isTypeLegal(VT)) { // Promote MVT::i1 to a legal type though, because it's common and easy. if (VT == MVT::i1) VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); else return 0; } // Look up the value to see if we already have a register for it. We // cache values defined by Instructions across blocks, and other values // only locally. This is because Instructions already have the SSA // def-dominates-use requirement enforced. DenseMap::iterator I = FuncInfo.ValueMap.find(V); if (I != FuncInfo.ValueMap.end()) return I->second; unsigned Reg = LocalValueMap[V]; if (Reg != 0) return Reg; // In bottom-up mode, just create the virtual register which will be used // to hold the value. It will be materialized later. if (isa(V) && (!isa(V) || !FuncInfo.StaticAllocaMap.count(cast(V)))) return FuncInfo.InitializeRegForValue(V); SavePoint SaveInsertPt = enterLocalValueArea(); // Materialize the value in a register. Emit any instructions in the // local value area. Reg = materializeRegForValue(V, VT); leaveLocalValueArea(SaveInsertPt); return Reg; } /// materializeRegForValue - Helper for getRegForValue. This function is /// called when the value isn't already available in a register and must /// be materialized with new instructions. unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { unsigned Reg = 0; if (const ConstantInt *CI = dyn_cast(V)) { if (CI->getValue().getActiveBits() <= 64) Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); } else if (isa(V)) { Reg = TargetMaterializeAlloca(cast(V)); } else if (isa(V)) { // Translate this as an integer zero so that it can be // local-CSE'd with actual integer zeros. Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); } else if (const ConstantFP *CF = dyn_cast(V)) { // Try to emit the constant directly. Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); if (!Reg) { // Try to emit the constant by using an integer constant with a cast. const APFloat &Flt = CF->getValueAPF(); EVT IntVT = TLI.getPointerTy(); uint64_t x[2]; uint32_t IntBitWidth = IntVT.getSizeInBits(); bool isExact; (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, APFloat::rmTowardZero, &isExact); if (isExact) { APInt IntVal(IntBitWidth, 2, x); unsigned IntegerReg = getRegForValue(ConstantInt::get(V->getContext(), IntVal)); if (IntegerReg != 0) Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, /*Kill=*/false); } } } else if (const Operator *Op = dyn_cast(V)) { if (!SelectOperator(Op, Op->getOpcode())) if (!isa(Op) || !TargetSelectInstruction(cast(Op))) return 0; Reg = lookUpRegForValue(Op); } else if (isa(V)) { Reg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg); } // If target-independent code couldn't handle the value, give target-specific // code a try. if (!Reg && isa(V)) Reg = TargetMaterializeConstant(cast(V)); // Don't cache constant materializations in the general ValueMap. // To do so would require tracking what uses they dominate. if (Reg != 0) { LocalValueMap[V] = Reg; LastLocalValue = MRI.getVRegDef(Reg); } return Reg; } unsigned FastISel::lookUpRegForValue(const Value *V) { // Look up the value to see if we already have a register for it. We // cache values defined by Instructions across blocks, and other values // only locally. This is because Instructions already have the SSA // def-dominates-use requirement enforced. DenseMap::iterator I = FuncInfo.ValueMap.find(V); if (I != FuncInfo.ValueMap.end()) return I->second; return LocalValueMap[V]; } /// UpdateValueMap - Update the value map to include the new mapping for this /// instruction, or insert an extra copy to get the result in a previous /// determined register. /// NOTE: This is only necessary because we might select a block that uses /// a value before we select the block that defines the value. It might be /// possible to fix this by selecting blocks in reverse postorder. unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) { if (!isa(I)) { LocalValueMap[I] = Reg; return Reg; } unsigned &AssignedReg = FuncInfo.ValueMap[I]; if (AssignedReg == 0) // Use the new register. AssignedReg = Reg; else if (Reg != AssignedReg) { // Arrange for uses of AssignedReg to be replaced by uses of Reg. FuncInfo.RegFixups[AssignedReg] = Reg; AssignedReg = Reg; } return AssignedReg; } std::pair FastISel::getRegForGEPIndex(const Value *Idx) { unsigned IdxN = getRegForValue(Idx); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return std::pair(0, false); bool IdxNIsKill = hasTrivialKill(Idx); // If the index is smaller or larger than intptr_t, truncate or extend it. MVT PtrVT = TLI.getPointerTy(); EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); if (IdxVT.bitsLT(PtrVT)) { IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, IdxNIsKill); IdxNIsKill = true; } else if (IdxVT.bitsGT(PtrVT)) { IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); IdxNIsKill = true; } return std::pair(IdxN, IdxNIsKill); } void FastISel::recomputeInsertPt() { if (getLastLocalValue()) { FuncInfo.InsertPt = getLastLocalValue(); FuncInfo.MBB = FuncInfo.InsertPt->getParent(); ++FuncInfo.InsertPt; } else FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); // Now skip past any EH_LABELs, which must remain at the beginning. while (FuncInfo.InsertPt != FuncInfo.MBB->end() && FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) ++FuncInfo.InsertPt; } FastISel::SavePoint FastISel::enterLocalValueArea() { MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; DebugLoc OldDL = DL; recomputeInsertPt(); DL = DebugLoc(); SavePoint SP = { OldInsertPt, OldDL }; return SP; } void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) LastLocalValue = llvm::prior(FuncInfo.InsertPt); // Restore the previous insert position. FuncInfo.InsertPt = OldInsertPt.InsertPt; DL = OldInsertPt.DL; } /// SelectBinaryOp - Select and emit code for a binary operator instruction, /// which has an opcode which directly corresponds to the given ISD opcode. /// bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); if (VT == MVT::Other || !VT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // We only handle legal types. For example, on x86-32 the instruction // selector contains all of the 64-bit instructions from x86-64, // under the assumption that i64 won't be used if the target doesn't // support it. if (!TLI.isTypeLegal(VT)) { // MVT::i1 is special. Allow AND, OR, or XOR because they // don't require additional zeroing, which makes them easy. if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || ISDOpcode == ISD::XOR)) VT = TLI.getTypeToTransformTo(I->getContext(), VT); else return false; } // Check if the first operand is a constant, and handle it as "ri". At -O0, // we don't have anything that canonicalizes operand order. if (ConstantInt *CI = dyn_cast(I->getOperand(0))) if (isa(I) && cast(I)->isCommutative()) { unsigned Op1 = getRegForValue(I->getOperand(1)); if (Op1 == 0) return false; bool Op1IsKill = hasTrivialKill(I->getOperand(1)); unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, CI->getZExtValue(), VT.getSimpleVT()); if (ResultReg == 0) return false; // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } unsigned Op0 = getRegForValue(I->getOperand(0)); if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; bool Op0IsKill = hasTrivialKill(I->getOperand(0)); // Check if the second operand is a constant and handle it appropriately. if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { uint64_t Imm = CI->getZExtValue(); // Transform "sdiv exact X, 8" -> "sra X, 3". if (ISDOpcode == ISD::SDIV && isa(I) && cast(I)->isExact() && isPowerOf2_64(Imm)) { Imm = Log2_64(Imm); ISDOpcode = ISD::SRA; } unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Op0IsKill, Imm, VT.getSimpleVT()); if (ResultReg == 0) return false; // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } // Check if the second operand is a constant float. if (ConstantFP *CF = dyn_cast(I->getOperand(1))) { unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, Op0IsKill, CF); if (ResultReg != 0) { // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } } unsigned Op1 = getRegForValue(I->getOperand(1)); if (Op1 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; bool Op1IsKill = hasTrivialKill(I->getOperand(1)); // Now we have both operands in registers. Emit the instruction. unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); if (ResultReg == 0) // Target-specific code wasn't able to find a machine opcode for // the given ISD opcode and type. Halt "fast" selection and bail. return false; // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectGetElementPtr(const User *I) { unsigned N = getRegForValue(I->getOperand(0)); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; bool NIsKill = hasTrivialKill(I->getOperand(0)); const Type *Ty = I->getOperand(0)->getType(); MVT VT = TLI.getPointerTy(); for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, E = I->op_end(); OI != E; ++OI) { const Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getZExtValue(); if (Field) { // N = N + Offset uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field); // FIXME: This can be optimized by combining the add with a // subsequent one. N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; NIsKill = true; } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. if (const ConstantInt *CI = dyn_cast(Idx)) { if (CI->isZero()) continue; uint64_t Offs = TD.getTypeAllocSize(Ty)*cast(CI)->getSExtValue(); N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; NIsKill = true; continue; } // N = N + Idx * ElementSize; uint64_t ElementSize = TD.getTypeAllocSize(Ty); std::pair Pair = getRegForGEPIndex(Idx); unsigned IdxN = Pair.first; bool IdxNIsKill = Pair.second; if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; if (ElementSize != 1) { IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; IdxNIsKill = true; } N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } } // We successfully emitted code for the given LLVM Instruction. UpdateValueMap(I, N); return true; } bool FastISel::SelectCall(const User *I) { const Function *F = cast(I)->getCalledFunction(); if (!F) return false; // Handle selected intrinsic function calls. switch (F->getIntrinsicID()) { default: break; case Intrinsic::dbg_declare: { const DbgDeclareInst *DI = cast(I); if (!DIVariable(DI->getVariable()).Verify() || !FuncInfo.MF->getMMI().hasDebugInfo()) return true; const Value *Address = DI->getAddress(); if (!Address || isa(Address) || isa(Address)) return true; unsigned Reg = 0; unsigned Offset = 0; if (const Argument *Arg = dyn_cast(Address)) { if (Arg->hasByValAttr()) { // Byval arguments' frame index is recorded during argument lowering. // Use this info directly. Offset = FuncInfo.getByValArgumentFrameIndex(Arg); if (Offset) Reg = TRI.getFrameRegister(*FuncInfo.MF); } } if (!Reg) Reg = getRegForValue(Address); if (Reg) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::DBG_VALUE)) .addReg(Reg, RegState::Debug).addImm(Offset) .addMetadata(DI->getVariable()); return true; } case Intrinsic::dbg_value: { // This form of DBG_VALUE is target-independent. const DbgValueInst *DI = cast(I); const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); const Value *V = DI->getValue(); if (!V) { // Currently the optimizer can produce this; insert an undef to // help debugging. Probably the optimizer should not do this. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(0U).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); } else if (const ConstantInt *CI = dyn_cast(V)) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addImm(CI->getZExtValue()).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); } else if (const ConstantFP *CF = dyn_cast(V)) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addFPImm(CF).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); } else if (unsigned Reg = lookUpRegForValue(V)) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) .addMetadata(DI->getVariable()); } else { // We can't yet handle anything else here because it would require // generating code, thus altering codegen because of debug info. DEBUG(dbgs() << "Dropping debug info for " << DI); } return true; } case Intrinsic::eh_exception: { EVT VT = TLI.getValueType(I->getType()); if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand) break; assert(FuncInfo.MBB->isLandingPad() && "Call to eh.exception not in landing pad!"); unsigned Reg = TLI.getExceptionAddressRegister(); const TargetRegisterClass *RC = TLI.getRegClassFor(VT); unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); UpdateValueMap(I, ResultReg); return true; } case Intrinsic::eh_selector: { EVT VT = TLI.getValueType(I->getType()); if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand) break; if (FuncInfo.MBB->isLandingPad()) AddCatchInfo(*cast(I), &FuncInfo.MF->getMMI(), FuncInfo.MBB); else { #ifndef NDEBUG FuncInfo.CatchInfoLost.insert(cast(I)); #endif // FIXME: Mark exception selector register as live in. Hack for PR1508. unsigned Reg = TLI.getExceptionSelectorRegister(); if (Reg) FuncInfo.MBB->addLiveIn(Reg); } unsigned Reg = TLI.getExceptionSelectorRegister(); EVT SrcVT = TLI.getPointerTy(); const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT); unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); bool ResultRegIsKill = hasTrivialKill(I); // Cast the register to the type of the selector. if (SrcVT.bitsGT(MVT::i32)) ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE, ResultReg, ResultRegIsKill); else if (SrcVT.bitsLT(MVT::i32)) ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill); if (ResultReg == 0) // Unhandled operand. Halt "fast" selection and bail. return false; UpdateValueMap(I, ResultReg); return true; } } // An arbitrary call. Bail. return false; } bool FastISel::SelectCast(const User *I, unsigned Opcode) { EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(I->getType()); if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || !DstVT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; // Check if the destination type is legal. Or as a special case, // it may be i1 if we're doing a truncate because that's // easy and somewhat common. if (!TLI.isTypeLegal(DstVT)) if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE) // Unhandled type. Halt "fast" selection and bail. return false; // Check if the source operand is legal. Or as a special case, // it may be i1 if we're doing zero-extension because that's // easy and somewhat common. if (!TLI.isTypeLegal(SrcVT)) if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND) // Unhandled type. Halt "fast" selection and bail. return false; unsigned InputReg = getRegForValue(I->getOperand(0)); if (!InputReg) // Unhandled operand. Halt "fast" selection and bail. return false; bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); // If the operand is i1, arrange for the high bits in the register to be zero. if (SrcVT == MVT::i1) { SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT); InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill); if (!InputReg) return false; InputRegIsKill = true; } // If the result is i1, truncate to the target's type for i1 first. if (DstVT == MVT::i1) DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT); unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opcode, InputReg, InputRegIsKill); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectBitCast(const User *I) { // If the bitcast doesn't change the type, just use the operand value. if (I->getType() == I->getOperand(0)->getType()) { unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } // Bitcasts of other values become reg-reg copies or BITCAST operators. EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(I->getType()); if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || !DstVT.isSimple() || !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) // Unhandled type. Halt "fast" selection and bail. return false; unsigned Op0 = getRegForValue(I->getOperand(0)); if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; bool Op0IsKill = hasTrivialKill(I->getOperand(0)); // First, try to perform the bitcast by inserting a reg-reg copy. unsigned ResultReg = 0; if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); // Don't attempt a cross-class copy. It will likely fail. if (SrcClass == DstClass) { ResultReg = createResultReg(DstClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); } } // If the reg-reg copy failed, select a BITCAST opcode. if (!ResultReg) ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), ISD::BITCAST, Op0, Op0IsKill); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectInstruction(const Instruction *I) { // Just before the terminator instruction, insert instructions to // feed PHI nodes in successor blocks. if (isa(I)) if (!HandlePHINodesInSuccessorBlocks(I->getParent())) return false; DL = I->getDebugLoc(); // First, try doing target-independent selection. if (SelectOperator(I, I->getOpcode())) { DL = DebugLoc(); return true; } // Next, try calling the target to attempt to handle the instruction. if (TargetSelectInstruction(I)) { DL = DebugLoc(); return true; } DL = DebugLoc(); return false; } /// FastEmitBranch - Emit an unconditional branch to the given block, /// unless it is the immediate (fall-through) successor, and update /// the CFG. void FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) { // The unconditional fall-through case, which needs no instructions. } else { // The unconditional branch case. TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, SmallVector(), DL); } FuncInfo.MBB->addSuccessor(MSucc); } /// SelectFNeg - Emit an FNeg operation. /// bool FastISel::SelectFNeg(const User *I) { unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); if (OpReg == 0) return false; bool OpRegIsKill = hasTrivialKill(I); // If the target has ISD::FNEG, use it. EVT VT = TLI.getValueType(I->getType()); unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, OpReg, OpRegIsKill); if (ResultReg != 0) { UpdateValueMap(I, ResultReg); return true; } // Bitcast the value to integer, twiddle the sign bit with xor, // and then bitcast it back to floating-point. if (VT.getSizeInBits() > 64) return false; EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); if (!TLI.isTypeLegal(IntVT)) return false; unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), ISD::BITCAST, OpReg, OpRegIsKill); if (IntReg == 0) return false; unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg, /*Kill=*/true, UINT64_C(1) << (VT.getSizeInBits()-1), IntVT.getSimpleVT()); if (IntResultReg == 0) return false; ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, IntResultReg, /*Kill=*/true); if (ResultReg == 0) return false; UpdateValueMap(I, ResultReg); return true; } bool FastISel::SelectOperator(const User *I, unsigned Opcode) { switch (Opcode) { case Instruction::Add: return SelectBinaryOp(I, ISD::ADD); case Instruction::FAdd: return SelectBinaryOp(I, ISD::FADD); case Instruction::Sub: return SelectBinaryOp(I, ISD::SUB); case Instruction::FSub: // FNeg is currently represented in LLVM IR as a special case of FSub. if (BinaryOperator::isFNeg(I)) return SelectFNeg(I); return SelectBinaryOp(I, ISD::FSUB); case Instruction::Mul: return SelectBinaryOp(I, ISD::MUL); case Instruction::FMul: return SelectBinaryOp(I, ISD::FMUL); case Instruction::SDiv: return SelectBinaryOp(I, ISD::SDIV); case Instruction::UDiv: return SelectBinaryOp(I, ISD::UDIV); case Instruction::FDiv: return SelectBinaryOp(I, ISD::FDIV); case Instruction::SRem: return SelectBinaryOp(I, ISD::SREM); case Instruction::URem: return SelectBinaryOp(I, ISD::UREM); case Instruction::FRem: return SelectBinaryOp(I, ISD::FREM); case Instruction::Shl: return SelectBinaryOp(I, ISD::SHL); case Instruction::LShr: return SelectBinaryOp(I, ISD::SRL); case Instruction::AShr: return SelectBinaryOp(I, ISD::SRA); case Instruction::And: return SelectBinaryOp(I, ISD::AND); case Instruction::Or: return SelectBinaryOp(I, ISD::OR); case Instruction::Xor: return SelectBinaryOp(I, ISD::XOR); case Instruction::GetElementPtr: return SelectGetElementPtr(I); case Instruction::Br: { const BranchInst *BI = cast(I); if (BI->isUnconditional()) { const BasicBlock *LLVMSucc = BI->getSuccessor(0); MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; FastEmitBranch(MSucc, BI->getDebugLoc()); return true; } // Conditional branches are not handed yet. // Halt "fast" selection and bail. return false; } case Instruction::Unreachable: // Nothing to emit. return true; case Instruction::Alloca: // FunctionLowering has the static-sized case covered. if (FuncInfo.StaticAllocaMap.count(cast(I))) return true; // Dynamic-sized alloca is not handled yet. return false; case Instruction::Call: return SelectCall(I); case Instruction::BitCast: return SelectBitCast(I); case Instruction::FPToSI: return SelectCast(I, ISD::FP_TO_SINT); case Instruction::ZExt: return SelectCast(I, ISD::ZERO_EXTEND); case Instruction::SExt: return SelectCast(I, ISD::SIGN_EXTEND); case Instruction::Trunc: return SelectCast(I, ISD::TRUNCATE); case Instruction::SIToFP: return SelectCast(I, ISD::SINT_TO_FP); case Instruction::IntToPtr: // Deliberate fall-through. case Instruction::PtrToInt: { EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(I->getType()); if (DstVT.bitsGT(SrcVT)) return SelectCast(I, ISD::ZERO_EXTEND); if (DstVT.bitsLT(SrcVT)) return SelectCast(I, ISD::TRUNCATE); unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } case Instruction::PHI: llvm_unreachable("FastISel shouldn't visit PHI nodes!"); default: // Unhandled instruction. Halt "fast" selection and bail. return false; } } FastISel::FastISel(FunctionLoweringInfo &funcInfo) : FuncInfo(funcInfo), MRI(FuncInfo.MF->getRegInfo()), MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), TM(FuncInfo.MF->getTarget()), TD(*TM.getTargetData()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()), TRI(*TM.getRegisterInfo()) { } FastISel::~FastISel() {} unsigned FastISel::FastEmit_(MVT, MVT, unsigned) { return 0; } unsigned FastISel::FastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/) { return 0; } unsigned FastISel::FastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/, unsigned /*Op1*/, bool /*Op1IsKill*/) { return 0; } unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { return 0; } unsigned FastISel::FastEmit_f(MVT, MVT, unsigned, const ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::FastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/, uint64_t /*Imm*/) { return 0; } unsigned FastISel::FastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/, const ConstantFP * /*FPImm*/) { return 0; } unsigned FastISel::FastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, bool /*Op0IsKill*/, unsigned /*Op1*/, bool /*Op1IsKill*/, uint64_t /*Imm*/) { return 0; } /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with an immediate operand using FastEmit_ri. /// If that fails, it materializes the immediate into a register and try /// FastEmit_rr instead. unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill, uint64_t Imm, MVT ImmType) { // If this is a multiply by a power of two, emit this as a shift left. if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { Opcode = ISD::SHL; Imm = Log2_64(Imm); } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { // div x, 8 -> srl x, 3 Opcode = ISD::SRL; Imm = Log2_64(Imm); } // Horrible hack (to be removed), check to make sure shift amounts are // in-range. if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && Imm >= VT.getSizeInBits()) return 0; // First check if immediate type is legal. If not, we can't use the ri form. unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); if (ResultReg != 0) return ResultReg; unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); if (MaterialReg == 0) return 0; return FastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, /*Kill=*/true); } /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with a floating-point immediate operand using /// FastEmit_rf. If that fails, it materializes the immediate into a register /// and try FastEmit_rr instead. unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm, MVT ImmType) { // First check if immediate type is legal. If not, we can't use the rf form. unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, Op0IsKill, FPImm); if (ResultReg != 0) return ResultReg; // Materialize the constant in a register. unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm); if (MaterialReg == 0) { // If the target doesn't have a way to directly enter a floating-point // value into a register, use an alternate approach. // TODO: The current approach only supports floating-point constants // that can be constructed by conversion from integer values. This should // be replaced by code that creates a load from a constant-pool entry, // which will require some target-specific work. const APFloat &Flt = FPImm->getValueAPF(); EVT IntVT = TLI.getPointerTy(); uint64_t x[2]; uint32_t IntBitWidth = IntVT.getSizeInBits(); bool isExact; (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, APFloat::rmTowardZero, &isExact); if (!isExact) return 0; APInt IntVal(IntBitWidth, 2, x); unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(), ISD::Constant, IntVal.getZExtValue()); if (IntegerReg == 0) return 0; MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, /*Kill=*/true); if (MaterialReg == 0) return 0; } return FastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, /*Kill=*/true); } unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { return MRI.createVirtualRegister(RC); } unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass* RC) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); return ResultReg; } unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm1, uint64_t Imm2) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm1) .addImm(Imm2); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm1) .addImm(Imm2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addFPImm(FPImm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addFPImm(FPImm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm1, uint64_t Imm2) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addImm(Imm1).addImm(Imm2); else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); } return ResultReg; } unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill, uint32_t Idx) { unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); assert(TargetRegisterInfo::isVirtualRegister(Op0) && "Cannot yet extract from physregs"); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(Op0, getKillRegState(Op0IsKill), Idx); return ResultReg; } /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op /// with all but the least significant bit set to zero. unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); } /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. /// Emit code to ensure constants are copied into registers when needed. /// Remember the virtual registers that need to be added to the Machine PHI /// nodes as input. We cannot just directly add them, because expansion /// might result in multiple MBB's for one BB. As such, the start of the /// BB might correspond to a different MBB than the end. bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { const TerminatorInst *TI = LLVMBB->getTerminator(); SmallPtrSet SuccsHandled; unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); // Check successor nodes' PHI nodes that expect a constant to be available // from this block. for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { const BasicBlock *SuccBB = TI->getSuccessor(succ); if (!isa(SuccBB->begin())) continue; MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; // If this terminator has multiple identical successors (common for // switches), only handle each succ once. if (!SuccsHandled.insert(SuccMBB)) continue; MachineBasicBlock::iterator MBBI = SuccMBB->begin(); // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (BasicBlock::const_iterator I = SuccBB->begin(); const PHINode *PN = dyn_cast(I); ++I) { // Ignore dead phi's. if (PN->use_empty()) continue; // Only handle legal types. Two interesting things to note here. First, // by bailing out early, we may leave behind some dead instructions, // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its // own moves. Second, this check is necessary because FastISel doesn't // use CreateRegs to create registers, so it always creates // exactly one register for each non-void instruction. EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { // Promote MVT::i1. if (VT == MVT::i1) VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); else { FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); return false; } } const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); // Set the DebugLoc for the copy. Prefer the location of the operand // if there is one; use the location of the PHI otherwise. DL = PN->getDebugLoc(); if (const Instruction *Inst = dyn_cast(PHIOp)) DL = Inst->getDebugLoc(); unsigned Reg = getRegForValue(PHIOp); if (Reg == 0) { FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); return false; } FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); DL = DebugLoc(); } } return true; }