//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // Details of the algorithm: // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/SwapByteOrder.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "asan" static const uint64_t kDefaultShadowScale = 3; static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; static const uint64_t kIOSShadowOffset32 = 1ULL << 30; static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G. static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 36; static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; static const uint64_t kWindowsShadowOffset32 = 1ULL << 30; static const size_t kMinStackMallocSize = 1 << 6; // 64B static const size_t kMaxStackMallocSize = 1 << 16; // 64K static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; static const char *const kAsanModuleCtorName = "asan.module_ctor"; static const char *const kAsanModuleDtorName = "asan.module_dtor"; static const uint64_t kAsanCtorAndDtorPriority = 1; static const char *const kAsanReportErrorTemplate = "__asan_report_"; static const char *const kAsanReportLoadN = "__asan_report_load_n"; static const char *const kAsanReportStoreN = "__asan_report_store_n"; static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; static const char *const kAsanUnregisterGlobalsName = "__asan_unregister_globals"; static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; static const char *const kAsanInitName = "__asan_init_v5"; static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; static const int kMaxAsanStackMallocSizeClass = 10; static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; static const char *const kAsanGenPrefix = "__asan_gen_"; static const char *const kSanCovGenPrefix = "__sancov_gen_"; static const char *const kAsanPoisonStackMemoryName = "__asan_poison_stack_memory"; static const char *const kAsanUnpoisonStackMemoryName = "__asan_unpoison_stack_memory"; static const char *const kAsanOptionDetectUAR = "__asan_option_detect_stack_use_after_return"; #ifndef NDEBUG static const int kAsanStackAfterReturnMagic = 0xf5; #endif // Accesses sizes are powers of two: 1, 2, 4, 8, 16. static const size_t kNumberOfAccessSizes = 5; static const unsigned kAllocaRzSize = 32; static const unsigned kAsanAllocaLeftMagic = 0xcacacacaU; static const unsigned kAsanAllocaRightMagic = 0xcbcbcbcbU; static const unsigned kAsanAllocaPartialVal1 = 0xcbcbcb00U; static const unsigned kAsanAllocaPartialVal2 = 0x000000cbU; // Command-line flags. // This flag may need to be replaced with -f[no-]asan-reads. static cl::opt ClInstrumentReads("asan-instrument-reads", cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); static cl::opt ClInstrumentWrites("asan-instrument-writes", cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); static cl::opt ClInstrumentAtomics("asan-instrument-atomics", cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, cl::init(true)); static cl::opt ClAlwaysSlowPath("asan-always-slow-path", cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, cl::init(false)); // This flag limits the number of instructions to be instrumented // in any given BB. Normally, this should be set to unlimited (INT_MAX), // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary // set it to 10000. static cl::opt ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb", cl::init(10000), cl::desc("maximal number of instructions to instrument in any given BB"), cl::Hidden); // This flag may need to be replaced with -f[no]asan-stack. static cl::opt ClStack("asan-stack", cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); static cl::opt ClUseAfterReturn("asan-use-after-return", cl::desc("Check return-after-free"), cl::Hidden, cl::init(true)); // This flag may need to be replaced with -f[no]asan-globals. static cl::opt ClGlobals("asan-globals", cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); static cl::opt ClInitializers("asan-initialization-order", cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true)); static cl::opt ClInvalidPointerPairs("asan-detect-invalid-pointer-pair", cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, cl::init(false)); static cl::opt ClRealignStack("asan-realign-stack", cl::desc("Realign stack to the value of this flag (power of two)"), cl::Hidden, cl::init(32)); static cl::opt ClInstrumentationWithCallsThreshold( "asan-instrumentation-with-call-threshold", cl::desc("If the function being instrumented contains more than " "this number of memory accesses, use callbacks instead of " "inline checks (-1 means never use callbacks)."), cl::Hidden, cl::init(7000)); static cl::opt ClMemoryAccessCallbackPrefix( "asan-memory-access-callback-prefix", cl::desc("Prefix for memory access callbacks"), cl::Hidden, cl::init("__asan_")); static cl::opt ClInstrumentAllocas("asan-instrument-allocas", cl::desc("instrument dynamic allocas"), cl::Hidden, cl::init(false)); // These flags allow to change the shadow mapping. // The shadow mapping looks like // Shadow = (Mem >> scale) + (1 << offset_log) static cl::opt ClMappingScale("asan-mapping-scale", cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); // Optimization flags. Not user visible, used mostly for testing // and benchmarking the tool. static cl::opt ClOpt("asan-opt", cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); static cl::opt ClOptSameTemp("asan-opt-same-temp", cl::desc("Instrument the same temp just once"), cl::Hidden, cl::init(true)); static cl::opt ClOptGlobals("asan-opt-globals", cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); static cl::opt ClCheckLifetime("asan-check-lifetime", cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), cl::Hidden, cl::init(false)); static cl::opt ClDynamicAllocaStack( "asan-stack-dynamic-alloca", cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, cl::init(false)); // Debug flags. static cl::opt ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, cl::init(0)); static cl::opt ClDebugStack("asan-debug-stack", cl::desc("debug stack"), cl::Hidden, cl::init(0)); static cl::opt ClDebugFunc("asan-debug-func", cl::Hidden, cl::desc("Debug func")); static cl::opt ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), cl::Hidden, cl::init(-1)); static cl::opt ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), cl::Hidden, cl::init(-1)); STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); STATISTIC(NumInstrumentedDynamicAllocas, "Number of instrumented dynamic allocas"); STATISTIC(NumOptimizedAccessesToGlobalArray, "Number of optimized accesses to global arrays"); STATISTIC(NumOptimizedAccessesToGlobalVar, "Number of optimized accesses to global vars"); namespace { /// Frontend-provided metadata for source location. struct LocationMetadata { StringRef Filename; int LineNo; int ColumnNo; LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {} bool empty() const { return Filename.empty(); } void parse(MDNode *MDN) { assert(MDN->getNumOperands() == 3); MDString *MDFilename = cast(MDN->getOperand(0)); Filename = MDFilename->getString(); LineNo = mdconst::extract(MDN->getOperand(1))->getLimitedValue(); ColumnNo = mdconst::extract(MDN->getOperand(2))->getLimitedValue(); } }; /// Frontend-provided metadata for global variables. class GlobalsMetadata { public: struct Entry { Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {} LocationMetadata SourceLoc; StringRef Name; bool IsDynInit; bool IsBlacklisted; }; GlobalsMetadata() : inited_(false) {} void init(Module& M) { assert(!inited_); inited_ = true; NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); if (!Globals) return; for (auto MDN : Globals->operands()) { // Metadata node contains the global and the fields of "Entry". assert(MDN->getNumOperands() == 5); auto *GV = mdconst::extract_or_null(MDN->getOperand(0)); // The optimizer may optimize away a global entirely. if (!GV) continue; // We can already have an entry for GV if it was merged with another // global. Entry &E = Entries[GV]; if (auto *Loc = cast_or_null(MDN->getOperand(1))) E.SourceLoc.parse(Loc); if (auto *Name = cast_or_null(MDN->getOperand(2))) E.Name = Name->getString(); ConstantInt *IsDynInit = mdconst::extract(MDN->getOperand(3)); E.IsDynInit |= IsDynInit->isOne(); ConstantInt *IsBlacklisted = mdconst::extract(MDN->getOperand(4)); E.IsBlacklisted |= IsBlacklisted->isOne(); } } /// Returns metadata entry for a given global. Entry get(GlobalVariable *G) const { auto Pos = Entries.find(G); return (Pos != Entries.end()) ? Pos->second : Entry(); } private: bool inited_; DenseMap Entries; }; /// This struct defines the shadow mapping using the rule: /// shadow = (mem >> Scale) ADD-or-OR Offset. struct ShadowMapping { int Scale; uint64_t Offset; bool OrShadowOffset; }; static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize) { bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android; bool IsIOS = TargetTriple.isiOS(); bool IsFreeBSD = TargetTriple.isOSFreeBSD(); bool IsLinux = TargetTriple.isOSLinux(); bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || TargetTriple.getArch() == llvm::Triple::ppc64le; bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || TargetTriple.getArch() == llvm::Triple::mipsel; bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || TargetTriple.getArch() == llvm::Triple::mips64el; bool IsWindows = TargetTriple.isOSWindows(); ShadowMapping Mapping; if (LongSize == 32) { if (IsAndroid) Mapping.Offset = 0; else if (IsMIPS32) Mapping.Offset = kMIPS32_ShadowOffset32; else if (IsFreeBSD) Mapping.Offset = kFreeBSD_ShadowOffset32; else if (IsIOS) Mapping.Offset = kIOSShadowOffset32; else if (IsWindows) Mapping.Offset = kWindowsShadowOffset32; else Mapping.Offset = kDefaultShadowOffset32; } else { // LongSize == 64 if (IsPPC64) Mapping.Offset = kPPC64_ShadowOffset64; else if (IsFreeBSD) Mapping.Offset = kFreeBSD_ShadowOffset64; else if (IsLinux && IsX86_64) Mapping.Offset = kSmallX86_64ShadowOffset; else if (IsMIPS64) Mapping.Offset = kMIPS64_ShadowOffset64; else Mapping.Offset = kDefaultShadowOffset64; } Mapping.Scale = kDefaultShadowScale; if (ClMappingScale) { Mapping.Scale = ClMappingScale; } // OR-ing shadow offset if more efficient (at least on x86) if the offset // is a power of two, but on ppc64 we have to use add since the shadow // offset is not necessary 1/8-th of the address space. Mapping.OrShadowOffset = !IsPPC64 && !(Mapping.Offset & (Mapping.Offset - 1)); return Mapping; } static size_t RedzoneSizeForScale(int MappingScale) { // Redzone used for stack and globals is at least 32 bytes. // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. return std::max(32U, 1U << MappingScale); } /// AddressSanitizer: instrument the code in module to find memory bugs. struct AddressSanitizer : public FunctionPass { AddressSanitizer() : FunctionPass(ID) { initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); } const char *getPassName() const override { return "AddressSanitizerFunctionPass"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } void instrumentMop(Instruction *I, bool UseCalls); void instrumentPointerComparisonOrSubtraction(Instruction *I); void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument, bool UseCalls); Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, Value *ShadowValue, uint32_t TypeSize); Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument); void instrumentMemIntrinsic(MemIntrinsic *MI); Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); bool runOnFunction(Function &F) override; bool maybeInsertAsanInitAtFunctionEntry(Function &F); bool doInitialization(Module &M) override; static char ID; // Pass identification, replacement for typeid DominatorTree &getDominatorTree() const { return *DT; } private: void initializeCallbacks(Module &M); bool LooksLikeCodeInBug11395(Instruction *I); bool GlobalIsLinkerInitialized(GlobalVariable *G); LLVMContext *C; const DataLayout *DL; Triple TargetTriple; int LongSize; Type *IntptrTy; ShadowMapping Mapping; DominatorTree *DT; Function *AsanCtorFunction; Function *AsanInitFunction; Function *AsanHandleNoReturnFunc; Function *AsanPtrCmpFunction, *AsanPtrSubFunction; // This array is indexed by AccessIsWrite and log2(AccessSize). Function *AsanErrorCallback[2][kNumberOfAccessSizes]; Function *AsanMemoryAccessCallback[2][kNumberOfAccessSizes]; // This array is indexed by AccessIsWrite. Function *AsanErrorCallbackSized[2], *AsanMemoryAccessCallbackSized[2]; Function *AsanMemmove, *AsanMemcpy, *AsanMemset; InlineAsm *EmptyAsm; GlobalsMetadata GlobalsMD; friend struct FunctionStackPoisoner; }; class AddressSanitizerModule : public ModulePass { public: AddressSanitizerModule() : ModulePass(ID) {} bool runOnModule(Module &M) override; static char ID; // Pass identification, replacement for typeid const char *getPassName() const override { return "AddressSanitizerModule"; } private: void initializeCallbacks(Module &M); bool InstrumentGlobals(IRBuilder<> &IRB, Module &M); bool ShouldInstrumentGlobal(GlobalVariable *G); void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); size_t MinRedzoneSizeForGlobal() const { return RedzoneSizeForScale(Mapping.Scale); } GlobalsMetadata GlobalsMD; Type *IntptrTy; LLVMContext *C; const DataLayout *DL; Triple TargetTriple; ShadowMapping Mapping; Function *AsanPoisonGlobals; Function *AsanUnpoisonGlobals; Function *AsanRegisterGlobals; Function *AsanUnregisterGlobals; }; // Stack poisoning does not play well with exception handling. // When an exception is thrown, we essentially bypass the code // that unpoisones the stack. This is why the run-time library has // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire // stack in the interceptor. This however does not work inside the // actual function which catches the exception. Most likely because the // compiler hoists the load of the shadow value somewhere too high. // This causes asan to report a non-existing bug on 453.povray. // It sounds like an LLVM bug. struct FunctionStackPoisoner : public InstVisitor { Function &F; AddressSanitizer &ASan; DIBuilder DIB; LLVMContext *C; Type *IntptrTy; Type *IntptrPtrTy; ShadowMapping Mapping; SmallVector AllocaVec; SmallVector RetVec; unsigned StackAlignment; Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; // Stores a place and arguments of poisoning/unpoisoning call for alloca. struct AllocaPoisonCall { IntrinsicInst *InsBefore; AllocaInst *AI; uint64_t Size; bool DoPoison; }; SmallVector AllocaPoisonCallVec; // Stores left and right redzone shadow addresses for dynamic alloca // and pointer to alloca instruction itself. // LeftRzAddr is a shadow address for alloca left redzone. // RightRzAddr is a shadow address for alloca right redzone. struct DynamicAllocaCall { AllocaInst *AI; Value *LeftRzAddr; Value *RightRzAddr; bool Poison; explicit DynamicAllocaCall(AllocaInst *AI, Value *LeftRzAddr = nullptr, Value *RightRzAddr = nullptr) : AI(AI), LeftRzAddr(LeftRzAddr), RightRzAddr(RightRzAddr), Poison(true) {} }; SmallVector DynamicAllocaVec; // Maps Value to an AllocaInst from which the Value is originated. typedef DenseMap AllocaForValueMapTy; AllocaForValueMapTy AllocaForValue; bool HasNonEmptyInlineAsm; std::unique_ptr EmptyInlineAsm; FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C), IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), StackAlignment(1 << Mapping.Scale), HasNonEmptyInlineAsm(false), EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} bool runOnFunction() { if (!ClStack) return false; // Collect alloca, ret, lifetime instructions etc. for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; initializeCallbacks(*F.getParent()); poisonStack(); if (ClDebugStack) { DEBUG(dbgs() << F); } return true; } // Finds all Alloca instructions and puts // poisoned red zones around all of them. // Then unpoison everything back before the function returns. void poisonStack(); // ----------------------- Visitors. /// \brief Collect all Ret instructions. void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } // Unpoison dynamic allocas redzones. void unpoisonDynamicAlloca(DynamicAllocaCall &AllocaCall) { if (!AllocaCall.Poison) return; for (auto Ret : RetVec) { IRBuilder<> IRBRet(Ret); PointerType *Int32PtrTy = PointerType::getUnqual(IRBRet.getInt32Ty()); Value *Zero = Constant::getNullValue(IRBRet.getInt32Ty()); Value *PartialRzAddr = IRBRet.CreateSub(AllocaCall.RightRzAddr, ConstantInt::get(IntptrTy, 4)); IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.LeftRzAddr, Int32PtrTy)); IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(PartialRzAddr, Int32PtrTy)); IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.RightRzAddr, Int32PtrTy)); } } // Right shift for BigEndian and left shift for LittleEndian. Value *shiftAllocaMagic(Value *Val, IRBuilder<> &IRB, Value *Shift) { return ASan.DL->isLittleEndian() ? IRB.CreateShl(Val, Shift) : IRB.CreateLShr(Val, Shift); } // Compute PartialRzMagic for dynamic alloca call. Since we don't know the // size of requested memory until runtime, we should compute it dynamically. // If PartialSize is 0, PartialRzMagic would contain kAsanAllocaRightMagic, // otherwise it would contain the value that we will use to poison the // partial redzone for alloca call. Value *computePartialRzMagic(Value *PartialSize, IRBuilder<> &IRB); // Deploy and poison redzones around dynamic alloca call. To do this, we // should replace this call with another one with changed parameters and // replace all its uses with new address, so // addr = alloca type, old_size, align // is replaced by // new_size = (old_size + additional_size) * sizeof(type) // tmp = alloca i8, new_size, max(align, 32) // addr = tmp + 32 (first 32 bytes are for the left redzone). // Additional_size is added to make new memory allocation contain not only // requested memory, but also left, partial and right redzones. // After that, we should poison redzones: // (1) Left redzone with kAsanAllocaLeftMagic. // (2) Partial redzone with the value, computed in runtime by // computePartialRzMagic function. // (3) Right redzone with kAsanAllocaRightMagic. void handleDynamicAllocaCall(DynamicAllocaCall &AllocaCall); /// \brief Collect Alloca instructions we want (and can) handle. void visitAllocaInst(AllocaInst &AI) { if (!isInterestingAlloca(AI)) return; StackAlignment = std::max(StackAlignment, AI.getAlignment()); if (isDynamicAlloca(AI)) DynamicAllocaVec.push_back(DynamicAllocaCall(&AI)); else AllocaVec.push_back(&AI); } /// \brief Collect lifetime intrinsic calls to check for use-after-scope /// errors. void visitIntrinsicInst(IntrinsicInst &II) { if (!ClCheckLifetime) return; Intrinsic::ID ID = II.getIntrinsicID(); if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) return; // Found lifetime intrinsic, add ASan instrumentation if necessary. ConstantInt *Size = dyn_cast(II.getArgOperand(0)); // If size argument is undefined, don't do anything. if (Size->isMinusOne()) return; // Check that size doesn't saturate uint64_t and can // be stored in IntptrTy. const uint64_t SizeValue = Size->getValue().getLimitedValue(); if (SizeValue == ~0ULL || !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) return; // Find alloca instruction that corresponds to llvm.lifetime argument. AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); if (!AI) return; bool DoPoison = (ID == Intrinsic::lifetime_end); AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; AllocaPoisonCallVec.push_back(APC); } void visitCallInst(CallInst &CI) { HasNonEmptyInlineAsm |= CI.isInlineAsm() && !CI.isIdenticalTo(EmptyInlineAsm.get()); } // ---------------------- Helpers. void initializeCallbacks(Module &M); bool doesDominateAllExits(const Instruction *I) const { for (auto Ret : RetVec) { if (!ASan.getDominatorTree().dominates(I, Ret)) return false; } return true; } bool isDynamicAlloca(AllocaInst &AI) const { return AI.isArrayAllocation() || !AI.isStaticAlloca(); } // Check if we want (and can) handle this alloca. bool isInterestingAlloca(AllocaInst &AI) const { return (AI.getAllocatedType()->isSized() && // alloca() may be called with 0 size, ignore it. getAllocaSizeInBytes(&AI) > 0); } uint64_t getAllocaSizeInBytes(AllocaInst *AI) const { Type *Ty = AI->getAllocatedType(); uint64_t SizeInBytes = ASan.DL->getTypeAllocSize(Ty); return SizeInBytes; } /// Finds alloca where the value comes from. AllocaInst *findAllocaForValue(Value *V); void poisonRedZones(ArrayRef ShadowBytes, IRBuilder<> &IRB, Value *ShadowBase, bool DoPoison); void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase, int Size); Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic); PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, Instruction *ThenTerm, Value *ValueIfFalse); }; } // namespace char AddressSanitizer::ID = 0; INITIALIZE_PASS_BEGIN(AddressSanitizer, "asan", "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(AddressSanitizer, "asan", "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, false) FunctionPass *llvm::createAddressSanitizerFunctionPass() { return new AddressSanitizer(); } char AddressSanitizerModule::ID = 0; INITIALIZE_PASS(AddressSanitizerModule, "asan-module", "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", false, false) ModulePass *llvm::createAddressSanitizerModulePass() { return new AddressSanitizerModule(); } static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { size_t Res = countTrailingZeros(TypeSize / 8); assert(Res < kNumberOfAccessSizes); return Res; } // \brief Create a constant for Str so that we can pass it to the run-time lib. static GlobalVariable *createPrivateGlobalForString( Module &M, StringRef Str, bool AllowMerging) { Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); // We use private linkage for module-local strings. If they can be merged // with another one, we set the unnamed_addr attribute. GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true, GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); if (AllowMerging) GV->setUnnamedAddr(true); GV->setAlignment(1); // Strings may not be merged w/o setting align 1. return GV; } /// \brief Create a global describing a source location. static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, LocationMetadata MD) { Constant *LocData[] = { createPrivateGlobalForString(M, MD.Filename, true), ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), }; auto LocStruct = ConstantStruct::getAnon(LocData); auto GV = new GlobalVariable(M, LocStruct->getType(), true, GlobalValue::PrivateLinkage, LocStruct, kAsanGenPrefix); GV->setUnnamedAddr(true); return GV; } static bool GlobalWasGeneratedByAsan(GlobalVariable *G) { return G->getName().find(kAsanGenPrefix) == 0 || G->getName().find(kSanCovGenPrefix) == 0; } Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { // Shadow >> scale Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); if (Mapping.Offset == 0) return Shadow; // (Shadow >> scale) | offset if (Mapping.OrShadowOffset) return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); else return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); } // Instrument memset/memmove/memcpy void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { IRBuilder<> IRB(MI); if (isa(MI)) { IRB.CreateCall3( isa(MI) ? AsanMemmove : AsanMemcpy, IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)); } else if (isa(MI)) { IRB.CreateCall3( AsanMemset, IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)); } MI->eraseFromParent(); } // If I is an interesting memory access, return the PointerOperand // and set IsWrite/Alignment. Otherwise return nullptr. static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, unsigned *Alignment) { // Skip memory accesses inserted by another instrumentation. if (I->getMetadata("nosanitize")) return nullptr; if (LoadInst *LI = dyn_cast(I)) { if (!ClInstrumentReads) return nullptr; *IsWrite = false; *Alignment = LI->getAlignment(); return LI->getPointerOperand(); } if (StoreInst *SI = dyn_cast(I)) { if (!ClInstrumentWrites) return nullptr; *IsWrite = true; *Alignment = SI->getAlignment(); return SI->getPointerOperand(); } if (AtomicRMWInst *RMW = dyn_cast(I)) { if (!ClInstrumentAtomics) return nullptr; *IsWrite = true; *Alignment = 0; return RMW->getPointerOperand(); } if (AtomicCmpXchgInst *XCHG = dyn_cast(I)) { if (!ClInstrumentAtomics) return nullptr; *IsWrite = true; *Alignment = 0; return XCHG->getPointerOperand(); } return nullptr; } static bool isPointerOperand(Value *V) { return V->getType()->isPointerTy() || isa(V); } // This is a rough heuristic; it may cause both false positives and // false negatives. The proper implementation requires cooperation with // the frontend. static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { if (ICmpInst *Cmp = dyn_cast(I)) { if (!Cmp->isRelational()) return false; } else if (BinaryOperator *BO = dyn_cast(I)) { if (BO->getOpcode() != Instruction::Sub) return false; } else { return false; } if (!isPointerOperand(I->getOperand(0)) || !isPointerOperand(I->getOperand(1))) return false; return true; } bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { // If a global variable does not have dynamic initialization we don't // have to instrument it. However, if a global does not have initializer // at all, we assume it has dynamic initializer (in other TU). return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; } void AddressSanitizer::instrumentPointerComparisonOrSubtraction(Instruction *I) { IRBuilder<> IRB(I); Function *F = isa(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; for (int i = 0; i < 2; i++) { if (Param[i]->getType()->isPointerTy()) Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy); } IRB.CreateCall2(F, Param[0], Param[1]); } void AddressSanitizer::instrumentMop(Instruction *I, bool UseCalls) { bool IsWrite = false; unsigned Alignment = 0; Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &Alignment); assert(Addr); if (ClOpt && ClOptGlobals) { if (GlobalVariable *G = dyn_cast(Addr)) { // If initialization order checking is disabled, a simple access to a // dynamically initialized global is always valid. if (!ClInitializers || GlobalIsLinkerInitialized(G)) { NumOptimizedAccessesToGlobalVar++; return; } } ConstantExpr *CE = dyn_cast(Addr); if (CE && CE->isGEPWithNoNotionalOverIndexing()) { if (GlobalVariable *G = dyn_cast(CE->getOperand(0))) { if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) { NumOptimizedAccessesToGlobalArray++; return; } } } } Type *OrigPtrTy = Addr->getType(); Type *OrigTy = cast(OrigPtrTy)->getElementType(); assert(OrigTy->isSized()); uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy); assert((TypeSize % 8) == 0); if (IsWrite) NumInstrumentedWrites++; else NumInstrumentedReads++; unsigned Granularity = 1 << Mapping.Scale; // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check // if the data is properly aligned. if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || TypeSize == 128) && (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls); // Instrument unusual size or unusual alignment. // We can not do it with a single check, so we do 1-byte check for the first // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able // to report the actual access size. IRBuilder<> IRB(I); Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); if (UseCalls) { IRB.CreateCall2(AsanMemoryAccessCallbackSized[IsWrite], AddrLong, Size); } else { Value *LastByte = IRB.CreateIntToPtr( IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), OrigPtrTy); instrumentAddress(I, I, Addr, 8, IsWrite, Size, false); instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false); } } // Validate the result of Module::getOrInsertFunction called for an interface // function of AddressSanitizer. If the instrumented module defines a function // with the same name, their prototypes must match, otherwise // getOrInsertFunction returns a bitcast. static Function *checkInterfaceFunction(Constant *FuncOrBitcast) { if (isa(FuncOrBitcast)) return cast(FuncOrBitcast); FuncOrBitcast->dump(); report_fatal_error("trying to redefine an AddressSanitizer " "interface function"); } Instruction *AddressSanitizer::generateCrashCode( Instruction *InsertBefore, Value *Addr, bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) { IRBuilder<> IRB(InsertBefore); CallInst *Call = SizeArgument ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument) : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr); // We don't do Call->setDoesNotReturn() because the BB already has // UnreachableInst at the end. // This EmptyAsm is required to avoid callback merge. IRB.CreateCall(EmptyAsm); return Call; } Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, Value *ShadowValue, uint32_t TypeSize) { size_t Granularity = 1 << Mapping.Scale; // Addr & (Granularity - 1) Value *LastAccessedByte = IRB.CreateAnd( AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); // (Addr & (Granularity - 1)) + size - 1 if (TypeSize / 8 > 1) LastAccessedByte = IRB.CreateAdd( LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); // (uint8_t) ((Addr & (Granularity-1)) + size - 1) LastAccessedByte = IRB.CreateIntCast( LastAccessedByte, ShadowValue->getType(), false); // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); } void AddressSanitizer::instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, bool IsWrite, Value *SizeArgument, bool UseCalls) { IRBuilder<> IRB(InsertBefore); Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); if (UseCalls) { IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][AccessSizeIndex], AddrLong); return; } Type *ShadowTy = IntegerType::get( *C, std::max(8U, TypeSize >> Mapping.Scale)); Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); Value *ShadowPtr = memToShadow(AddrLong, IRB); Value *CmpVal = Constant::getNullValue(ShadowTy); Value *ShadowValue = IRB.CreateLoad( IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); size_t Granularity = 1 << Mapping.Scale; TerminatorInst *CrashTerm = nullptr; if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { // We use branch weights for the slow path check, to indicate that the slow // path is rarely taken. This seems to be the case for SPEC benchmarks. TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); assert(dyn_cast(CheckTerm)->isUnconditional()); BasicBlock *NextBB = CheckTerm->getSuccessor(0); IRB.SetInsertPoint(CheckTerm); Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); BasicBlock *CrashBlock = BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); CrashTerm = new UnreachableInst(*C, CrashBlock); BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); ReplaceInstWithInst(CheckTerm, NewTerm); } else { CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, true); } Instruction *Crash = generateCrashCode( CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument); Crash->setDebugLoc(OrigIns->getDebugLoc()); } void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName) { // Set up the arguments to our poison/unpoison functions. IRBuilder<> IRB(GlobalInit.begin()->getFirstInsertionPt()); // Add a call to poison all external globals before the given function starts. Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); // Add calls to unpoison all globals before each return instruction. for (auto &BB : GlobalInit.getBasicBlockList()) if (ReturnInst *RI = dyn_cast(BB.getTerminator())) CallInst::Create(AsanUnpoisonGlobals, "", RI); } void AddressSanitizerModule::createInitializerPoisonCalls( Module &M, GlobalValue *ModuleName) { GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); ConstantArray *CA = cast(GV->getInitializer()); for (Use &OP : CA->operands()) { if (isa(OP)) continue; ConstantStruct *CS = cast(OP); // Must have a function or null ptr. if (Function* F = dyn_cast(CS->getOperand(1))) { if (F->getName() == kAsanModuleCtorName) continue; ConstantInt *Priority = dyn_cast(CS->getOperand(0)); // Don't instrument CTORs that will run before asan.module_ctor. if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; poisonOneInitializer(*F, ModuleName); } } } bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { Type *Ty = cast(G->getType())->getElementType(); DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); if (GlobalsMD.get(G).IsBlacklisted) return false; if (!Ty->isSized()) return false; if (!G->hasInitializer()) return false; if (GlobalWasGeneratedByAsan(G)) return false; // Our own global. // Touch only those globals that will not be defined in other modules. // Don't handle ODR linkage types and COMDATs since other modules may be built // without ASan. if (G->getLinkage() != GlobalVariable::ExternalLinkage && G->getLinkage() != GlobalVariable::PrivateLinkage && G->getLinkage() != GlobalVariable::InternalLinkage) return false; if (G->hasComdat()) return false; // Two problems with thread-locals: // - The address of the main thread's copy can't be computed at link-time. // - Need to poison all copies, not just the main thread's one. if (G->isThreadLocal()) return false; // For now, just ignore this Global if the alignment is large. if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; if (G->hasSection()) { StringRef Section(G->getSection()); if (TargetTriple.isOSBinFormatMachO()) { StringRef ParsedSegment, ParsedSection; unsigned TAA = 0, StubSize = 0; bool TAAParsed; std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); if (!ErrorCode.empty()) { report_fatal_error("Invalid section specifier '" + ParsedSection + "': " + ErrorCode + "."); } // Ignore the globals from the __OBJC section. The ObjC runtime assumes // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to // them. if (ParsedSegment == "__OBJC" || (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); return false; } // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 // Constant CFString instances are compiled in the following way: // -- the string buffer is emitted into // __TEXT,__cstring,cstring_literals // -- the constant NSConstantString structure referencing that buffer // is placed into __DATA,__cfstring // Therefore there's no point in placing redzones into __DATA,__cfstring. // Moreover, it causes the linker to crash on OS X 10.7 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); return false; } // The linker merges the contents of cstring_literals and removes the // trailing zeroes. if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); return false; } } // Callbacks put into the CRT initializer/terminator sections // should not be instrumented. // See https://code.google.com/p/address-sanitizer/issues/detail?id=305 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx if (Section.startswith(".CRT")) { DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); return false; } // Globals from llvm.metadata aren't emitted, do not instrument them. if (Section == "llvm.metadata") return false; } return true; } void AddressSanitizerModule::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); // Declare our poisoning and unpoisoning functions. AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr)); AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); // Declare functions that register/unregister globals. AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); } // This function replaces all global variables with new variables that have // trailing redzones. It also creates a function that poisons // redzones and inserts this function into llvm.global_ctors. bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) { GlobalsMD.init(M); SmallVector GlobalsToChange; for (auto &G : M.globals()) { if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); } size_t n = GlobalsToChange.size(); if (n == 0) return false; // A global is described by a structure // size_t beg; // size_t size; // size_t size_with_redzone; // const char *name; // const char *module_name; // size_t has_dynamic_init; // void *source_location; // We initialize an array of such structures and pass it to a run-time call. StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, nullptr); SmallVector Initializers(n); bool HasDynamicallyInitializedGlobals = false; // We shouldn't merge same module names, as this string serves as unique // module ID in runtime. GlobalVariable *ModuleName = createPrivateGlobalForString( M, M.getModuleIdentifier(), /*AllowMerging*/false); for (size_t i = 0; i < n; i++) { static const uint64_t kMaxGlobalRedzone = 1 << 18; GlobalVariable *G = GlobalsToChange[i]; auto MD = GlobalsMD.get(G); // Create string holding the global name (use global name from metadata // if it's available, otherwise just write the name of global variable). GlobalVariable *Name = createPrivateGlobalForString( M, MD.Name.empty() ? G->getName() : MD.Name, /*AllowMerging*/ true); PointerType *PtrTy = cast(G->getType()); Type *Ty = PtrTy->getElementType(); uint64_t SizeInBytes = DL->getTypeAllocSize(Ty); uint64_t MinRZ = MinRedzoneSizeForGlobal(); // MinRZ <= RZ <= kMaxGlobalRedzone // and trying to make RZ to be ~ 1/4 of SizeInBytes. uint64_t RZ = std::max(MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); uint64_t RightRedzoneSize = RZ; // Round up to MinRZ if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr); Constant *NewInitializer = ConstantStruct::get( NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy), nullptr); // Create a new global variable with enough space for a redzone. GlobalValue::LinkageTypes Linkage = G->getLinkage(); if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) Linkage = GlobalValue::InternalLinkage; GlobalVariable *NewGlobal = new GlobalVariable( M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, G->getThreadLocalMode()); NewGlobal->copyAttributesFrom(G); NewGlobal->setAlignment(MinRZ); Value *Indices2[2]; Indices2[0] = IRB.getInt32(0); Indices2[1] = IRB.getInt32(0); G->replaceAllUsesWith( ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); NewGlobal->takeName(G); G->eraseFromParent(); Constant *SourceLoc; if (!MD.SourceLoc.empty()) { auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); } else { SourceLoc = ConstantInt::get(IntptrTy, 0); } Initializers[i] = ConstantStruct::get( GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy), ConstantInt::get(IntptrTy, SizeInBytes), ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), ConstantExpr::getPointerCast(Name, IntptrTy), ConstantExpr::getPointerCast(ModuleName, IntptrTy), ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr); if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); } ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); GlobalVariable *AllGlobals = new GlobalVariable( M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); // Create calls for poisoning before initializers run and unpoisoning after. if (HasDynamicallyInitializedGlobals) createInitializerPoisonCalls(M, ModuleName); IRB.CreateCall2(AsanRegisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); // We also need to unregister globals at the end, e.g. when a shared library // gets closed. Function *AsanDtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); IRB_Dtor.CreateCall2(AsanUnregisterGlobals, IRB.CreatePointerCast(AllGlobals, IntptrTy), ConstantInt::get(IntptrTy, n)); appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); DEBUG(dbgs() << M); return true; } bool AddressSanitizerModule::runOnModule(Module &M) { DataLayoutPass *DLP = getAnalysisIfAvailable(); if (!DLP) return false; DL = &DLP->getDataLayout(); C = &(M.getContext()); int LongSize = DL->getPointerSizeInBits(); IntptrTy = Type::getIntNTy(*C, LongSize); TargetTriple = Triple(M.getTargetTriple()); Mapping = getShadowMapping(TargetTriple, LongSize); initializeCallbacks(M); bool Changed = false; Function *CtorFunc = M.getFunction(kAsanModuleCtorName); assert(CtorFunc); IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); if (ClGlobals) Changed |= InstrumentGlobals(IRB, M); return Changed; } void AddressSanitizer::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); // Create __asan_report* callbacks. for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; AccessSizeIndex++) { // IsWrite and TypeSize are encoded in the function name. std::string Suffix = (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex); AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = checkInterfaceFunction( M.getOrInsertFunction(kAsanReportErrorTemplate + Suffix, IRB.getVoidTy(), IntptrTy, nullptr)); AsanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] = checkInterfaceFunction( M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + Suffix, IRB.getVoidTy(), IntptrTy, nullptr)); } } AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction( kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction( kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); AsanMemoryAccessCallbackSized[0] = checkInterfaceFunction( M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "loadN", IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); AsanMemoryAccessCallbackSized[1] = checkInterfaceFunction( M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "storeN", IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); AsanMemmove = checkInterfaceFunction(M.getOrInsertFunction( ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); AsanMemcpy = checkInterfaceFunction(M.getOrInsertFunction( ClMemoryAccessCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); AsanMemset = checkInterfaceFunction(M.getOrInsertFunction( ClMemoryAccessCallbackPrefix + "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr)); AsanHandleNoReturnFunc = checkInterfaceFunction( M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr)); AsanPtrCmpFunction = checkInterfaceFunction(M.getOrInsertFunction( kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); AsanPtrSubFunction = checkInterfaceFunction(M.getOrInsertFunction( kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); // We insert an empty inline asm after __asan_report* to avoid callback merge. EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), StringRef(""), StringRef(""), /*hasSideEffects=*/true); } // virtual bool AddressSanitizer::doInitialization(Module &M) { // Initialize the private fields. No one has accessed them before. DataLayoutPass *DLP = getAnalysisIfAvailable(); if (!DLP) report_fatal_error("data layout missing"); DL = &DLP->getDataLayout(); GlobalsMD.init(M); C = &(M.getContext()); LongSize = DL->getPointerSizeInBits(); IntptrTy = Type::getIntNTy(*C, LongSize); TargetTriple = Triple(M.getTargetTriple()); AsanCtorFunction = Function::Create( FunctionType::get(Type::getVoidTy(*C), false), GlobalValue::InternalLinkage, kAsanModuleCtorName, &M); BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction); // call __asan_init in the module ctor. IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB)); AsanInitFunction = checkInterfaceFunction( M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), nullptr)); AsanInitFunction->setLinkage(Function::ExternalLinkage); IRB.CreateCall(AsanInitFunction); Mapping = getShadowMapping(TargetTriple, LongSize); appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); return true; } bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { // For each NSObject descendant having a +load method, this method is invoked // by the ObjC runtime before any of the static constructors is called. // Therefore we need to instrument such methods with a call to __asan_init // at the beginning in order to initialize our runtime before any access to // the shadow memory. // We cannot just ignore these methods, because they may call other // instrumented functions. if (F.getName().find(" load]") != std::string::npos) { IRBuilder<> IRB(F.begin()->begin()); IRB.CreateCall(AsanInitFunction); return true; } return false; } bool AddressSanitizer::runOnFunction(Function &F) { if (&F == AsanCtorFunction) return false; if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); initializeCallbacks(*F.getParent()); DT = &getAnalysis().getDomTree(); // If needed, insert __asan_init before checking for SanitizeAddress attr. maybeInsertAsanInitAtFunctionEntry(F); if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false; if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false; // We want to instrument every address only once per basic block (unless there // are calls between uses). SmallSet TempsToInstrument; SmallVector ToInstrument; SmallVector NoReturnCalls; SmallVector AllBlocks; SmallVector PointerComparisonsOrSubtracts; int NumAllocas = 0; bool IsWrite; unsigned Alignment; // Fill the set of memory operations to instrument. for (auto &BB : F) { AllBlocks.push_back(&BB); TempsToInstrument.clear(); int NumInsnsPerBB = 0; for (auto &Inst : BB) { if (LooksLikeCodeInBug11395(&Inst)) return false; if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &Alignment)) { if (ClOpt && ClOptSameTemp) { if (!TempsToInstrument.insert(Addr).second) continue; // We've seen this temp in the current BB. } } else if (ClInvalidPointerPairs && isInterestingPointerComparisonOrSubtraction(&Inst)) { PointerComparisonsOrSubtracts.push_back(&Inst); continue; } else if (isa(Inst)) { // ok, take it. } else { if (isa(Inst)) NumAllocas++; CallSite CS(&Inst); if (CS) { // A call inside BB. TempsToInstrument.clear(); if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); } continue; } ToInstrument.push_back(&Inst); NumInsnsPerBB++; if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; } } bool UseCalls = false; if (ClInstrumentationWithCallsThreshold >= 0 && ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold) UseCalls = true; // Instrument. int NumInstrumented = 0; for (auto Inst : ToInstrument) { if (ClDebugMin < 0 || ClDebugMax < 0 || (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { if (isInterestingMemoryAccess(Inst, &IsWrite, &Alignment)) instrumentMop(Inst, UseCalls); else instrumentMemIntrinsic(cast(Inst)); } NumInstrumented++; } FunctionStackPoisoner FSP(F, *this); bool ChangedStack = FSP.runOnFunction(); // We must unpoison the stack before every NoReturn call (throw, _exit, etc). // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 for (auto CI : NoReturnCalls) { IRBuilder<> IRB(CI); IRB.CreateCall(AsanHandleNoReturnFunc); } for (auto Inst : PointerComparisonsOrSubtracts) { instrumentPointerComparisonOrSubtraction(Inst); NumInstrumented++; } bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n"); return res; } // Workaround for bug 11395: we don't want to instrument stack in functions // with large assembly blobs (32-bit only), otherwise reg alloc may crash. // FIXME: remove once the bug 11395 is fixed. bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { if (LongSize != 32) return false; CallInst *CI = dyn_cast(I); if (!CI || !CI->isInlineAsm()) return false; if (CI->getNumArgOperands() <= 5) return false; // We have inline assembly with quite a few arguments. return true; } void FunctionStackPoisoner::initializeCallbacks(Module &M) { IRBuilder<> IRB(*C); for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { std::string Suffix = itostr(i); AsanStackMallocFunc[i] = checkInterfaceFunction(M.getOrInsertFunction( kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy, nullptr)); AsanStackFreeFunc[i] = checkInterfaceFunction( M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); } AsanPoisonStackMemoryFunc = checkInterfaceFunction( M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); AsanUnpoisonStackMemoryFunc = checkInterfaceFunction( M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); } void FunctionStackPoisoner::poisonRedZones(ArrayRef ShadowBytes, IRBuilder<> &IRB, Value *ShadowBase, bool DoPoison) { size_t n = ShadowBytes.size(); size_t i = 0; // We need to (un)poison n bytes of stack shadow. Poison as many as we can // using 64-bit stores (if we are on 64-bit arch), then poison the rest // with 32-bit stores, then with 16-byte stores, then with 8-byte stores. for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8; LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) { for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) { uint64_t Val = 0; for (size_t j = 0; j < LargeStoreSizeInBytes; j++) { if (ASan.DL->isLittleEndian()) Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); else Val = (Val << 8) | ShadowBytes[i + j]; } if (!Val) continue; Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8); Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0); IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo())); } } } // Fake stack allocator (asan_fake_stack.h) has 11 size classes // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass static int StackMallocSizeClass(uint64_t LocalStackSize) { assert(LocalStackSize <= kMaxStackMallocSize); uint64_t MaxSize = kMinStackMallocSize; for (int i = 0; ; i++, MaxSize *= 2) if (LocalStackSize <= MaxSize) return i; llvm_unreachable("impossible LocalStackSize"); } // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic. // We can not use MemSet intrinsic because it may end up calling the actual // memset. Size is a multiple of 8. // Currently this generates 8-byte stores on x86_64; it may be better to // generate wider stores. void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined( IRBuilder<> &IRB, Value *ShadowBase, int Size) { assert(!(Size % 8)); assert(kAsanStackAfterReturnMagic == 0xf5); for (int i = 0; i < Size; i += 8) { Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL), IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo())); } } static DebugLoc getFunctionEntryDebugLocation(Function &F) { for (const auto &Inst : F.getEntryBlock()) if (!isa(Inst)) return Inst.getDebugLoc(); return DebugLoc(); } PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, Instruction *ThenTerm, Value *ValueIfFalse) { PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); BasicBlock *CondBlock = cast(Cond)->getParent(); PHI->addIncoming(ValueIfFalse, CondBlock); BasicBlock *ThenBlock = ThenTerm->getParent(); PHI->addIncoming(ValueIfTrue, ThenBlock); return PHI; } Value *FunctionStackPoisoner::createAllocaForLayout( IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { AllocaInst *Alloca; if (Dynamic) { Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), "MyAlloca"); } else { Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), nullptr, "MyAlloca"); assert(Alloca->isStaticAlloca()); } assert((ClRealignStack & (ClRealignStack - 1)) == 0); size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); Alloca->setAlignment(FrameAlignment); return IRB.CreatePointerCast(Alloca, IntptrTy); } void FunctionStackPoisoner::poisonStack() { assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0); if (ClInstrumentAllocas) // Handle dynamic allocas. for (auto &AllocaCall : DynamicAllocaVec) handleDynamicAllocaCall(AllocaCall); if (AllocaVec.size() == 0) return; int StackMallocIdx = -1; DebugLoc EntryDebugLocation = getFunctionEntryDebugLocation(F); Instruction *InsBefore = AllocaVec[0]; IRBuilder<> IRB(InsBefore); IRB.SetCurrentDebugLocation(EntryDebugLocation); SmallVector SVD; SVD.reserve(AllocaVec.size()); for (AllocaInst *AI : AllocaVec) { ASanStackVariableDescription D = { AI->getName().data(), getAllocaSizeInBytes(AI), AI->getAlignment(), AI, 0}; SVD.push_back(D); } // Minimal header size (left redzone) is 4 pointers, // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. size_t MinHeaderSize = ASan.LongSize / 2; ASanStackFrameLayout L; ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L); DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n"); uint64_t LocalStackSize = L.FrameSize; bool DoStackMalloc = ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize; // Don't do dynamic alloca in presence of inline asm: too often it // makes assumptions on which registers are available. bool DoDynamicAlloca = ClDynamicAllocaStack && !HasNonEmptyInlineAsm; Value *StaticAlloca = DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); Value *FakeStack; Value *LocalStackBase; if (DoStackMalloc) { // void *FakeStack = __asan_option_detect_stack_use_after_return // ? __asan_stack_malloc_N(LocalStackSize) // : nullptr; // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal( kAsanOptionDetectUAR, IRB.getInt32Ty()); Value *UARIsEnabled = IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR), Constant::getNullValue(IRB.getInt32Ty())); Instruction *Term = SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false); IRBuilder<> IRBIf(Term); IRBIf.SetCurrentDebugLocation(EntryDebugLocation); StackMallocIdx = StackMallocSizeClass(LocalStackSize); assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); Value *FakeStackValue = IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], ConstantInt::get(IntptrTy, LocalStackSize)); IRB.SetInsertPoint(InsBefore); IRB.SetCurrentDebugLocation(EntryDebugLocation); FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term, ConstantInt::get(IntptrTy, 0)); Value *NoFakeStack = IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); IRBIf.SetInsertPoint(Term); IRBIf.SetCurrentDebugLocation(EntryDebugLocation); Value *AllocaValue = DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; IRB.SetInsertPoint(InsBefore); IRB.SetCurrentDebugLocation(EntryDebugLocation); LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); } else { // void *FakeStack = nullptr; // void *LocalStackBase = alloca(LocalStackSize); FakeStack = ConstantInt::get(IntptrTy, 0); LocalStackBase = DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; } // Insert poison calls for lifetime intrinsics for alloca. bool HavePoisonedAllocas = false; for (const auto &APC : AllocaPoisonCallVec) { assert(APC.InsBefore); assert(APC.AI); IRBuilder<> IRB(APC.InsBefore); poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); HavePoisonedAllocas |= APC.DoPoison; } // Replace Alloca instructions with base+offset. for (const auto &Desc : SVD) { AllocaInst *AI = Desc.AI; Value *NewAllocaPtr = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), AI->getType()); replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB); AI->replaceAllUsesWith(NewAllocaPtr); } // The left-most redzone has enough space for at least 4 pointers. // Write the Magic value to redzone[0]. Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), BasePlus0); // Write the frame description constant to redzone[1]. Value *BasePlus1 = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)), IntptrPtrTy); GlobalVariable *StackDescriptionGlobal = createPrivateGlobalForString(*F.getParent(), L.DescriptionString, /*AllowMerging*/true); Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); IRB.CreateStore(Description, BasePlus1); // Write the PC to redzone[2]. Value *BasePlus2 = IRB.CreateIntToPtr( IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, 2 * ASan.LongSize/8)), IntptrPtrTy); IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); // Poison the stack redzones at the entry. Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true); // (Un)poison the stack before all ret instructions. for (auto Ret : RetVec) { IRBuilder<> IRBRet(Ret); // Mark the current frame as retired. IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), BasePlus0); if (DoStackMalloc) { assert(StackMallocIdx >= 0); // if FakeStack != 0 // LocalStackBase == FakeStack // // In use-after-return mode, poison the whole stack frame. // if StackMallocIdx <= 4 // // For small sizes inline the whole thing: // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); // **SavedFlagPtr(FakeStack) = 0 // else // __asan_stack_free_N(FakeStack, LocalStackSize) // else // Value *Cmp = IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); TerminatorInst *ThenTerm, *ElseTerm; SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); IRBuilder<> IRBPoison(ThenTerm); if (StackMallocIdx <= 4) { int ClassSize = kMinStackMallocSize << StackMallocIdx; SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase, ClassSize >> Mapping.Scale); Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( FakeStack, ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); Value *SavedFlagPtr = IRBPoison.CreateLoad( IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); IRBPoison.CreateStore( Constant::getNullValue(IRBPoison.getInt8Ty()), IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); } else { // For larger frames call __asan_stack_free_*. IRBPoison.CreateCall2(AsanStackFreeFunc[StackMallocIdx], FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)); } IRBuilder<> IRBElse(ElseTerm); poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false); } else if (HavePoisonedAllocas) { // If we poisoned some allocas in llvm.lifetime analysis, // unpoison whole stack frame now. poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false); } else { poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false); } } if (ClInstrumentAllocas) // Unpoison dynamic allocas. for (auto &AllocaCall : DynamicAllocaVec) unpoisonDynamicAlloca(AllocaCall); // We are done. Remove the old unused alloca instructions. for (auto AI : AllocaVec) AI->eraseFromParent(); } void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison) { // For now just insert the call to ASan runtime. Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); Value *SizeArg = ConstantInt::get(IntptrTy, Size); IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, AddrArg, SizeArg); } // Handling llvm.lifetime intrinsics for a given %alloca: // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect // invalid accesses) and unpoison it for llvm.lifetime.start (the memory // could be poisoned by previous llvm.lifetime.end instruction, as the // variable may go in and out of scope several times, e.g. in loops). // (3) if we poisoned at least one %alloca in a function, // unpoison the whole stack frame at function exit. AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { if (AllocaInst *AI = dyn_cast(V)) // We're intested only in allocas we can handle. return isInterestingAlloca(*AI) ? AI : nullptr; // See if we've already calculated (or started to calculate) alloca for a // given value. AllocaForValueMapTy::iterator I = AllocaForValue.find(V); if (I != AllocaForValue.end()) return I->second; // Store 0 while we're calculating alloca for value V to avoid // infinite recursion if the value references itself. AllocaForValue[V] = nullptr; AllocaInst *Res = nullptr; if (CastInst *CI = dyn_cast(V)) Res = findAllocaForValue(CI->getOperand(0)); else if (PHINode *PN = dyn_cast(V)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *IncValue = PN->getIncomingValue(i); // Allow self-referencing phi-nodes. if (IncValue == PN) continue; AllocaInst *IncValueAI = findAllocaForValue(IncValue); // AI for incoming values should exist and should all be equal. if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) return nullptr; Res = IncValueAI; } } if (Res) AllocaForValue[V] = Res; return Res; } // Compute PartialRzMagic for dynamic alloca call. PartialRzMagic is // constructed from two separate 32-bit numbers: PartialRzMagic = Val1 | Val2. // (1) Val1 is resposible for forming base value for PartialRzMagic, containing // only 00 for fully addressable and 0xcb for fully poisoned bytes for each // 8-byte chunk of user memory respectively. // (2) Val2 forms the value for marking first poisoned byte in shadow memory // with appropriate value (0x01 - 0x07 or 0xcb if Padding % 8 == 0). // Shift = Padding & ~7; // the number of bits we need to shift to access first // chunk in shadow memory, containing nonzero bytes. // Example: // Padding = 21 Padding = 16 // Shadow: |00|00|05|cb| Shadow: |00|00|cb|cb| // ^ ^ // | | // Shift = 21 & ~7 = 16 Shift = 16 & ~7 = 16 // // Val1 = 0xcbcbcbcb << Shift; // PartialBits = Padding ? Padding & 7 : 0xcb; // Val2 = PartialBits << Shift; // Result = Val1 | Val2; Value *FunctionStackPoisoner::computePartialRzMagic(Value *PartialSize, IRBuilder<> &IRB) { PartialSize = IRB.CreateIntCast(PartialSize, IRB.getInt32Ty(), false); Value *Shift = IRB.CreateAnd(PartialSize, IRB.getInt32(~7)); unsigned Val1Int = kAsanAllocaPartialVal1; unsigned Val2Int = kAsanAllocaPartialVal2; if (!ASan.DL->isLittleEndian()) { Val1Int = sys::getSwappedBytes(Val1Int); Val2Int = sys::getSwappedBytes(Val2Int); } Value *Val1 = shiftAllocaMagic(IRB.getInt32(Val1Int), IRB, Shift); Value *PartialBits = IRB.CreateAnd(PartialSize, IRB.getInt32(7)); // For BigEndian get 0x000000YZ -> 0xYZ000000. if (ASan.DL->isBigEndian()) PartialBits = IRB.CreateShl(PartialBits, IRB.getInt32(24)); Value *Val2 = IRB.getInt32(Val2Int); Value *Cond = IRB.CreateICmpNE(PartialBits, Constant::getNullValue(IRB.getInt32Ty())); Val2 = IRB.CreateSelect(Cond, shiftAllocaMagic(PartialBits, IRB, Shift), shiftAllocaMagic(Val2, IRB, Shift)); return IRB.CreateOr(Val1, Val2); } void FunctionStackPoisoner::handleDynamicAllocaCall( DynamicAllocaCall &AllocaCall) { AllocaInst *AI = AllocaCall.AI; if (!doesDominateAllExits(AI)) { // We do not yet handle complex allocas AllocaCall.Poison = false; return; } IRBuilder<> IRB(AI); PointerType *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty()); const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; Value *Zero = Constant::getNullValue(IntptrTy); Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); Value *NotAllocaRzMask = ConstantInt::get(IntptrTy, ~AllocaRedzoneMask); // Since we need to extend alloca with additional memory to locate // redzones, and OldSize is number of allocated blocks with // ElementSize size, get allocated memory size in bytes by // OldSize * ElementSize. unsigned ElementSize = ASan.DL->getTypeAllocSize(AI->getAllocatedType()); Value *OldSize = IRB.CreateMul(AI->getArraySize(), ConstantInt::get(IntptrTy, ElementSize)); // PartialSize = OldSize % 32 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); // Misalign = kAllocaRzSize - PartialSize; Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize // Align is added to locate left redzone, PartialPadding for possible // partial redzone and kAllocaRzSize for right redzone respectively. Value *AdditionalChunkSize = IRB.CreateAdd( ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); // Insert new alloca with new NewSize and Align params. AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); NewAlloca->setAlignment(Align); // NewAddress = Address + Align Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), ConstantInt::get(IntptrTy, Align)); Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); // LeftRzAddress = NewAddress - kAllocaRzSize Value *LeftRzAddress = IRB.CreateSub(NewAddress, AllocaRzSize); // Poisoning left redzone. AllocaCall.LeftRzAddr = ASan.memToShadow(LeftRzAddress, IRB); IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaLeftMagic), IRB.CreateIntToPtr(AllocaCall.LeftRzAddr, Int32PtrTy)); // PartialRzAligned = PartialRzAddr & ~AllocaRzMask Value *PartialRzAddr = IRB.CreateAdd(NewAddress, OldSize); Value *PartialRzAligned = IRB.CreateAnd(PartialRzAddr, NotAllocaRzMask); // Poisoning partial redzone. Value *PartialRzMagic = computePartialRzMagic(PartialSize, IRB); Value *PartialRzShadowAddr = ASan.memToShadow(PartialRzAligned, IRB); IRB.CreateStore(PartialRzMagic, IRB.CreateIntToPtr(PartialRzShadowAddr, Int32PtrTy)); // RightRzAddress // = (PartialRzAddr + AllocaRzMask) & ~AllocaRzMask Value *RightRzAddress = IRB.CreateAnd( IRB.CreateAdd(PartialRzAddr, AllocaRzMask), NotAllocaRzMask); // Poisoning right redzone. AllocaCall.RightRzAddr = ASan.memToShadow(RightRzAddress, IRB); IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaRightMagic), IRB.CreateIntToPtr(AllocaCall.RightRzAddr, Int32PtrTy)); // Replace all uses of AddessReturnedByAlloca with NewAddress. AI->replaceAllUsesWith(NewAddressPtr); // We are done. Erase old alloca and store left, partial and right redzones // shadow addresses for future unpoisoning. AI->eraseFromParent(); NumInstrumentedDynamicAllocas++; }